
Understanding the Complexity of the Software
in a Secure Sensor

Troy Ross - Sandia National Laboratories∗

June 8, 2011

Abstract

Complex sensor platforms are used in safeguards applications to provide re-
liable identification and monitoring of items of interest. The complexity of
the software that controls a sensor platform is rarely understood by non pro-
grammers. Unfortunately, this lack of comprehension leads to misjudgments
regarding the relative complexity and therefore the amount of effort required
in developing a new system or modifying an existing system. This paper
will explore general areas in which software complexity lurks and describe
in a concise and easy to understand manner the effects of this complexity
on the process involved in designing and implementing a sensor platform.
This paper will also attempt to associate certain types of requirements and
their contributions to the overall amount of effort required to implement a
system. The result of this work should assist non programmers in carefully
considering their requirements and help them gain insight into the potential
pitfalls associated with their implementation.

Troy Ross has extensive experience developing software for embedded
seals used in safeguards applications for Sandia National Laboratories. He is
the primary author of the software used in several variations of the Secure

∗Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

1

SAND2011-3991C



Sensor Platform (SSP) as well as the Enhanced Data Authentication System
(EDAS).

Introduction

In nuclear materials management, safeguards, and treaty verification sen-
sors are everywhere. Sensor platforms are incorporated everywhere from the
load cells measuring the mass of containers to the fiber optic sealing devices
monitoring the integrity of a weapons container. Sensors can vary in com-
plexity from the simplest devices that report their output to analog gauges,
to complex devices that require racks of equipment to operate. People who
utilize these sensors tend to only recognize the software and hardware, which
they interact with. The sensors themselves run embedded software that is
responsible for activities that go far beyond the user interaction. It is diffi-
cult to conceive of the multifaceted considerations and structures that define
embedded software development and the concerns of software itself without
understanding the source code and the hardware it is applied to. Program-
mers also are faced with the difficulty of explaining their work to each other
and they often rely upon the power of certain metaphors to convey mean-
ing beyond simple descriptions. Software metaphors which are derived from
architecture and construction are often used in software development. This
paper will further the reader’s understanding of the development of embedded
software by comparing some of the concerns which arise when constructing
a building to similar concerns which arise when constructing software for an
embedded sensor platforms. In addition, where relevant, it will highlight the
effects that certain requirements have upon the implementation of embedded
software.

Location

Before anything can be built a fundamental question must be answered,
where will the building be constructed? Will it be within city limits where
certain services are readily available such as water, waste, gas and electricity
or will it be built in the countryside where a well has to be drilled for water,
a septic system has to be installed for waste disposal, gas has to be delivered,
and solar panels need to be installed to generate electricity?

2



In software, operating systems provide services to programs like munic-
ipalities supply services to homes and businesses. Without an operating
system these services have to be created within the software itself.

One of the services provided by an operating system is task scheduling.
Task scheduling is the process of making sure all tasks are completed in the
order of their relative priority. Similar to coordinating all of the individual
construction tasks that take place on a construction site such as laying a
foundation, framing walls, or installing a roof. Having these services provided
is like having a construction manager who handles all of the coordination.

In embedded applications task scheduling is a very important operation,
especially for a device designed to sense its environment. Difficulty arises
when trying to guarantee that multiple tasks will occur within a certain time
limit. Ideally all sensor monitoring activities could happen in parallel and
would be allowed as much time as required for them to complete. Unfortu-
nately, sensors are usually not able to operate in a parallel and they must
compete for processor time and interrupt each other based upon their rel-
ative priorities. For example, a sensor is required to monitor a fiber optic
cable every 200ms±10ms, and in addition it is required to report the state of
the cable once a minute over a RF link. The sensor takes 30ms to monitor
the cable and takes 200ms to report the cables status over RF. Given these
constraints it is impossible to simply allow the sensor to complete its RF
communications without monitoring the state of the fiber sometime during
RF communications. Regretfully, there are times during RF communications
that the communications cannot be interrupted because doing so would cause
data corruption, so therefore the start of the RF communications must be
delayed just enough so that it can be interrupted during outside of its crit-
ical uninterruptable operations. Operating systems which provide schedul-
ing with constraints similar to these are called real time operating systems.
Without an operating system, this must be planned out before hand by the
programmer and as the number of tasks increases this management becomes
more difficult.

In embedded systems or systems destined for sensitive deployment where
their every aspect will be inspected, operating systems are frowned upon
because with the multitude of services that they provide they also bring with
them a significant amount of extraneous functionality. No software requires
all of the services that an operating system provides and the services that
are not used cannot be easily removed from the operating system. Because
of this, often authentication requirements specify that an operating system

3



shall not be used.
Now if the requirements are eased and instead of stating that the fiber

optic cable has to be monitored every 200ms±10ms it was restated that
the fiber has to be monitored 5 times a second with the maximum time
between measurements to be no greater than 300ms. The task scheduling
also becomes easier. Constraints which are more lax can be handled with
simple task loops which schedule tasks in a simple round robin manner and
require no operating system to accomplish the schedule.

Functionality

If an architect designed a building with the understanding that it would be
expanded in the future much of the infrastructure may already be in place
to accommodate an expansion. If the expansion never occurs, the cost of the
extra work and materials utilized to facilitate the expansion will go to waste.
Building a building is a very deliberate process because the cost of materials
is a major part of the overall cost of building a structure and buildings are
meticulously planned before they are built. When building software for an
embedded system the software structures are built out of bits, which cost
nothing and therefore time is the only cost. Because of this, the design of
software is malleable and changes often over time. While an overall architec-
tural plan is in place for an embedded software system, the individual parts
of the system are building separately as modules, which individually start
out as very simple proof of concept or function implementations. These in-
dividual modules are then combined piece by piece until they form the final
system. The structures required to support the combination of these modules
constitutes the system architecture of the embedded system. This structure
begins as minimally as possible, only just enough to support a single module.
The very first structures developed are the equivalents of straw huts barely
held together, whose purpose is only to provide a place to store data col-
lected from a sensor. Eventually, these preliminary structures are torn apart
and rebuilt into more and more substantial structures. These increasingly
complex structures not only store the information, but also communicate the
data collected to the outside world, analyze the status of the sensor platform,
and coordinate the sensor platforms activities.

Adding new sensors to a platform is like adding a new room or even a new
floor to a building. Many times adding a room is easy, simply create a new

4



entry way and add three walls and a roof. Other rooms require significant
modifications to the existing structure such as moving the associated plumb-
ing, electrical and ventilation. Adding another floor to an existing structure
may be impossible without significantly modifying the support structure of
the entire building.

The collection of sensors or capabilities that are first specified influences
the initial design and infrastructure that is built to support the sensors
and related reporting processes. When specifications change many of these
changes can be made easily because sufficient support already exists to ac-
commodate the overhead of an additional sensor or reporting process. Some-
times the computing device chosen for the sensor platform is simply not
capable of handling the additional load because of limitations in memory,
power, or I/O.

Adding capabilities to a sensor can be relatively easy or hard based upon
the existing structure of the software before the sensor was added. Many
sensors which have binary outputs such as switches are always easy to in-
corporate as long as I/O channels are available on a device. Moving up
in complexity are analog inputs which require analog to digital converters
and related procedures to turn on and off the sensing devices. After analog
inputs have been digitized some interpretation of their value is required to
enable the calibration of their values to standard units. All of these types
of measurements are relatively easy, but how a platform begins to interpret
these measurements becomes complicated quickly as sensor platforms begins
to have required actions based upon ranges of measurements from analog
inputs. Just detecting the change in analog inputs requires accounting for
measurement error, which may be greater than the change a sensor is trying
to detect. All of this logic is in addition to any software that has already
been written and the additional memory space required may not be available
on a device. Such limitations may induce the modification of other software
subsystems to enhance efficiency and the reuse of memory or other limited
resources.

Integrated sensors connected through standard buses such as I2C and SPI
are more complex than analog inputs. These sensors have specialized proto-
cols, which must be implemented in the form of drivers on a sensor platform.
Support for buses is generally available either through a library provided by
a chip vendor or the operating system, so a great deal of effort is not nec-
essary to support these buses. The protocols to interact with the devices
must be written and this effort is well documented, but requires detailed

5



testing. Support for buses does not provide a means to handle data from
multiple devices connected to the same bus. This additional infrastructure
and coordination becomes more complex as more devices are added to the
same bus. Finally there are sensors, which do not use standard buses and
have custom protocols; these types of devices require significant amounts of
work to integrate.

Longevity

Building techniques have been known for centuries on how to construct a
building so that it does not fail. Almost any building can stay intact for a
century as long as regular maintenance is performed. If maintenance is not
preformed and problems are not addressed quickly they can lead to complete
structural failure. A burst pipe can easily cause enormous amounts of dam-
age if the flow of water is not quickly turned off. Software can be designed to
be fault tolerant and only fail given catastrophic circumstances. For embed-
ded systems the maintenance has to be taken care of by the software itself.
The software has to determine when a device or sensor is no longer func-
tioning, and it then has to take actions to either repair the malfunctioning
device or permanently turn the device off and exclude it from future opera-
tions. There are a variety of techniques to determine if a device is no longer
working properly. The first technique is to establish the expected amount
of time it should take a device to report back and if the device significantly
exceeds that amount of time assume the device is malfunctioning. If such a
technique is not implemented, it is possible for a system to wait forever for
an answer from a sensor, which is no longer functioning. Another technique
is to request the status of a sensor directly through its command interface.
Finally, checking the plausibility of the data coming from a sensor will indi-
cate if there is a problem with the sensor. Once it is determined that a sensor
is malfunctioning steps must be taken to correct the problem which could
be resetting the communications link with the sensor, or the sensor itself.
If correcting the problem does not work the sensor has to be excluded from
routine operations and its failure reported. If the sensor platform itself is
malfunctioning it also has to have a means of detecting its malfunction. This
is accomplished by configuring a watch dog timer which resets the platform if
it does not reset the timer quickly enough. Requirements for device longevity
increase the amount of faults that the device must recover from. Longevity

6



means conserving limited power resources as well as handing a multitude of
abnormal situations.

Security

The traditional approach to enhance security on a building is to install locks,
reinforced doors, and other protective structures. On the inside of a building
the most valuable property is stored in safes or in the case of a bank a vault.
Some of these security features can simply be added on after the home is
constructed such as more secure locks and doors. While others like vaults
are built and installed before anything else is constructed. For security of
an embedded system to be effective it must be integral to the design. Cryp-
tography is used extensively throughout embedded designs to obfuscate and
to validate information. The algorithms used in designs are mostly available
as modules from various vendors that can be integrated easily into a design.
The two types of cryptographic algorithms available are symmetric, which
means shared key and asymmetric, which means two separate keys. Asym-
metric algorithms ease the difficulty of key management and therefore are
often made into requirements. Unfortunately, asymmetric algorithms require
significantly more power and time to compute when compared to symmetric
algorithms; therefore if asymmetric algorithms are required, the frequency
of communications or the life of the device is significantly affected. Related
to the choice of cryptographic algorithms is the issue of key management.
Protecting keys in a device is a difficult problem because once an adversary
has access to a fielded sensor platform they have the ability to attempt to
extract the secret cryptographic keys that reside in the memory of the de-
vice. For embedded software, the first defense is to detect the attempt at
unauthorized access to the device. If an attempt is detected, the keys stored
in the device are overwritten. Regretfully, the memory on a computer can
retain physical evidence of what was previously written to it even after it
has been deleted, due to the ”Data Remanence Affect[1].” To counter this
affect the keys themselves must be periodically moved and their previous
location overwritten with information which will negate the affect. Keys are
also copied when used in cryptographic operations these copies must also
be treated in the same manner as the primary location where the keys were
stored.

The smallest defect or oversight can compromise the security of a building.

7



In a heist movie it is a cliché when, the unprotected ventilation shaft allows
a thief to infiltrate the bank in the middle of the night, while completely
avoiding the reinforced entry doors and the idle guards watching a video of
all known entryways. In embedded software entry ways and ventilation shafts
abound in the form of communications and the services that process those
communications. The front doors of software where most communications
takes place tend to be well protected in that they only accept a specific set of
commands and command parameters. Often there are signal buses internal
to an embedded system that are more accepting because of the assumption
that an internal bus will never be used in an attempt to compromise the
system. A command that gives false information with regard to the size
of its contents may overwhelm a system and the system could ’fail open,’
which could compromise system security. Tools are available which look for
many of these vulnerabilities in software, but often they do not understand
some of the compiles used in embedded systems or like a building inspector
they find certain deficiencies, but overlook others. Therefore it falls upon the
software developer to explore potential vulnerabilities and create mechanisms
which will prevent compromise when creating or modifying communications
interfaces.

Conclusion

The issues raised in this paper are only a sampling of the concerns that
affect the process of developing software for an embedded sensor platform.
Several examples were given: timing requirements and their effect upon the
selection of an operating system, additional sensors and the software support
infrastructure changes they incur, sensor faults and the steps to mitigate or
correct them, and memory remenence and its influence upon key manage-
ment procedures. Insights into issues such as these are important to have
before specifying requirements or planning for their implementation. Collec-
tively the concepts presented in this paper can provide important knowledge
regarding the impact requirements have on the overall complexity of an em-
bedded sensor implementation.

8



References

[1] Peter Gutmann. Data remanence in semiconductor devices. In Proceed-
ings of the 10th conference on USENIX Security Symposium - Volume
10, pages 4–4, Berkeley, CA, USA, 2001. USENIX Association.

9


