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spectrum of fracture problems 

• well defined deterministic propagation path 
• analytical solutions 
• enrichment methods (GFEM, XFEM, . . .) 

• crack branching 
• crack coalescence 
• tortuous crack paths (sensitive to material 

heterogeneity) 
• stochastic behavior 

single crack pervasive fracture 

Spectrum of Fracture Problems 

How far can we extend the computational tools used for 
one end of the spectrum to the other? 

impact, fragmentation 



Typical Fracture Shapes 

Note: no smooth cracks! 

• Crack-front samples the subscale heterogeneity. 

• Probability of seeing a straight crack propagate 
through a random field is zero. 



Computational Challenges to Allowing Cracks 
to Grow Arbitrarily 

What about 3D? 

• Do we restrict branching? 
• Do we restrict initiation? 

- from surface only? 
- from crack tips only? 
- from existing cracks only? 

• Constraints on turning angles? 
• Constraints on crossing angles? 
• Constraints on minimum fragment size? 



Computational Approach 

discrete element methods 

finite element methods random lattice methods 

• Lagrangian 

• robust 

• compatible with 

existing FEA 



Computational Approach 

• Random Voronoi tessellation (mesh) 

• Polyhedral finite-elements 

• Fracture only allowed at element edges.  

• Dynamic mesh connnectivity 

• Insert cohesive tractions on new fracture surfaces (fracture energy). 
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changing mesh connectivity 

cohesive tractions 
at crack tip 



Why a Random Voronoi Mesh? 

If cracks can grow only at element edges, then need to eliminate any directional 
bias in crack growth. 

Structured grids can result in strong 
mesh induced bias (nonobjective). 

• need to use ‘random’ 
discretizations 

• statistically isotropic 

Voronoi tesselation of 
with random seeding 



Voronoi Texture Augments Material Variability 

Probability Density 



Voronoi Mesh Generation 

dual Voronoi Delaunay triangulation hard core Gibb’s process  

•constraint on min. dist. 
•seed until ‘max’ packing 

Bolander, J., Saito, S., 1998, ‘Fracture Analyses using Spring Networks with Random Geometry,’ Engineering 
Fracture Mechanics, 61, 569-591 

• Note that each Voronoi junction is randomly oriented. 
• Most Voronoi junctions are triples.  
• Average interior angles are 120. 



Polyhedral Element Formulation 

Use EFG/RKPM methodology to generate shape functions. 
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1. Generate nodal weight function  by solving Poisson 
equation on compact support. 

2. Generate nodal shape function  at each integration point 
using Reproducing Kernel Method. 

3. Correct shape function derivatives to satisfy integration 
consistency (Gauss’s theorem). 

weight function  shape function  

RKPM 
methodology 



Shape Function Integration Consistency 

with 
correction 

without 
correction 
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Gauss’s theorem 

wj = integration weight,  

 = shape function 

Chen, J.S. et al (2001) ‘A stabalized conforming nodal integration for Galerkin mesh-free methods,’ International 
Journal for Numerical Methods in Engineering, 50, 435-466. 

‘Tweak’ ,i  to satisfy this 
constraint while maintaining 
previous properties. 



Verification of Convergence 

beam with end load 

Mises stress field 

Error norm vs. mesh size 



Mean Dilation Formulation 

same as conventional FEM 



Dynamic Mesh Connectivity 



Quasi-Brittle Material Impact 



Impact Example 



Outline 

1. Disordered media, pervasive fracture 

2. Modeling approach 

3. Application to geosystems: hydro-mechanical coupling 

4. 3D formulation and verification 

5. Summary 



Geo Applications 

Engineered Geothermal 
Nuclear Waste Isolation 

Source: NTS Smart Grid Blog 

Derek Sept. 2009 

CO2 Sequestration 

Compressed Air Energy Storage 

http://www.hydraulicfracturing.com 

Hydraulic Fracturing 



Hydromechanical Coupling in Fractured Rock 

Fractured Porous Rock 

• scale dependence 

• history dependence 

• precipitation 

• dissolution 

crack-tip cohesive properties 

fracture contact properties 
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bulk constitutive properties 
(Sandia GeoModel 

Fossum & Brannon, 2004) 
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additional challenges 



(Ebeida, M.,  Knupp, P., Vitus Leung, Sandia National Laboratories) 

Fractured Rock 

MeshingGenie (Trilinos) 



caprock 

Impose global model displacements 

on submodel boundary. 
1 m scale 

100 m scale 

10 km scale 

Multiscale analysis of caprock integrity during CO2 injection 

submodel 

global model 

coupled porous flow and 

geomechanics simulation  

shear stress and uplift 



increasing stress 



p(x, t) 

q(t) 

CO2 injection 

p1(t) 

q(t) 

p2(t) 

caprock 

leak rate 

pore pressure 

Fluid Flow in 2D Discrete Fracture Networks 
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Q = flow rate 

P = pressure 

 = viscosity 

T = transmissibility 
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Fluid Link 

length L 
1 2 

Solve fluid network to get nodal pressures and flow rates. 

Fluid Flow in 2D Discrete Fracture Networks 

h1 
h2 

Qin 

Qout 

Reynold’s lubrication equation 

 

 ghp
h








12

0

3

Q

Q

s 

P(s) 



h1 
h2 

Qin 

Qout 

Fluid Flow in Discrete Fracture Networks 

Reynold’s lubrication equation 
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Hydraulic Fracture Simulation 



fluid pressure up 
to crack tip 

fluid pressure up to 
cohesive tip 

Both cracks 
propagate 
simultaneously. 

Initial crack delays 
initiation of 
secondary crack. 

t = 2.1 t = 2.5 

t = 1.75 

t = 1.77 t = 2.07 t = 2.5 

Hydraulic Fracture Simulation 



Hydraulic Fracture Simulation 

• Constant fluid pressure causes unstable crack growth.   

• Use fluid-mass control. 

do   

 increment fluid mass, m 

 equilibrate at constanct crack length, a. 

 while (KI > KIc) 

     increment crack length, a. 

     equilibrate at constant crack length, a + a. 

 end while 

end do 

stable crack growth 
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3D Element Formulation 

nodal shape function 



Harmonic Functions 
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A harmonic function is a solution of Laplace’s equation. 
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A subset of a broader notion of “energy minimizing” functions. 

or 

example in 2D 
example in 3D 

Can solve efficiently using 
BEM, or can just use FEM. 



Construction of Harmonic Shape Functions in 3D 
(Joshi, 2007, “Harmonic coordinates for character articulation”) 
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Harmonic Shape Function  Properties 

• partition of unity and reproduce space 

 

 

 

• Kronecker delta property at nodes 

• linear on edges (low order) 

• shape functions defined on original configuration 
(no mapping to ‘parent’ shape) 
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Harmonic Shape Function Examples 

Only need to store shape functions and derivatives at integration points. 

Discard everything else. 



Element Integration 

• Due to computational expense of plasticity models, want to minimize the 
number of integration points. 

• Follow approach of Rashid and Selimotec, 2006. 

• Each node is associated with a “tributary” volume, connected to the centroid. 
(more general approaches for non “star-haped” elements. 

• Number of integration points is equal to the number of vertices.  

centroid of element 

integration point xk = centroid of tributary volume 

tributary volume for node I 

integration point weight wk = tributary volume 

centroid of face 

midpoint of edge 

• Integration is only first order accurate. 
• Sufficient to eliminate any zero energy modes. 

However, can’t pass the patch test with this low-order integration. 
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3D Verification:  Engineering Patch Test 



What About Large Deformations? 

• Shape functions, their derivatives, and the integration 
points were defined in the initial configuration (o, o). 

• All integrations of the weak form are from the original 
configuration (total-Lagrangian formulation). 

P  is the first Piola-Kirchhoff stress tensor. 
X  is the position vector of a material point. 
x  is the spatial vector. 
u = x − X, is the displacement vector 
f  is the body force vector per unit mass. 

momentum strong form 

momentum weak form 
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However, most material models are hypoelastic. 
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PK1 stress Cauchy stress 
Lots of multiplications by 
F and F1 (33) 



Verification Test:  Beam with a Transverse End-Load 

3D exact linear elasticity solution, (Barber, 2010) 

From this stress field → strain field → integrate to get displacement 
field using compatibility equations. 



Randomly Close-Packed Voronoi Meshes 

point spacing = 0.5 

beam dimension = 

1  1  5 

point spacing = 0.25 point spacing = 0.125 

point spacing = 0.0625 

minimum edge 
to diameter 
ratio = 104 



Randomly Close-Packed Voronoi Meshes 

mesh statistics 

median 24 nodes per element median 14 faces per element median 5 nodes per face 



Verification Test: Bending+Shear of a Prismatic Bar 

deformed shape, Von Mises stress 

exact linear elasticity solution 



Summary and Future Work 

1. Researching the use of randomly close-packed Voronoi meshes for modeling 
pervasive fracture processes. 

2. Finite-element formulations of 2D polygons and 3D polyhedra 

3. Developed statistical methods for verifying mesh convergence in nonlinear 
dynamical systems displaying extreme sensitivity to initial conditions. 

4. Applications to geomechanics, hydraulic fracturing, CO2 sequestration. 

5. Implementation into Sandia’s massively-parallel multiphysics codes in 
progress: 

1. Aria – porous flow, flow in discrete fracture networks 

2. Adagio – solid mechanics 
coupled  


