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ABSTRACT

With the ubiquity of multicore processors, it is crucial that
solvers adapt to the hierarchical structure of modern archi-
tectures. We present ShyLU, a “hybrid-hybrid” solver for
general sparse linear systems that is hybrid in two ways:
First, it combines direct and iterative methods. The iter-
ative method is based on approximate Schur complements
using dropping or probing. Second, the solver uses two levels
of parallelism via hybrid programming (MPI+4threads). Our
solver is useful both in shared-memory environments and on
large parallel computers with distributed memory. In the
latter case, our solver may be used as a subdomain solver.
We argue that with the increasing complexity of compute
nodes, it is helpful to exploit multiple levels of parallelism
even within a single compute node.

We show the robustness of ShyLU against other algebraic
preconditioners. ShyLU scales well up to 384 cores for a
given problem size. We compare flat MPI performance of
ShyLU against a hybrid implementation. We conclude that
on present multicore nodes flat MPI is better. However,
for future manycore machines (96 or more cores) hybrid/
hierarchical algorithms and implementations are important
for sustained performance.
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1. INTRODUCTION

The general trend in computer architectures is towards hi-
erarchical designs with increasing node level parallelism. As
a result, in order to scale well in these architectures, ap-
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plications need hybrid/hierarchical algorithms for the per-
formance critical components. The solution of sparse linear
systems is an important kernel in scientific computing. A di-
verse set of algorithms is used to solve linear systems, from
direct solvers to iterative solvers. A common strategy for
solving large linear systems on large parallel computers, is to
first employ domain decomposition (e.g., additive Schwarz)
on the system (matrix) to break it into subproblems that
can then be solved in parallel on each core or on each com-
pute node. Typically, applications run one MPI process per
core leading to one subdomain per core as well. A draw-
back of domain decomposition solvers (preconditioners) is
that the number of iterations will increase with the number
of subdomains. With the rapid increase in the number of
cores, we argue that one subdomain per core is no longer a
viable approach. However, one subdomain per node is rea-
sonable since the recent and future increases in parallelism
are and will be primarily on the node. Thus, an increasingly
important problem is to solve linear systems in parallel on
the compute node. In this paper we suggest a two-level ap-
proach on the node. Our hybrid-hybrid method is “hybrid”
in two ways: first, the solver combines direct and iterative
algorithms, and second, we use MPI and threads in a hybrid
programming approach.

We argue that to be scalable and robust it is important for
solvers and preconditioners to use the hybrid approach in
both meanings of the word. A direct solver [24, 20] is very
robust and the BLAS based implementations are capable of
performing near the peak performance of desktop systems
for specific problems. However, they suffer from high mem-
ory requirements and poor scalability in distributed memory
systems. An iterative solver, while highly scalable and cus-
tomizable for problem specific parameters, is not as robust
as a direct solver. A hybrid preconditioner can be concep-
tually viewed as a middle ground between an incomplete
factorization and a direct solver.

Our major contribution in this paper is a new scalable hybrid
sparse solver, ShyLU (Scalable Hybrid LU, pronounced Shy-
Loo), based on the Schur complement framework. ShyLU
is based on Trilinos[17, 16] and also intended to become a
Trilinos package. It is designed to be a “black box” algebraic
solver that can be used on a wide range of problems. Fur-
thermore, it is suitable both as a solver on a single-node mul-
ticore (manycore) workstation and as a subdomain solver on
a compute node of a petaflop (exaflop) system. Our target
is computers with many CPU-like cores, not GPUs.
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With ShyLLU as our target “application”, we then try to an-
swer the question, given a one complex algorithm like linear
solver, with a pure MPI-based implementation and a hy-
brid MPI+4Threads implementation, “When will the hybrid
implementation be better than a pure MPI-based implemen-
tation?” The answer is dependent on algorithms, future
changes in architectures, problem sizes and various other
factors. We try to address this question for our specific al-
gorithm and our target applications.

1.1 Previous work

Many good parallel solver libraries have been developed over
the last decades; for example, Trilinos, PETSc [6, 5, 4], and
Hypre [12]. These were mainly designed for solving large
distributed systems over many processors. Our focus is on
solving medium-sized systems on a single compute node.
(This may be a subproblem within a larger parallel con-
text.) Some parallel sparse direct solvers (e.g., SuperLU-
MT [9, 19] or Pardiso[24]) have shown good performance
in shared-memory environments, while distributed-memory
solvers (for example SuperLU-dist and MUMPS [2, 3]) have
limited scalability. Pastix [15] is an interesting sparse direct
solver because it uses hybrid parallel programming with both
MPI and threads. However, any direct solver will require
lots of memory due to fill and they are not ready to handle
the O(100) to O(1000) expected increase in the node con-
currency (in their present form at least). To reduce memory
requirements, incomplete factorizations is a natural choice.
Although a few parallel codes exist (e.g., Euclid [18]), we
are not aware of any implementation that uses threads or
exploits shared memory.

Recently, there has been much interest in hybrid solvers that
combine features of both direct and iterative methods. Typi-
cally, they partially factor a matrix using direct methods and
iterate on the remaining Schur complement. Parallel codes
of this type include HIPS [13], MaPhys [1], and PDSLin
[25]. ShyLU is similar to these solvers in a conceptual way
that all these solvers fall into the broad Schur complement
framework described in section 2. However, each of these
solvers, including ShyLU, is different in the choices made
at different steps within the Schur complement framework.
Furthermore, we are not aware of any code that is hybrid
in both the mathematical and in the parallel programming
sense. In contrast to the other solvers our target is a many-
core node. See section 4 for how these solvers differ from
ShyLU in the different steps.

2. SCHUR COMPLEMENT FRAMEWORK
Our framework is a general way to solve linear systems based
on the Schur complement approach. Much work has been
done in this area; see for example, [21, Ch.14] and the ref-
erences therein.

2.1 Schur complement formulation
Let Ax = b be the system of interest. Suppose A has the

form
(0

where D and G are square and D is non-singular. The Schur
complement after elimination of the top row is S = G — R *
D™!C. Solving Az = b then consists of the three steps:

Figure 1: Partitioning and reordering of a (a) non-
symmetric and (b) symmetric matrix.
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1. Solve Dz = b;.
2. Solve Sz = by — Rxz.

3. Solve Dz1 = by — Cxs.

where the vector subscripts correspond to the matrix block
TOWS.

The algorithms that use this formulation to solve the linear
system in an iterative method or a hybrid method essen-
tially use three basic steps. We like to call this the Schur
complement framework:

Partitioning: The key idea is to permute A to get a D that
is easy to factor. Typically, D is diagonal, banded or block
diagonal and can be solved quickly using direct methods.
As the focus is on parallel computing, we choose D to be
block diagonal in the framework. Then R corresponds to a
set of coupling rows and C' is a set of coupling columns. See
Figure 1 for two such partitioning. The symmetric case in
Figure 1(b) is identical to the Schur complement formula-
tion. The nonsymmetric case in Figure 1(a) can be solved
using the same Schur complement formulation even though
it appears different.

Sparse Approzimation of S: Once D is factored (either ex-
actly or inexactly), the crux of the Schur complement ap-
proach is to solve for S iteratively. There are several advan-
tages to this approach. First, S is typically much smaller
than A. Second, S is generally better conditioned than A.
However, S is typically dense making it expensive to com-
pute and store. All algorithms compute a sparse approxima-
tion of S either to be used as a preconditioner for an implicit
S or for an inexact solve.

Fast inexact solution with S: Once there is an approximate S
there are multiple options to solve using S and then solve for
the entire system. For example, the algorithms can choose
to just iterate on the Schur complement system and solve
exactly for the full linear system, or use an iterative method
for both, using an inner-outer iteration. The options for
preconditioners to S vary as well.

Different hybrid solvers choose different options in the above
three steps, but they tend to follow this framework.



2.2 Hybrid Solver vs. Preconditioner

Hybrid solvers typically solve for D exactly using a sparse
direct solver. This also provides an exact operator for S.
Note that S does not need to be formed explicitly but the
action of S on a vector can be computed by using the identity
S =G — R+D7'C. This can save significant memory, since
S can be fairly dense.

We take a slightly different perspective: We design an inez-
act solver that may be used as a preconditioner for A. We
do not attempt to scale our “solver” to tens of thousands of
cores, rather we envision it used as a subdomain solver. As
a preconditioner, we no longer need to solve for D exactly.
Also, we don’t need to form (apply) S exactly. If we solve
for S using an iterative method, we get an inner-outer iter-
ation. The inner iteration is internal to ShyLU, while the
outer iteration is done by the user. When the inner itera-
tion runs for a variable number of iterations, it is best to
use a flexible Krylov method (e.g., FGMRES) in the outer
iteration.

2.3 Preconditioner Design

As is usual with preconditioners (see e.g., IFPACK [22]),
we split the preconditioner into three phases: (i) Initialize,
(ii) Compute, and (iii) Solve. Initialize() only depends on
the sparsity pattern of A, so may be reused for a sequence
of matrices. Compute() is called if any matrix entry has
changed in value. Solve() approximately solves Az = b for
a right-hand side b.

Algorithm 1 Initialize

Require: A is a square matrix

Require: k is the desired number of parts (blocks)
Partition A into k parts.

Ensure: Let D be block diagonal with £ blocks.

Ensure: Let R be the row border and C' the column border.

Algorithm 2 Compute

Require: Initialize has been called.
Factor D.
Compute S~ G — R+ D™ 1C.

Algorithm 3 Solve

Require: Compute has been called.
Solve Dz = b;.
Solve either Sz = by — Rz or Sz = by — Rxz.
Solve Dx1 = by — Cxs.

3. HYBRID PROGRAMMING MODEL

ShyLU uses an MPI and threads hybrid programming model
even within the node. Notice that in the Schur complement
framework the partitioning and reordering is purely alge-
braic. This reordering exposes one level of data parallelism.
ShyLU uses MPI tasks to solve for each D; and the Schur
complement. A further opportunity for parallelism, is within
the diagonal blocks D;. We propose to use a threaded direct
solver, for example, Pardiso [24] or SuperLU-MT [9, 19], to
factor each block D;. The assumption here is we can use
multithreaded direct solvers (or potentially incomplete fac-
torizations in the future) effectively within a uniform mem-
ory access (UMA) region, where all cores have equal (fast)

access to a shared memory region. Using MPI between UMA
regions help us mitigate the problems with data placement
and non-uniform memory accesses.

In our implementation, we have chosen to use the Epetra
package in Trilinos with MPI for the matrix A. Using MPI
at this level helps us obtain data locality on a non-uniform
access memory access (NUMA) node, and also allows us to
run across nodes, if desired. When combined with a multi-
threaded solver for the subproblems, we have a hybrid MPI-
threads solver. This is a very flexible design that allows us
to experiment with hybrid programming and the trade-offs
of MPI vs. threads. In the one extreme case, we could par-
tition and use MPI for all the cores and use no threads. The
opposite extreme case is to only use the multithreaded direct
solver. We expect the best performance to lie somewhere in
between. A reasonable choice is to partition for the number
of sockets or UMA regions. We will study this in section 5.

For massively parallel computing, we expect our solver to
be used only for the subdomain since the matrix border size
(and thus the Schur complement) will grow with the num-
ber of parts. Thus, we recommend using a domain decom-
position method with little communication (e.g., additive
Schwarz) at the global level, and ShyLU on the subdomains.
Such a scheme will exploit three levels of parallelism, where
the top level requires little communication while the lower
levels require more and more communication. In essence, we
adapt the solver algorithm to the machine architecture. We
believe this is a good design for future exascale computers
that will be hierarchical in structure.

The Schur complement framework and the MPI+threads
programming model also allow ShyLU be fully flexible in
terms of how applications use it. We envision ShyLU to be
used by the applications in three different modes:

1. Applications that now run one MPI process per core
remain that way, the additive Schwarz preconditioner
(which will use our ShyLU on subdomains) can fuse the
subdomains from all the cores in a node for ShyL.U.

2. When applications start one MPI process per UMA
region in the near future, a simple MPIL Comm._Split()
can map all the MPI processes in a node to ShyLLU’s
MPT processes.

3. When applications start one MPI process per node in
the medium term, additive Schwarz will use a threads-
only ShyLU.

Thus the MPI+X programming model in ShyLU’s design
helps make the application migration to the manycore sys-
tems smooth depending on how the applications want to mi-
grate. This is dependent on how much performance increase
an application can gain in other portions of the application.

4. IMPLEMENTATION

Our framework consists of partitioning, sparse approxima-
tion of the Schur complement, and fast, inexact solution of
the Schur complement. The first two steps only have to be
done once in the setup phase. We now discuss our imple-
mentation for each of these steps in more detail.
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Figure 2: Sparse matrix before (left) and after partitioning and reordering (right). Here k = 4. The matrix

is HB/orsirr_2

4.1 Partitioning

We use partitioning (domain decomposition) to find a D that
has a block structure and is suitable for parallel solution. To
exploit locality (on the node), we partition A into k parts,
where £ > 1 may be chosen to correspond to number of
cores, sockets, or UMA regions. The partitioning induces
the following block structure:

(2 9).

where D again has a block structure. As shown in Figure 1
we have two cases. In the symmetric case, we use a sym-
metric permutation PAPT to get a doubly bordered block
form. In this case, D = diag(D:,...,Dx) is a block diago-
nal matrix, R is a row border, and C is a column border.
Figure 2 shows the matrix HB/orsirr_2 from the UF sparse
matrix collection and the reordered matrix that will be used
by ShyLU. In the nonsymmetric case, there is no symmetry
to preserve so we allow nonsymmetric permutations. There-
fore, instead we find PAQ with a singly bordered block diag-
onal form (Figure 1). A difficulty here is that the “diagonal”
blocks are rectangular, but we can factor square submatrices
of full rank and form R, the row border after the factoriza-
tion. The approach used by MA48 (direct factorization) [11]
to make “diagonal” blocks square by including some columns
from the border is an option too. We omit the details here,
and focus on the structurally symmetric case.

Several variations of graph partitioning can be used to ob-
tain block bordered structure. Traditional graph partition-
ing attempts to keep the parts (submatrices) of equal size
while minimizing the edge cut (number of nonzeros in the
border). Computing a small vertex separator would be bet-
ter for our problem since the separator corresponds exactly
to the border size. The other hybrid solvers we know (see
Section 1) use some form of graph partitioning. Hypergraph
partitioning is a generalization of graph partitioning that is

also well suited for our problem because it can minimize the
border size directly. Also, it naturally handles nonsymmetric
problems, while graph partitioning (or separators) requires
symmetry. Thus, we decided to use hypergraph partitioning
in both the symmetric and nonsymmetric cases. We used
the Zoltan/PHG partitioner [10] via the Isorropia package.

4.2 Diagonal block solver

The blocks D; are relatively small and will typically be
solved on a small number of cores, say in one UMA region.
Either exact or incomplete factorization may be used. We
choose to use a sparse direct solver. Our implementation
uses Pardiso [24] from Intel MKL, which is a multithreaded
solver. Since the direct solver typically will run within a
single UMA region, it does not need to be NUMA-aware.
ShyLU uses the Amesos package[23] in Trilinos to interface
with the direct solvers. This enables us to switch between
any direct solver supported by the Amesos package. The
other codes we have mentioned in Section 1 all use a serial
direct solver in this step.

4.3 Approximations to the Schur Complement
The exact Schur complement is S = G — R* D~!C. In
general, S can be quite dense and is too expensive to store.
There are two ways around this: First, we can use S implic-
itly as an operator without ever forming S. Second, we can
form and store a sparse approximation S ~ S. As we will
see, both approaches are useful.

The Schur complement itself has a block structure

Si1 Siz2 ... Sk
Sa1 S22 ... Su

s=1 . . . 3)
Sk1 Sk2 ... Skk
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Figure 3: Structure to probe. (a) Structure of typical banded probing for S. (b) Structure of G submatrix

(c) Structure of SUG for ShyLU’s probing

where it is known that the diagonal blocks S;; are usually
quite dense but the off-diagonal blocks are mostly sparse
[21]. Note that the local Schur complements S;; can be
computed locally by Si;; = Gii — R; * D;.lCl'. A popular
choice is therefore to use the local Schur complements as a
block diagonal approximation. This ignores any couplings
between the local Schur complements. To improve robust-
ness, we propose to keep the off-diagonal entries of S that
correspond to entries in G. To save storage, the local Schur
complements themselves need to be sparsified [14, 25].

We investigate two different ways to form S ~ S: Drop-
ping and Probing. Both methods attempt to form a sparser
version of S while preserving the main properties of S.

4.3.1 Dropping (value-based)

With dropping we only keep the largest (in magnitude) en-
tries of S. This is a common strategy and was also used
in HIPS and PDSLin. Symmetric dropping is used in [1].
When forming S = G — R+ D™'C, we simply drop entries
less than a given threshold. We use a relative threshold,
dropping entries that are smaller relative to the diagonal
entries. Since S can be quite dense, we only form a few
columns at a time and immediately sparsify (drop). Note
we do not drop based on U™'C or R« U™' where L and
U are the LU factors, as in HIPS or PDSLin. Since our
dropping is based on the actual entries in S, we believe our
approximation S is more robust. However, this can be very
expensive when there is not much to drop in S.

4.3.2  Probing (structure-based)

Since dropping may be expensive in some cases, we also im-
plemented probing. Probing was developed to approximate
interfaces in domain decomposition[7], which is also a Schur
complement. In probing, we prescribe the sparsity pattern of
S = S. Then we compute a set of probing vectors, V, based
on S. This gives rise to a coloring problem, where the num-
ber of colors corresponds to the number of probing vectors
needed. Finally, we apply S = G — RD™'C as an operator
to the probing vectors V to obtain SV, which then gives us
the numerical values for S. Note we never need to form S

explicitly. Generally, the sparser S, the fewer the number

of probing vectors needed. Choosing the sparsity pattern of
S can be tricky. For PDE problems where the values in S
decay away from the diagonal, a band matrix is often used
[7]. However, a purely banded approximation will lose any
entries in S (and G) that are outside the bandwidth. To
strengthen our preconditioner, we include the pattern of G
in the probing pattern, which is simple to do as G is known
a priori. To summarize, the pattern of S is pattern of BUG,
where B is a banded matrix.

Figure 3 uses just the G block of the reordered matrix from
Figure 2(b) as an example. Figure 3(a) shows the struc-
ture of a typical banded probing assuming we are looking
for 5% of the diagonals. To this structure, our algorithms
also includes the structure of G from the reordered matrix
(Figure 3(b)), for probing. As result the structure for the
probing is as shown in Figure 3(c). The idea behind adding
G to the structure of S is that any entry that is originally
part of G is very important in S as well. Preliminary tests
showed a bandwidth of 5% seems to work well for most prob-
lems.

Probing for a band structure is straight-forward since the
probing vectors are trivial to compute. In our approach, we
need to use graph coloring on the structure of S (which in
our case is B U @) to find the probing vectors. We use the
Prober in Isorropia package of Trilinos which again uses the
parallel graph coloring algorithm in Zoltan. Probing for a
complex structure is expensive, but we save quite a lot in
memory as the storage required for the Schur complement
is the size of G with a few diagonals. However, for problems
where the above discussed structure of S is not sufficient,
the more expensive dropping strategy can be used.

4.4 Solving for the Schur Complement

As in the steps before, there are several options for solving
for the Schur Complement as well. Recall that we have
formed S, a sparse approximation to S. A popular approach
in hybrid methods is to solve the Schur complement system
iteratively using S as a preconditioner. In each iteration, we
have to apply S, which can be done implicitly without ever
forming S explicitly. Note that implicit S requires sparse



triangular solves for D in every iteration.

As we only need an inexact solve as a preconditioner, we
advocate a different approach. we can simply solve for S
instead of for S. Now, even S is large enough that it should
be solved in parallel. A simple approach is to apply a parallel
direct solver to S, but this may lead to too much fill. Instead,
we solve for S iteratively. To solve for S iteratively, we use
yet another approximation S %ﬁ as a preconditioner for 51.
It should be easy to solve for S in parallel. In practice, S
can be quite simple, for example, diagonal (Jacobi) or block
diagonal (block Jacobi).

Once the preconditioner (S or 5') and the operator for our
solve (either an implicit S or S) is decided there are two
options of the iterations. If D is solved exactly and an im-
plicit S is the operator it is sufficient to iterate over S (as
in [13]) and not on A. Instead any scheme that uses an in-
exact solve for D or an iterative solve on S or both implies
an inner-outer iterative method for the overall system. It is
not sufficient to iterate on S but it is required to iterate on
A. This is usually fine for a subdomain solver and might be
required when we may do inexact factorization (instead of a
direct factorization) in D as well, in the future. It is because
of this reason ShyLU uses an inner-outer iteration, where the
inner iteration is only on the Schur complement part. The
inner iteration (over S or S) is internal in the solver and
invisible to the user, while the outer iteration (over A) is
controlled by the user. We expect a trade-off between the
inner and outer iterations. That is, if we iterate over S we
need few outer iterations while if we iterate on S we may
need more outer iterations but fewer inner iterations.

By default, we do 30 inner iterations or to an accuracy of
107'° whichever comes first.

4.5 Parallelism

Our implementation of the Schur complement framework
is parallel in all three steps. We use Zoltan’s parallel hy-
pergraph partitioning to partition and reorder the problem.
The block diagonal solvers are multithreaded in addition to
the parallelism from the MPI level. We use parallel coloring
from Zoltan to find orthogonal columns in the structure of
S and sparse matrix vector multiplication to do the prob-
ing. The Schur complement solve uses our parallel iterative
solvers for solving for S in parallel.

S. RESULTS

We perform three different set of experiments. First, we
wish to test robustness of ShyLU compared to other com-
mon algebraic preconditioners. Second, we study ShyLU
performance on manycore platforms, and in particular the
trade-off between flat MPI vs. hybrid models. This study
will also look at performance of ShyLU while doing strong
scaling. Third, we study weak scaling of ShyLU on both 2D
and 3D problems.

5.1 Experimental setup

We have implemented ShyLU in C++ within the Trilinos [17]
framework. We leverage several Trilinos packages, in partic-
ular:

Figure 4: Cross-section of 3D unstructured mesh on
an irregular domain.
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Epetra for matrix and vector data structures and kernels.
Isorropia/Zoltan for matrix partitioning and probing.

AztecOO/Belos for iterative solves (GMRES).

We use two test platforms. The first is Hopper, a Cray
XE6 at NERSC. Hopper has 6392 nodes, each with two
twelve-core AMD MagnyCours processors running at 2.1
GHz. Thus, each node has 24 cores and is a reasonable pro-
totype for future manycore nodes. Furthermore, the hopper
system is attractive to us because of its NUMA properties.
The 24 cores in a node are in fact four six-core UMA sets.
We use hopper for all our strong scaling and weak scaling
studies. Our other test platform is an eight-core (dual-socket
quad-core) Linux workstation that represents current mul-
ticore systems. We use this workstation for our robustness
experiments.

All experimental results shows the number of outer itera-
tions that will be seen by the user of ShyLU. When there are
many tunable parameters there are two ways to do experi-
ments. Always choose the best parameters for each problem,
always use the best parameters for the entire solver. All the
experiments in this section uses solver specific parameters
and there is no tuning for a particular problem. For probing
we add 5% of diagonals to the structure of G. For dropping,
our relative dropping threshold is 1072, We use 30 inner
iterations or 10710 relative residual whichever comes first
and 500 outer iterations or 10~2 relative residual whichever
comes first. We use the native preconditioners in AztecOO
package for solving for S.

5.2 Robustness

We validate the robustness of ShyLU by comparing it to in-
complete factorizations. We use two different variations of
ShyLU, based on dropping and probing in the Schur comple-
ment. Both approaches have a tunable parameter that can
be difficult to choose. We decided to use a fixed (default)
dropping/probing tolerance in all our tests. We believe this



Table 1: Comparison of number of iterations of ShyLU probing and dropping with ILU(1) and ILUT(2, 1e-8).
A dash indicates no convergence

Matrix Name N Symmetry | Dropping | Probing | ILU | ILUT
Pres_Poisson | 14.8K Symmetric 74 53 - -
bodyyb 18K Symmetric 76 76 | 173 109
Lourakis_bundlel 10K Symmetric 33 29 38 31
FIDAP_ex35 19K | Unsymmetric 5 8 - -
ight3 | 10.9K | Unsymmetric 29 18 - -
FEM_3D_thermal2 | 147K | Unsymmetric 12 8 24 23
venkatb0 | 62.4K | Unsymmetric 40 33 - -
airfoil2d | 14.2K | Unsymmetric 25 15 | 153 97
nmos3 | 18.5K | Unsymmetric 30 - - -
FEMLAB_waveguide3D 21K | Unsymmetric 130 - - -
TC_N_360K | 360K Symmetric 58 48 | 342 201
Tramantol 6K | Unsymmetric 114 - - -
reflects how a typical user would use the code. Similarly, we . . .
Figure 5: Strong Scaling of ShyLU’s dropping

tested ILU(k) and ILUT preconditioners with fixed settings.
Our goal is simply demonstrate the robustness of ShyLLU
compared to “black-box” methods that are commonly used
today. The number of iterations should not be compared
directly, since the fill and work differ in the various cases.
The methods can be made comparable by tuning the knobs.
However, the typical use case in our applications ILU(1) and
ILUT(2, 1e-8) and that is what we will compare against.

We chose ten sparse matrices from a variety of application
areas, taken from the Univ. of Florida sparse matrix col-
lection [8]. We added two test matrices from Sandia appli-
cations, Tramantol and TC_N_360K. The results are shown
in Table 1. We see that both versions of ShyLLU are more
robust than ILU and ILUT, in the sense they have fewer fail-
ures. Generally, the drop-tolerance version requires fewer
iterations (though not necessarily less run time) than the
probing version.

A dash indicates that GMRES failed to converge to the
desired tolerance within 500 iterations. We observe that
ShyLU is much more robust than ILU and ILUT. We ex-
pect ILU and ILUT could solve more problems by changing
the level of fill or drop tolerance, but we used reasonable
values.

We further observe that the dropping version is more robust
than the probing version, as it solved all 12 test problems
while the probing version failed in 3 out of 12 cases. How-
ever, the probing version converged faster when it worked.
We will use the dropping version for our strong scaling tests
and compare the two methods again for weak scaling.

5.3 Hybrid model and strong scaling

We implemented ShyLLU with MPI at the top level. Each
MPI process corresponds to a diagonal block D;. We used
multi-threaded MKL-Pardiso as our the subdomain solver.
We wish to study the trade-off between flat MPI and hybrid
models. Our design allows us to run any combination of
MPI processes and threads. Note that when we vary the
number of MPI processes, we also change the number of
subdomains so the preconditioner changes as well. Thus,
what we observe is a combined effect of changes in the solver

method for a matrix of size 360K. Solve Time shown
for MPI tasks x Threads.
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algorithm and in the programming model (MPI+threads).

Initially, we ran on one node of Hopper (24 cores). However,
the number of cores on a node is increasing rapidly. We
want to predict performance on future manycore platforms
with hundreds of cores. We simulate this by running ShyL U
on several nodes. Since we use MPI even within the node,
ShyLU also works across nodes. We expect future many-
core platforms to be hierarchical with highly non-uniform
memory access and running across the nodes will reason-
ably simulate future systems. We expect the performance
figures for more than 24 cores to get better. However, we do
not know how much MPI and threads performance are go-
ing to get better. Assuming they improve at the same rate,
we compare the performance of the MPI-only code with hy-
brid code to understand the possible differences in future
systems.

For this experiment we used a 3D finite element discretiza-
tion of Poisson’s equation on an irregular domain, shown in

Figure 4. The matrix dimension was 360K x 360K

For these experiments, we use the drop-tolerance version of



Figure 6: Strong Scaling of ShyLU’s probing method
for a matrix of size 360K. Solve Time shown for MPI
tasks x Threads.
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Table 4: Strong scaling and Hybrid vs Flat MPI
performance: Solve time in seconds (#iterations)
for ShyLU dropping method to solve a linear system
of size 720k

Table 2: Strong Scaling and Hybrid vs Flat MPI
performance: Solve time in seconds (#iterations)
for ShyLU dropping method to solve a linear system
of size 360k

MPI Processes x Number of Threads in

each node
Nodes 4x6 6x4 12x2 24x1
(Cores)
T(24) | 19.6 (79) | 17.9 (91) | 11.8 (122) | 8.3 (144)
2 (48) | 14.6 (115) | 12.3 (122) | 7.0 (144) | 6.9 (196)
4(96) | 83 (122) | 7.2 (144) | 5.3 (196) | 6.0 (227)
8 (192) 6.4(176) 5.2(196) 3.9(227) | 6.9 (332)

ShyLU. For each node with 24 cores, we tested the following
configurations of MPI processes times threads: 4 x 6, 6 x 4,
12 x 2, and 24 x 1. The results for run-time and iterations
are shown in Table 2. More than 6 threads per node is
not a recommended configuration for hopper so those results
are not shown in Table 2. The solve time is also shown in
Figure 5

There are several interesting observations. First, we see that
although the number of iterations increase with the number
of subdomains (MPI processes), the run times may actually
decrease. On a single node, we see that the all-MPI ver-
sion (24x1) is fastest, even though it uses more iterations.

Table 3: Strong scaling and Hybrid vs Flat MPI
performance: Solve time in seconds (#iterations)
for ShyLU probing method to solve a linear system
of size 360k

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Cores)

1(24) | 17.1 (64) | 15.4 (70) | 9.4 (83) | 8.7 (97)

2 (48) | 13.7 ( 76) 9.7 (83) | 6.7(97) | 6.3 (114)

4 (96) 8.8 (198) 6.3 (97) | 4.8 (114) | 6.9 (148)
8 (192) | 5.7 (111) | 4.6 (114) | 4.5 (148) | 9.3 (218)

MPI Processes x Number of Threads in
each node

Nodes 6x4 12x2 24x1
(Cores)

2 (148) | 25.1(90) | 15.0(104) 11.5(115)

4 (196) | 13.8(104) 9.2(115) 6.2(130)

8 (192) 9.5(115) 5.7(130) 5.1(139)

16 (384) 5.1(130) 3.2(139) 4.8(177)

However, as we add more nodes (and cores), we see that
the run times decrease much more rapidly for the hybrid
configurations. For four nodes, the 12x2 configuration gives
the fastest solve time. We believe that this is mainly due to
the subproblems getting smaller. We conjecture that using
more threads would be helpful on smaller problem sizes (per
core).

To understand how the algorithmic choices affect our strong
scaling results we also repeated the experiment with the
same 360Kx360K problem with probing. The time for the
solve is shown in Figure 6. The results are almost identical to
the dropping method. The MPI only version became worse
at 192 cores. At 192 cores any MPI+4thread combination
beats flat MPI. However, MPI only is still the best choice
at 24 cores. The number of iterations for this experiment is
shown in Table 3. We can see that the number of iterations
for the probing method is better than the dropping method.

To verify our conjecture, that the size of the problem in
each subdomain is important for hybrid performance, we
repeated the experiment, this time with a larger problem
7T20Kx720K. We did not use the 4x6 configuration as it was
the slowest in our previous experiment. The results are
shown in Table 4. Note that ShyLLU scales well up to 384
cores. Furthermore, we see that the crossover point where
MPI+threads beats flat MPI is different for this larger prob-
lem (384 cores). The result can be seen clearly in Figure 7
where we compare the 12x2 case against 24x1 for both the
problems (360K and 720K). When the problem size per sub-
domain is about 3500 unknowns the performance is almost
the same for all four cases. As the problem size per sub-
domain gets smaller the hybrid programming model gets
better.

As shown above, the results can vary even for our solver al-
gorithm, based on the problem, and other parameters. How-
ever, in our problems we see, as the available cores increase,
and the size of the problems get smaller, hybrid solver beats
flat MPI based solver.

We can also get strong scaling results by looking at a col-
umn at a time at the Tables 2 — 4. In the 360K problem’s
dropping case, the 4 x 6 configuration gives a speedup of 2.3
going from one to four nodes, while the 24 x 1 only gave
a speedup of 1.4. Although the first is quite decent when
one takes the communication across nodes into account, one
should keep in mind that ShyLU was primarily intended to



Figure 7: Comparing flat MPI vs MPI+threads vs
Problem size per subdomain.

Table 6: ShyLU (dropping) weak scaling results:
Timing in seconds (#iterations) for 2D finite el-
ement problem.
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Table 5: ShyLU (probing) weak scaling results:

Timing in seconds (#iterations) for 2D finite el-
ement problem.

MPI Processes x Number of Threads in
each node
Nodes 4x6 6x4 12x2 24x1
(Problem Size)
1 (60K) | 0.25(10) | 0.19(10) | 0.35(26) | 0.21(11)
2 (120K) | 0.31(11) | 0.22(10) | 0.40(26) | 0.61(26)
4 (240K) | 0.33(11) | 0.67(26) | 0.20(12) | 0.74(26)
8 (480K) | 0.41(11) | 0.29(11) | 0.60(26) | 0.82(26)

be a fast solver on a single node. The results are similar
when we go to eight nodes (192 cores) too. The best scaling
the hybrid model can achieve is 3.4 while flat MPI is able
to get a speedup of 1.2 for the dropping method. The 6x4
and 12x2 configurations in the 720K problem size case (Ta-
ble 4) achieve a speed up of 4.92 and 4.68 going from 48
to 384 cores. Flat MPI gained a speed up of 2.39 for this
case. Overall, ShyLLU is able to scale well upto 384 cores
reasonably well.

5.4 Weak scaling

We perform weak scaling experiments on both 2D and 3D
problems where we keep the number of degrees of freedom
(matrix rows) per core constant. Since ShyLU is a two-level
hybrid solver, we expect the performance to be somewhere
between a direct and a typical iterative solver.

Our 2D test problem is a finite element discretization of an
elliptic PDE on a structured grid but with random coeffi-
cients, generated in Matlab by the command

= gallery(’wathen’,nx,ny). We vary the number of
nodes from one to eight. Again, we designed ShyLU to be
run within a node but we want to demonstrate scaling be-
yond 24 cores, so we run our experiments across multiple
nodes.

We see in Tables 5-6 that both run time and number of iter-
ations increase slowly with the number of nodes (cores). The

MPI Processes x Number of Threads in
each node
Nodes 4x6 6x4 12x2 24x1
(Problem Size)
1 (60K) | 0.37(17) | 0.31(18) | 0.20(22) | 0.39(27)
2 (120K) | 0.48(20) | 0.51(26) | 0.30(27) | 0.50(30)
4 (240K) | 0.82(29) | 0.49(25) | 0.38(28) | 0.44(31)
8 (480K) | 0.83(29) | 0.66(30) | 0.44(30) | 0.55(32)
Table 7: ShyLU (dropping) weak scaling results:

Timing in seconds (#iterations) for the 3D prob-
lem.

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Problem)
(Size)

1 (90K) 3.0(47) 2.53(54) 1.76(67) 1.37(73)

2 (180K) 4. 55( 1) 3.93(80) 2.78(95) | 2.41(110)

4 (360K) 8.34(122) | 7.25(144) | 5.31(196) | 6.09(227)

8 (720K) | 10.30(103) | 9.59(115) | 5.78(130) | 5.17(139)

dropping version demonstrates a smooth and predictable be-
havior, while the probing version has sudden jumps in num-
ber of iterations and time. We speculate that this is because
the preconditioner is sensitive to the probing pattern. For
the dropping version, the 12x2 configuration with 12 MPI
threads per node is consistently the best.

Our 3D test problem is a finite element discretization of an
elliptic PDE on the unstructured grid show in Figure 4).
The weak scaling results for this problem are shown in Ta-
ble 7. We observe that going from 1 to 8 nodes, the num-
ber of iterations roughly doubles while the run time roughly
triples. Although worse than the perfect scaling that multi-
grid methods may be able to achieve, this is much better
than the O(n2) operations scaling by general sparse direct
solvers. ShyLU’s typical usage as a subdomain solver also
places more emphasis on strong scaling, as the problem size
per node is not growing as fast as the node concurrency, than
weak scaling. We conclude that ShyLU is a good solver for
problems of moderate size and scales quite well up to 192
cores.

6. FUTURE WORK

We plan several improvements in ShyLLU. Many of these deal
with combinatorial issues in the solver algorithm. First, we
intend to extend the code to handle structurally nonsymmet-
ric problems. A simple solution is to partition and reorder
based on the symmetrized matrix A+ A”. This should work
well for almost-symmetric problems but is not a good solu-
tion for highly nonsymmetric systems. Instead, we plan to
hypergraph partitioning and permutation to singly bordered
block form as shown in Figure 1. This requires us to find an
efficient way to deal with rectangular blocks, for example,
by using sparse LU with partial pivoting.



Second, we wish to study the trade-off between load im-
balance in the diagonal blocks and the size of the Schur
complement. By allowing more imbalance in the diagonal
blocks, the partitioner can usually find a smaller block bor-
der. Smaller border implies both less communication and a
smaller Schur complement to solve.

Third, we have observed that the load balance in the sys-
tem for the inner solve (S) may be poor even though the
load balance for the outer problem (A) is good. We believe
this issue poses a partitioning problem with multiple con-
straints and objectives, and cannot be adequately handled
using standard partitioning models.

Fourth, we want to investigate better approximations to the
Schur complement. We have shown that dropping and prob-
ing both have some advantages, so perhaps there is some
combination that works better than either approach alone.

Finally, we plan to integrate ShyLU as a subdomain solver
within a parallel domain decomposition framework. This
would comprise a truely hierarchical solver with three dif-
ferent layers of parallelism in the solver.

We remark that none of these issues are specific to ShyLU
and most also apply to other hybrid solvers. Discussions
with the PDSLin developers have confirmed that they face
similar issues. Thus, research into these combinatorial prob-
lems may help advance a whole class of solvers.

7. CONCLUSIONS

We have introduced a new hybrid-hybrid solver, ShyLU.
ShyLU is hybrid both in the mathematical sense (direct
and iterative) and in the parallel computing sense (MPI +
threads). ShyLU is both a robust linear solver and a flex-
ible framework that allows researchers to experiment with
algorithmic options. Performance results show ShyLLU can
scale well for up to 384 cores in the hybrid mode for a given
problem size.

We also studied the question, that given a complex algo-
rithm, with a MPI-only implementation and Hybrid MPI
+Threads implementation, for a fixed set of parameters:
Can the Hybrid MPI4Threads implementation beat the flat
MPI implementation? Empirical results on a 24-core Mag-
nyCours node show that it is advantageous to run MPI on
the node. This is not surprising since MPI gives good lo-
cality and memory affinity. However, we project that for
applications and algorithms with smaller problem size per
domain, MPI-only works well up to about 48 cores, but
for 96 or more cores hybrid MPI+threads is faster. The
crossover point where the hybrid model beats MPI depends
on the problem size per subdomain. We conclude that MPI-
only solvers is a good choice for today’s multicore archi-
tectures. However, considering the fact that the number
of cores per node are increasing steadily and memory ar-
chitectures are changing to favor core-to-core data sharing,
hybrid/hierarchical algorithms and implementations are im-
portant for future manycore architectures.
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