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Spectrum of Fracture Problems

impact, fragmentation

spectrum of fracture problems

Single CraCk<E> pervasive fracture

crack branching

crack coalescence

tortuous crack paths (sensitive to material
heterogeneity)

stochastic behavior

e well defined deterministic propagation path
¢ analytical solutions
e enrichment methods (GFEM, XFEM, . . .)
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How far can we extend the computational tools used for
one end of the spectrum to the other?
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Typical Fracture Shapes

Note: no smooth cracks!

e Crack-front samples the subscale heterogeneity.

e Probability of seeing a straight crack propagate
through a random field is zero.




Computational Challenges to Allowing Cracks
to Grow Arbitrarily

e Do we restrict branching?
e Do we restrict initiation?

- from surface only?

- from crack tips only?

- from existing cracks only?
e Constraints on turning angles?
e Constraints on crossing angles?
e Constraints on minimum fragment size? @ Sandia

What about 3D?
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Computational Approach

discrete element methods

« Lagrangian
* robust

« compatible with
existing FEA

/ AN

finite element methods random lattice methods
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Computational Approach

e Random Voronoi tessellation (mesh)

e Polyhedral finite-elements

e Fracture only allowed at element edges.
e Dynamic mesh connnectivity

e |nsert cohesive tractions on new fracture surfaces (fracture energy).
% %
changing mesh connectivity

cohesive tractions /
at crack tip
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Why a Random Voronoi Mesh?

If cracks can grow only at element edges, then need to eliminate any directional

bias in crack growth.
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Voronoi tesselation of
with random seeding

Structured grids can result in strong
mesh induced bias (nonobjective).

¢ need to use ‘random’
discretizations

e statistically isotropic
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Voronoi Texture Augments Material Variability

PDF

Probability Density

Weibull Probability Density, =25
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Voronoi Mesh Generation

Bolander, J., Saito, S., 1998, ‘Fracture Analyses using Spring Networks with Random Geometry,” Engineering
Fracture Mechanics, 61, 569-591

hard core Gibb’s process Delaunay triangulation dual Voronoi

e constraint on min. dist.
e seed until ‘max’ packing 80—

e Note that each Voronoi junction is randomly oriented.
e Most Voronoi junctions are triples.
e Average interior angles are 120°.

number of elements
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Polyhedral Element Formulation

Use EFG/RKPM methodology to generate shape functions.

1. Generate nodal weight function ¢ by solving Poisson
equation on compact support.

2. Generate nodal shape function y at each integration point
using Reproducing Kernel Method.

3. Correct shape function derivatives to satisfy integration
consistency (Gauss’s theorem).

VZp+1=0
¢=00nT

RKPM
methodology

local support for node | weight function ¢ shape function y
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Shape Function Integration Consistency

Chen, J.S. et al (2001) ‘A stabalized conforming nodal integration for Galerkin mesh-free methods,’ International
Journal for Numerical Methods in Engineering, 50, 435-466.

Gauss’s theorem
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vy = shape function
w; = integration weight,

©)

© O integration point

‘Tweak’ y,; to satisfy this
constraint while maintaining
previous properties.

L, (error) / L, (exact)

14 - -
o—e—=e ith derivative correcton C
G——e—>o no derivative correcton i
2;( 171 Vmeshr
0.1 - 3
without [
correction
1.0
0.01 3 3
0.001 3 i 3
: with -
65 X 347 mesh . -
correction [
0.0001 ™ T
0.001 0.01 0.1idia
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Verification of Convergence

beam with end load

Mises stress field

L, (error) / L, (exact)

Error norm vs. mesh size

0.1 3

0.01 -

0.001

65 X 347 mesh

2x11mesh [

0.0001
0.001

0.01 0.1
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L, (error) / L, (exact)

0.1

0.01

0.001

0.0001

Mean Dilation Formulation

same as conventional FEM

o—eo—e =03
v=04
—a—u v=049
G—&—+8 v=0499
& =i —A yv=0.4999

65 X 347 mesh

2x11mesh [

0.001

0.1
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(a) before mesh modification
Q e = edge

| =intact
F = fractured
e = global node

(e) after mesh modification

Dynamic Mesh Connectivity
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Quasi-Brittle Material Impact
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Impact Example

Time = 0.000000

max_p

5.000e+00
3.750e+00
2.500e+00
1.250e+00
0.000e+00
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Geo Applications

CO, Sequestration

. Nuclear Waste Isolation
Engineered Geothermal

geothermal reservoir

Treatable Groundwater Aquifers
\

/=' Private Well

/7 Municipal Water Well:
< 1,000 ft.

g Additional steel casing
and cement to protect
groundwater

Hydraulic Fracturing

Protective Steel Casing

NOT TO SCALE \
S Approximate distance

http://www.hydraulicfracturing.com m ﬁ"a't;;#d
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Hydromechanical Coupling in Fractured Rock

Fractured Porous Rock

bulk constitutive properties

(Sandia GeoModel
Fossum & Brannon, 2004)

fracture contact properties

r
Ch=0,— P

w D,
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crack-tip cohesive properties  ©n

:

Au o, =0, {AU;, AU}
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additional challenges
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* scale dependence
* history dependence

* precipitation Sandia
» dissolution @ National
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MeshingGenie (Trilinos)

(Ebeida, M., Knupp, P., Vitus Leung, Sandia National Laboratories)

Fractured Rock
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Multiscale analysis of caprock integrity during CO2 injection

10 km scale

Impose global model displacements

submodel on submodel boundary:.
| 1 m scale

Voo 2N

caprock —

- «—

H—
T T T T T

100 m scale
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increasing stress
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Fluid Flow In 2D Discrete Fracture Networks

caprock

CO, injection

M

p(x, 1)

pore pressure

q(t)

p.()  p,(t)
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Fluid Flow In 2D Discrete Fracture Networks

Solve fluid network to get nodal pressures and flow rates.

/ Fluid Link

—) ) 2 [ o -
Q. . Qout length L Q) wi=1 1R
In
2112
2 T:%%hlh
+
Reynold’s lubrication equation e
V(pQ)=0 Q = flow rate
3 P = pressure
h O
Q —E(Vp —pgh) 1L = viscosity
H T = transmissibility
P(s)
—— R s T
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Fluid Flow In Discrete Fracture Networks

Reynold’s lubrication equation

V(pQ)=0

3

h
=———(Vp-pgh
Q 12M( p—pgh)

S PGs)

~

v
w

Pressure, (P(x) - P,)/ (P, = P,)

0 0.2 0.4 0.6 0.8 1

Position along link, x/L.
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Hydraulic Fracture Simulation

125 Sandia
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Hydraulic Fracture Simulation

fluid pressure up
to crack tip

Initial crack delays
initiation of
secondary crack.

Both cracks
propagate
simultaneously.

fluid pressure up to
cohesive tip

andia
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Hydraulic Fracture Simulation

» Constant fluid pressure causes unstable crack growth.
» Use fluid-mass control.

Fluid Pressure P,, MPa

do
1 increment fluid mass, Am
equilibrate at constanct crack length, a.
p K while (K,> K,
‘ L, increment crack length, Aa.
0.8 1 | . | equilibrate at constant crack length, a + Aa.
| ¢ ! end while
411 end do
PO |11 ﬁ:ﬁ}>
06 L 1.5 10
’ e——=—= fluid pressure
— critical fluid pressure = 9
crack length
critical fluid pressure for 12« F analytical crack length (no reservoir) [ 8
04 a given crack length o
P increase at constant displacement
E 7
unstable crack growth i e
. [~} -
at constant fluid pressure 09 f L ¢ =
————————— : g
L =}
P )
02 r % L 5 §
5 g
506 -4 5
Hs P decrease from 4 4
crack extension [ /|
0 P R TSR . 1 = -3
0 5 10 15 20 o3 ' [
crack length L., m \
-1
stable crack growth
0 1 1 1 1 0
0 60 120 180 240 300

time, s —— Luuuluu.Jries
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3D Element Formulation




Harmonic Functions

A harmonic function is a solution of Laplace’s equation.

or axz + ayz + 522 - BEM, or can just use FEM.

VZ(P _ O 82(p 82([) 52([) -0 Can solve efficiently using

example in 3D

example in 2D

A subset of a broader notion of “energy minimizing” functions.
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Construction of Harmonic Shape Functions in 3D

(Joshi, 2007, “Harmonic coordinates for character articulation”)

nodel @, linear
¢, linear ¢, =0 /\
Vz(Pl =0
OF =0
¢, =0 |
¢, =0 boundary
conditions
d2(P| (Prl
OF =1 2 =0 1
ds I
¢, =0 o—e o ¢, =0 o
node | node |
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Harmonic Shape Function Properties

e partition of unity and reproduce space Z\v, (x) =1, Z\y, (X) X, =X
| |
even for the discrete harmonic solution Z\VT(X) =1, Z\VT(X) X, =X
| |
e Kronecker delta property at nodes V¥, (X;) =9,

e linear on edges (low order)
e shape functions defined on original configuration

(no mapping to ‘parent’ shape)
AN é

. Sandia
shape functions National
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Harmonic Shape Function Examples

Only need to store shape functions and derivatives at integration points.
Discard everything else.
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Element Integration

Due to computational expense of plasticity models, want to minimize the
number of integration points.

Follow approach of Rashid and Selimotec, 2006.

Each node is associated with a “tributary” volume, connected to the centroid.
(more general approaches for non “star-haped” elements.

Number of integration points is equal to the number of vertices.

tributary volume for node |
centroid of face

centroid of element

midpoint of edge

M . . . _ . .
integration point X, = centroid of tributary volume

[ o~ w, f(x) Bration POt Y

Qe k:l

integration point weight w, = tributary volume

e Integration is only first order accurate.
e Sufficient to eliminate any zero energy modes.

National

However, can’t pass the patch test with this low-order integration. @ Sandia
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3D Verification: Engineering Patch Test




What About Large Deformations?

e Shape functions, their derivatives, and the integration
points were defined in the initial configuration (Q,, T',).

e All integrations of the weak form are from the original
configuration (total-Lagrangian formulation).

P is the first Piola-Kirchhoff stress tensor.
X is the position vector of a material point.
P . X is the spatial vector.

— 1 f = pou )

0X + Po Po u=X-— X, is the displacement vector

f is the body force vector per unit mass.

momentum strong form

momentum weak form

/ poll - du d2, = /to ~dudly + / pof - du dS2y — / poP 1 (3(6u)/0X) d2
Slz() F(] S:ZU S'-ZU

However, most material models are hypoelastic.

deformation gradient  rate of deformation PK1 stress Cauchy stress .
Lots of multiplications by

F-X @xg  YoXps  P=JoFT o=JPPFT FandFl
oX ox oX J = det(F) UL e



Verification Test: Beam with a Transverse End-Load

(: |

3D exact linear elasticity solution, (Barber, 2010)

Oyy = Ogy = ()

E

II Yz

QFya.Z v —1)"™ . nmr sinh(Z " ~Y

w2l 1+v Zl n? sin a )cush %b)

F, 11 5 o 1.5, 5 v 2a> - , n 7o sinh(#2Y)
— < —(b* —~ —(3x° —a — B -y
I {2() v+ 6(‘ o )1—|—V 2 1+V§ sind a )C‘Ob'h( nrb )

From this stress field - strain field - integrate to get displacement

. . . ope . Sandia
field using compatibility equations. @ N
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Randomly Close-Packed Voronoi Meshes

beam dimension =
1x1x5 ' '

point spacing = 0.5 point spacing = 0.25 point spacing = 0.125

minimum edge
to diameter
ratio = 104

point spacing = 0.0625



Randomly Close-Packed Voronoi Meshes

mesh statistics
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Verification Test: Bending+Shear of a Prismatic Bar

deformed shape, Von Mises stress

B
2
g
>.qr\l
=
L.-_]r\l
0.001
exact linear elasticity solution -
Opy = Oyy = Ogy =10 L
o, = T,
B N | 0.0001 : e
o 9F,a®> v Z(—1)nsm(nm:)smh(%) 0.1 0.2 0.4 0.6 08 1
- mL l+vie n? T acosh(2P) max element diameter
I 2T I U P 7 202 v o= (1) . nme sinh(7FY)
T = II{Q(b IR v D Dt ey
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Summary and Future Work

Researching the use of randomly close-packed Voronoi meshes for modeling
pervasive fracture processes.

Finite-element formulations of 2D polygons and 3D polyhedra

Developed statistical methods for verifying mesh convergence in nonlinear
dynamical systems displaying extreme sensitivity to initial conditions.

Applications to geomechanics, hydraulic fracturing, CO, sequestration.

Implementation into Sandia’s massively-parallel multiphysics codes in
progress:

1. Aria — porous flow, flow in discrete fracture networks
coupled

2. Adagio — solid mechanics
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