

A Finite-Element Method for Modeling Fracture in Disordered Media using Randomly Close-Packed Voronoi Tessellations with Applications to Fragmentation, CO₂ sequestration, and HydroFracking

Joseph Bishop¹ and Mario Martinez²

¹Computational Structural Mechanics
Sandia National Laboratories
Albuquerque, NM

²Thermal and Fluid Processes
Sandia National Laboratories
Albuquerque, NM

Presented at the 2011 International Conference on the
Computational Modeling of Fracture and Failure of Materials and Structures

This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.

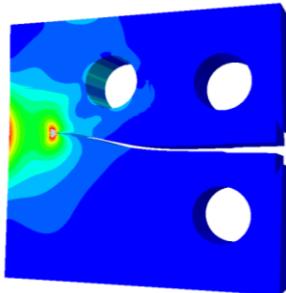
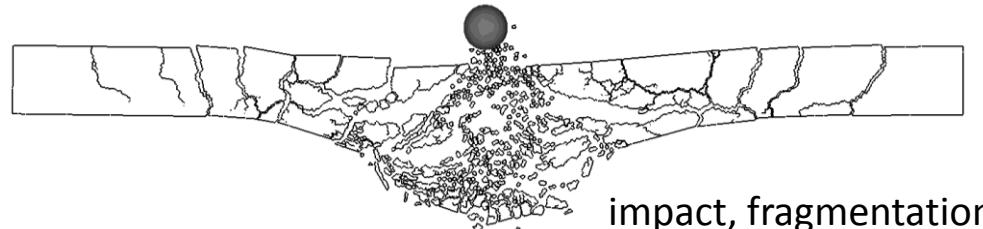
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Center

Outline

1. Disordered media, pervasive fracture
2. Modeling approach
3. Application to geosystems: hydro-mechanical coupling
4. 3D formulation and verification
5. Summary

Spectrum of Fracture Problems



impact, fragmentation

spectrum of fracture problems

single crack

pervasive fracture

- well defined deterministic propagation path
- analytical solutions
- enrichment methods (GFEM, XFEM, . . .)

- crack branching
- crack coalescence
- tortuous crack paths (sensitive to material heterogeneity)
- stochastic behavior

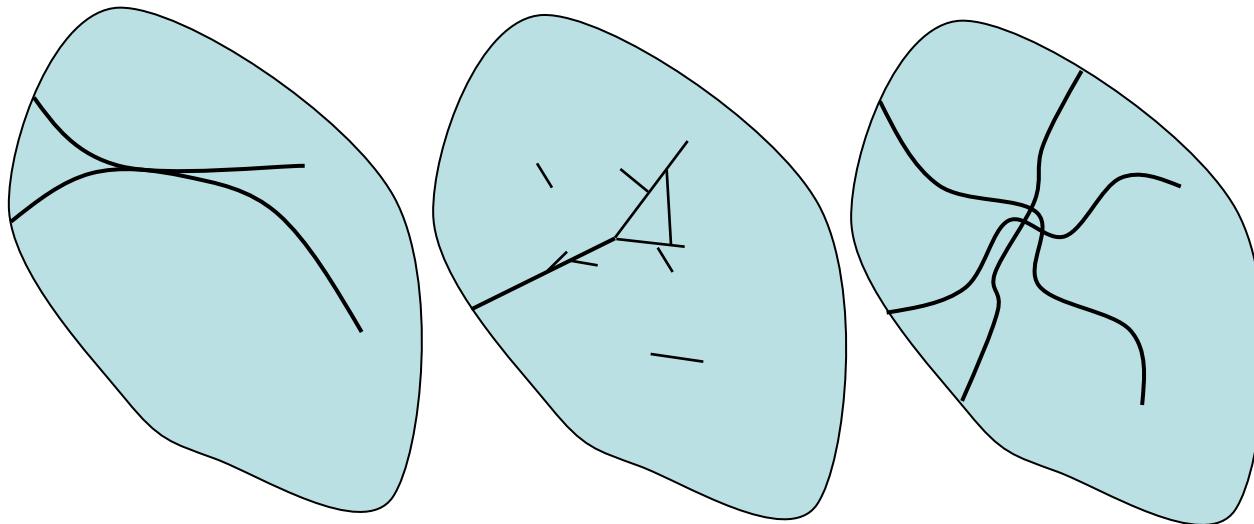
How far can we extend the computational tools used for one end of the spectrum to the other?

Typical Fracture Shapes

Note: no smooth cracks!

- Crack-front samples the subscale heterogeneity.
- Probability of seeing a straight crack propagate through a random field is zero.

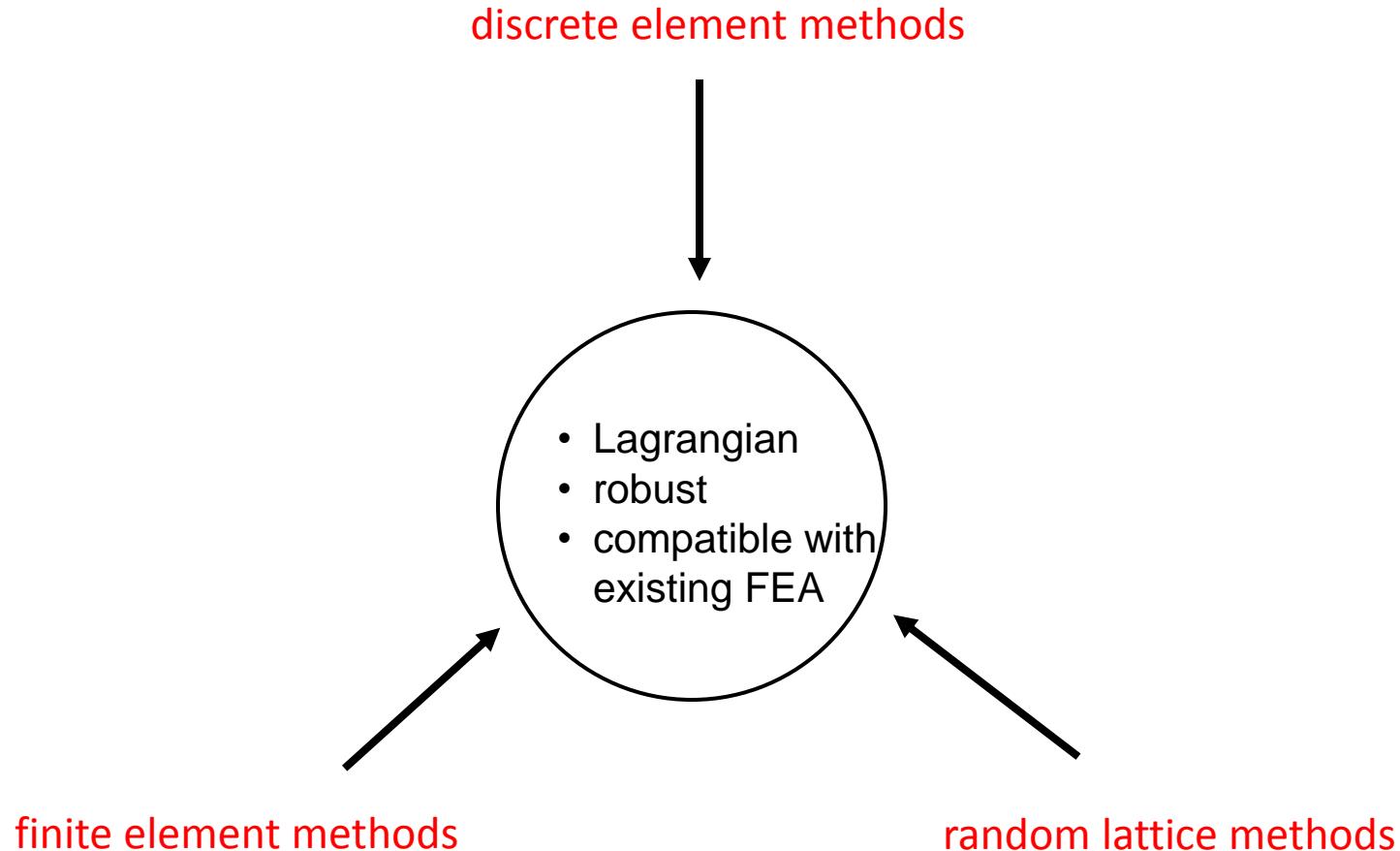
Computational Challenges to Allowing Cracks to Grow Arbitrarily



- Do we restrict branching?
- Do we restrict initiation?
 - from surface only?
 - from crack tips only?
 - from existing cracks only?
- Constraints on turning angles?
- Constraints on crossing angles?
- Constraints on minimum fragment size?

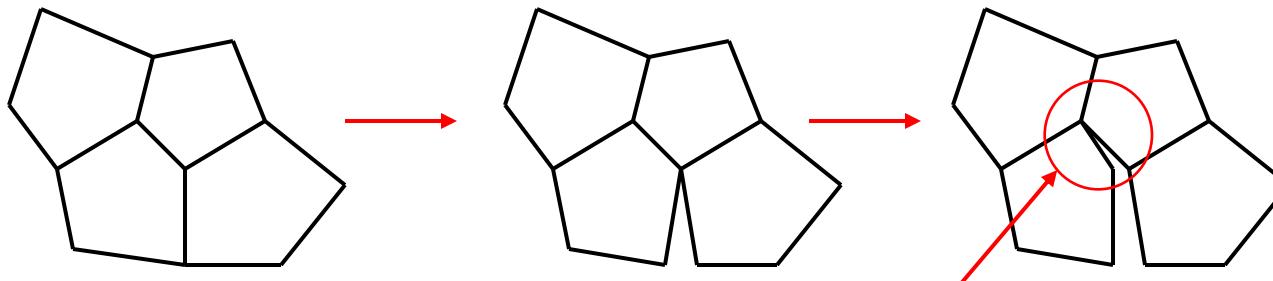
What about 3D?

Computational Approach



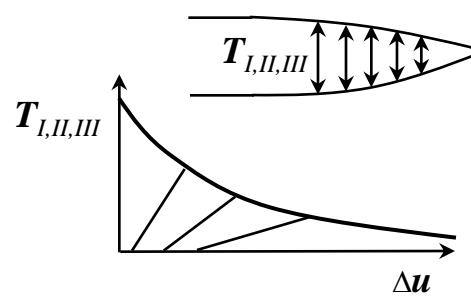
Computational Approach

- Random Voronoi tessellation (mesh)
- Polyhedral finite-elements
- **Fracture only allowed at element edges.**
- *Dynamic* mesh connectivity
- Insert cohesive tractions on new fracture surfaces (fracture energy).



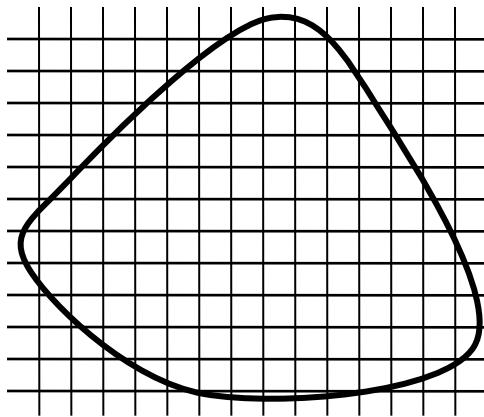
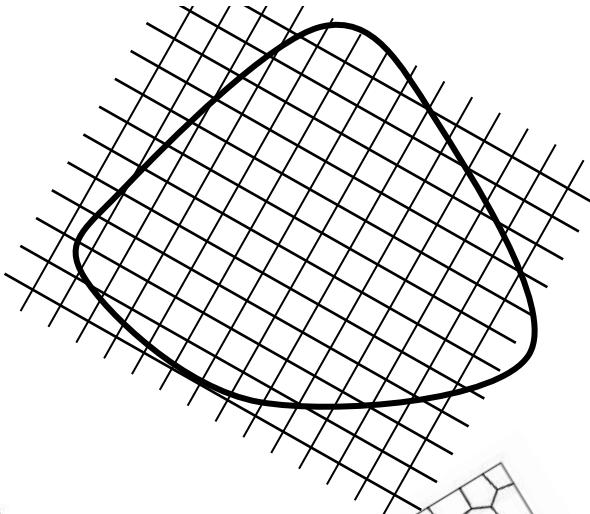
changing mesh connectivity

cohesive tractions
at crack tip

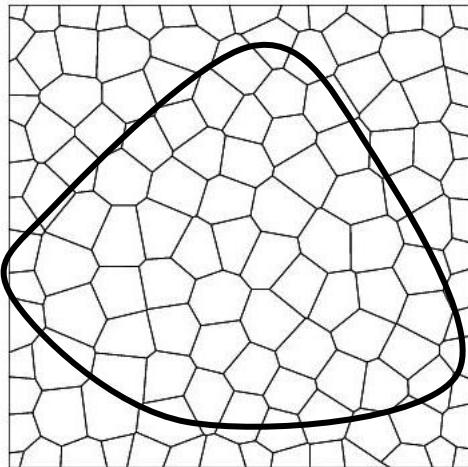
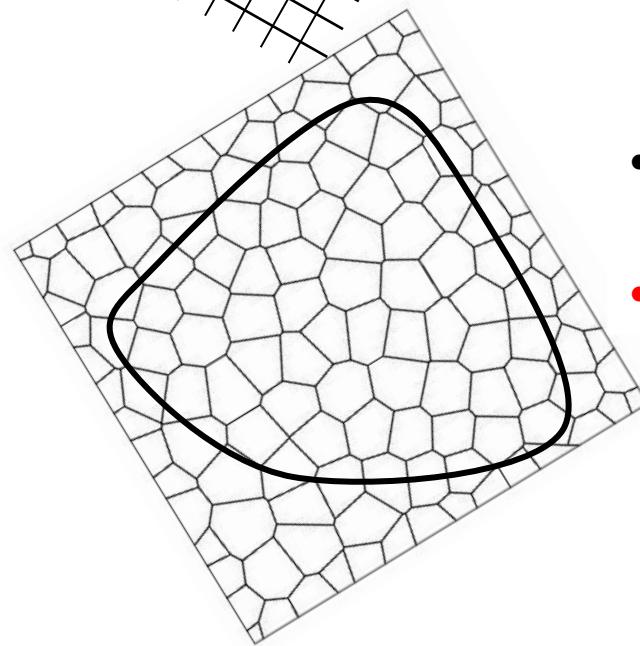


Why a Random Voronoi Mesh?

If cracks can grow only at element edges, then need to eliminate any directional bias in crack growth.



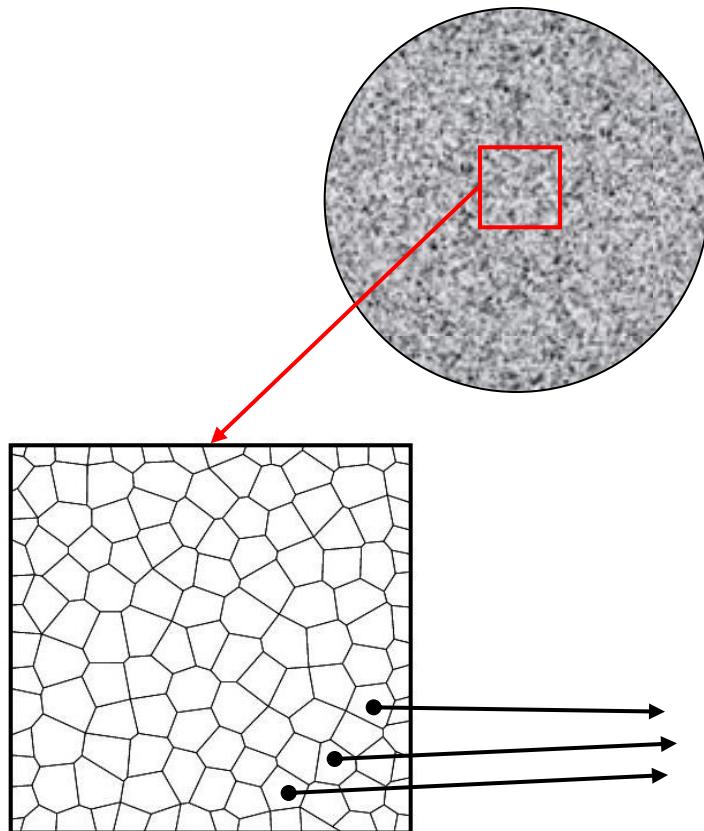
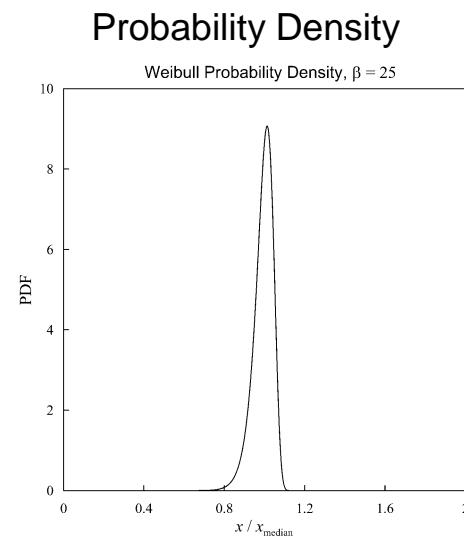
Structured grids can result in strong mesh induced bias (nonobjective).



- need to use 'random' discretizations
- statistically isotropic

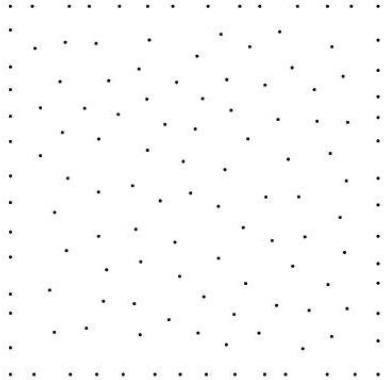
Voronoi tessellation of
with random seeding

Voronoi Texture Augments Material Variability



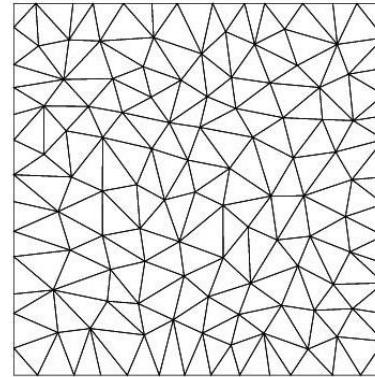
Voronoi Mesh Generation

Bolander, J., Saito, S., 1998, 'Fracture Analyses using Spring Networks with Random Geometry,' *Engineering Fracture Mechanics*, 61, 569-591

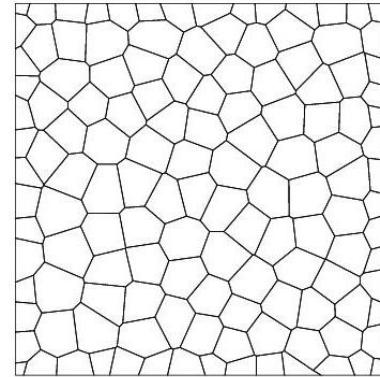


hard core Gibb's process

- constraint on min. dist.
- seed until 'max' packing

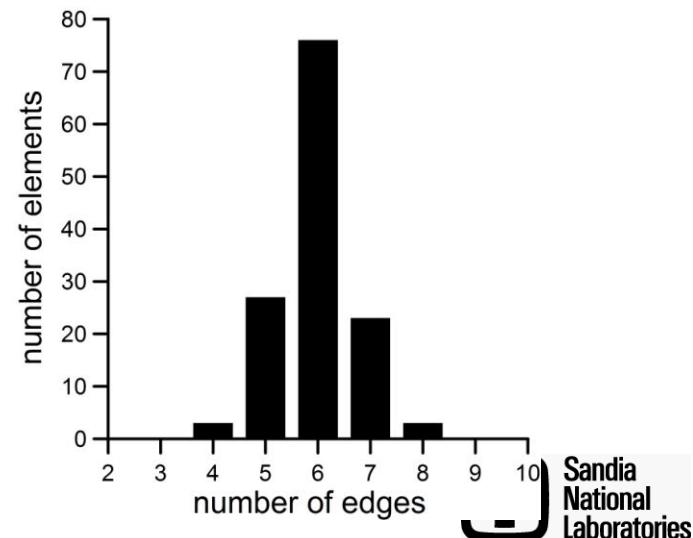


Delaunay triangulation



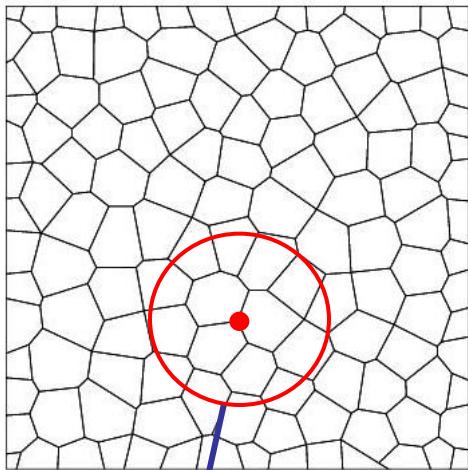
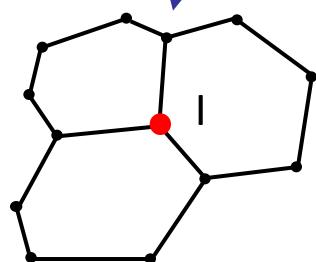
dual Voronoi

- Note that each Voronoi junction is randomly oriented.
- Most Voronoi junctions are triples.
- Average interior angles are 120° .



Polyhedral Element Formulation

Use EFG/RKPM methodology to generate shape functions.

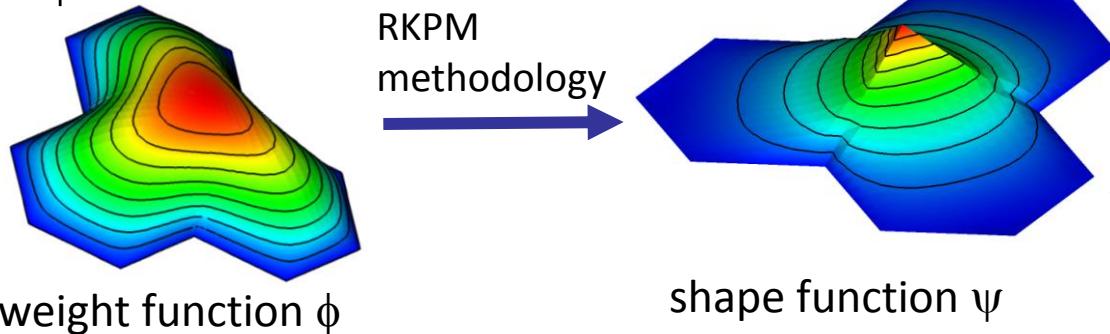


local support for node I

1. Generate nodal *weight* function ϕ by solving Poisson equation on compact support.
2. Generate nodal *shape* function ψ at each integration point using Reproducing Kernel Method.
3. Correct shape function derivatives to satisfy integration consistency (Gauss's theorem).

$$\nabla^2 \phi + 1 = 0$$

$$\phi = 0 \text{ on } \Gamma$$



Shape Function Integration Consistency

Chen, J.S. et al (2001) 'A stabilized conforming nodal integration for Galerkin mesh-free methods,' *International Journal for Numerical Methods in Engineering*, 50, 435-466.

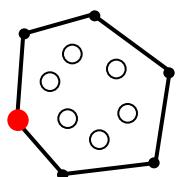
Gauss's theorem

$$\int_{\Omega_e} \psi_{,i} = \int_{\Gamma_e} \psi n_i$$

$$\sum_j w_j \psi_{,i}^j = \sum_j w_j^\Gamma \psi^j n_i$$

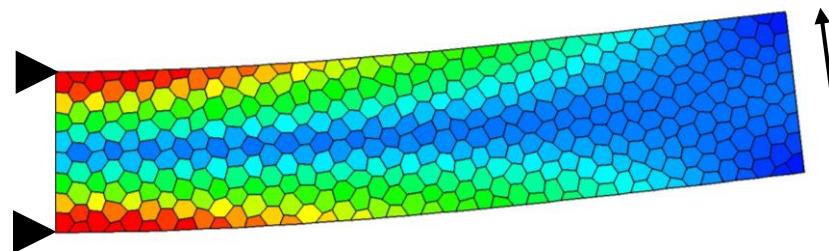
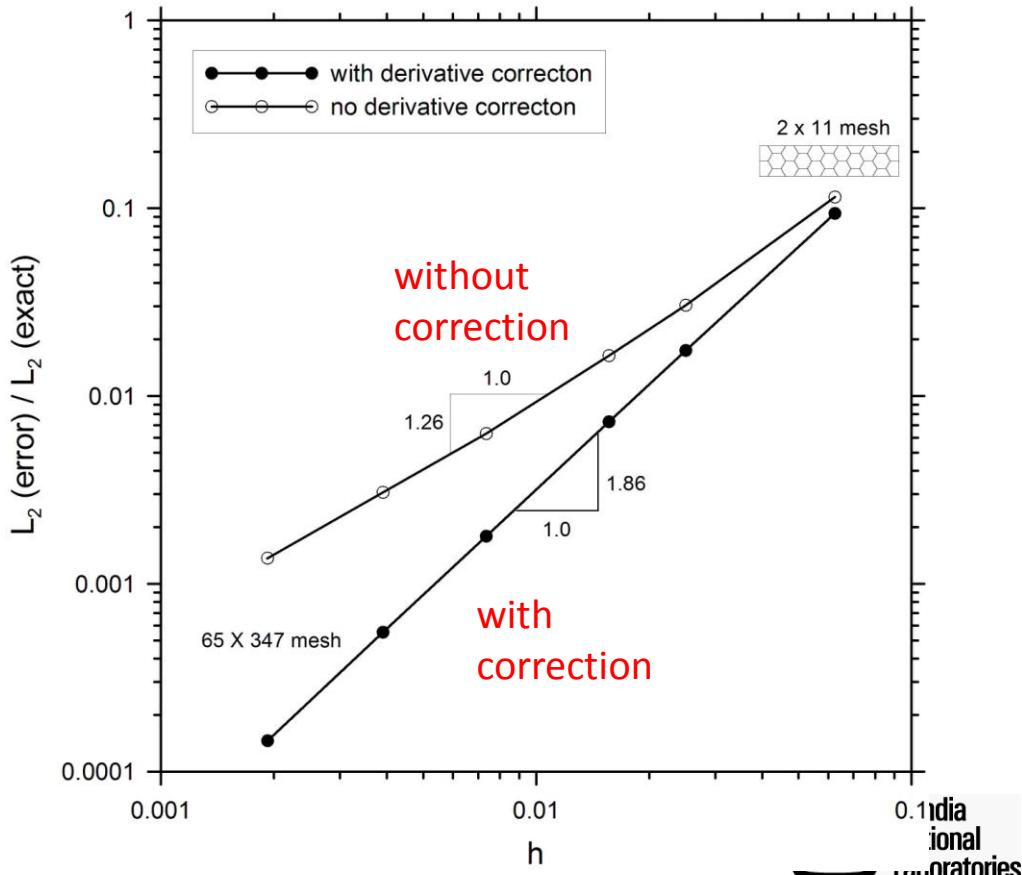
ψ = shape function

w_j = integration weight,



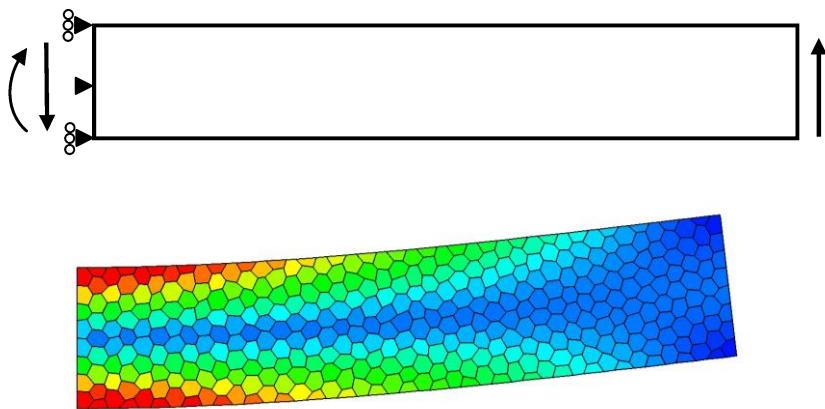
○ integration point

'Tweak' $\psi_{,i}$ to satisfy this constraint while maintaining previous properties.



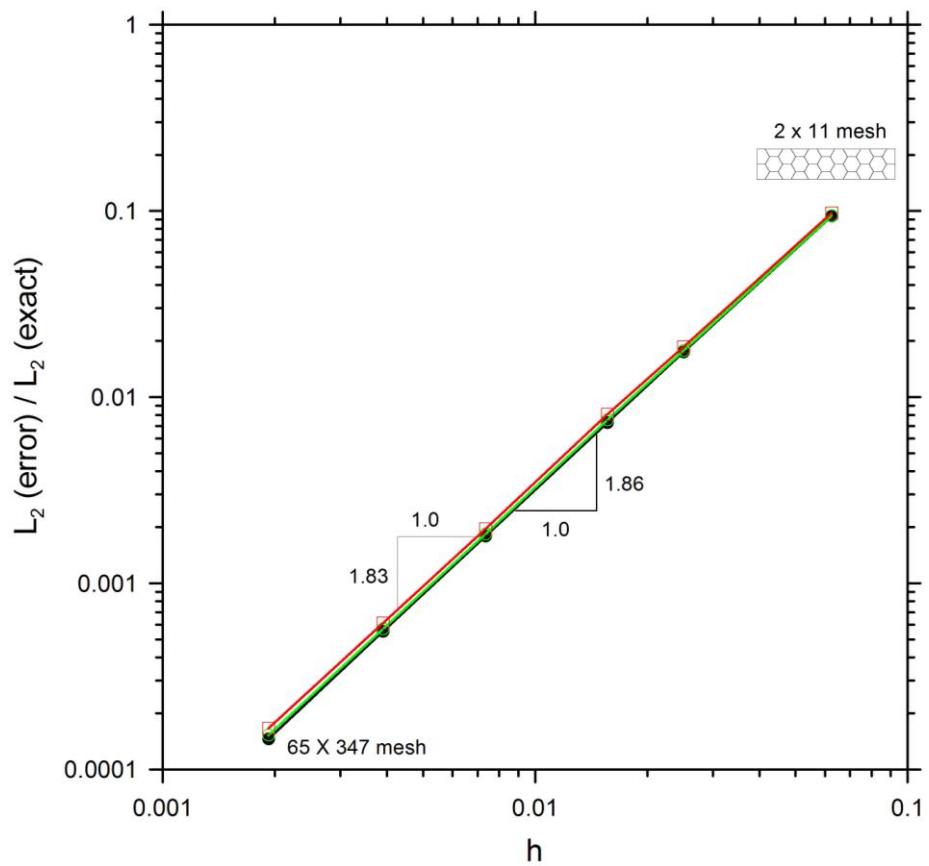
Verification of Convergence

beam with end load



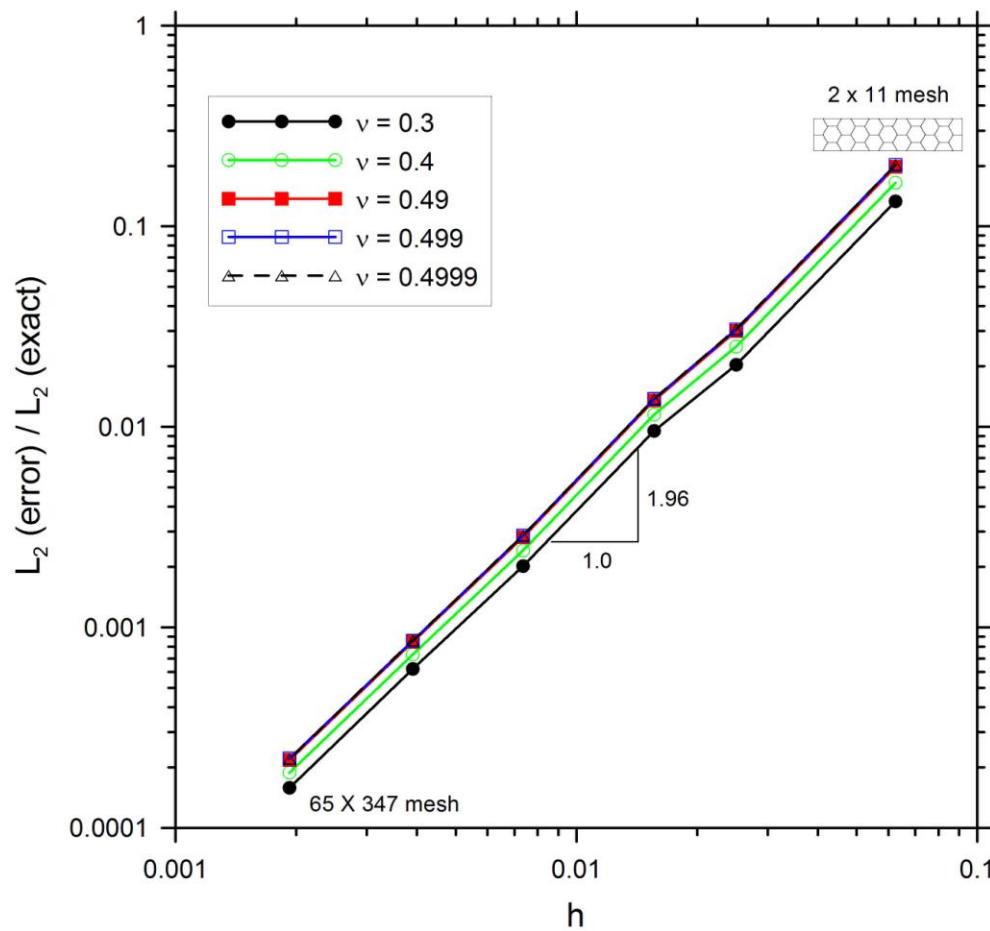
Mises stress field

Error norm vs. mesh size

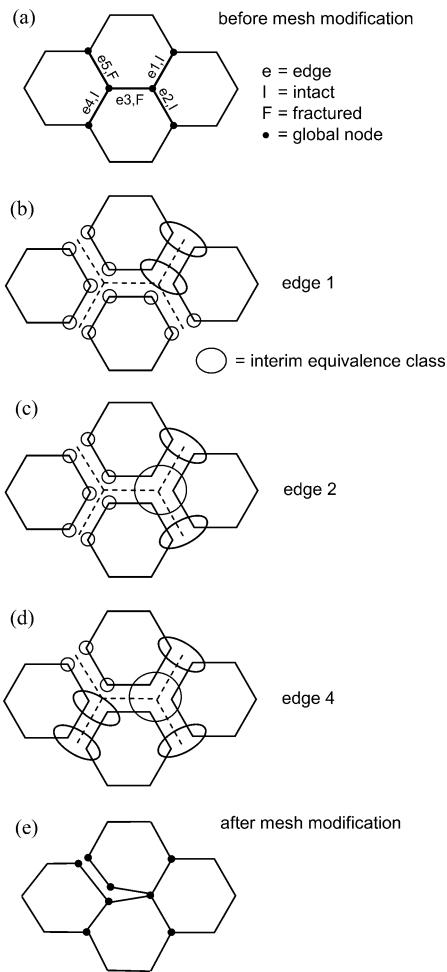
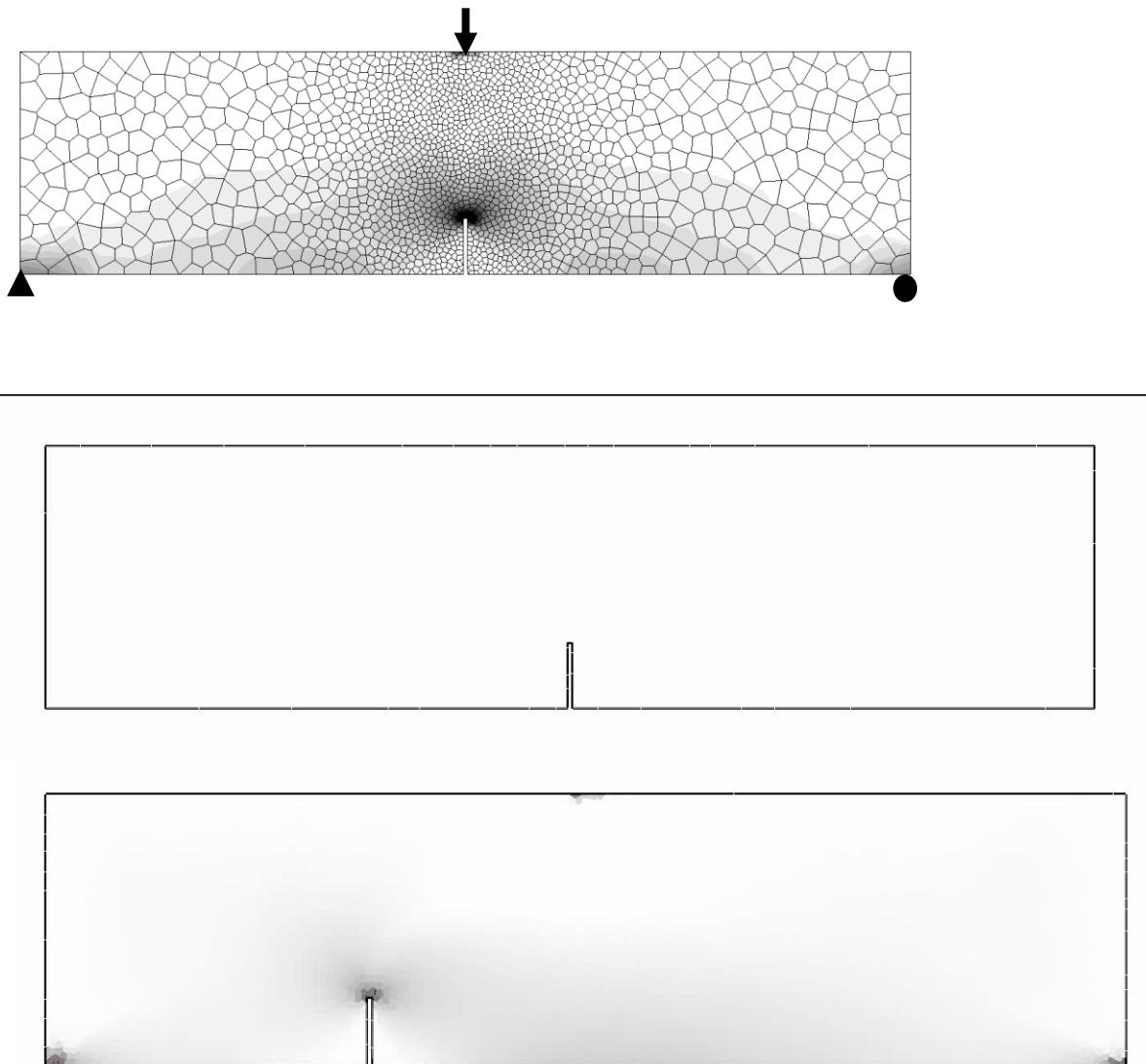


Mean Dilation Formulation

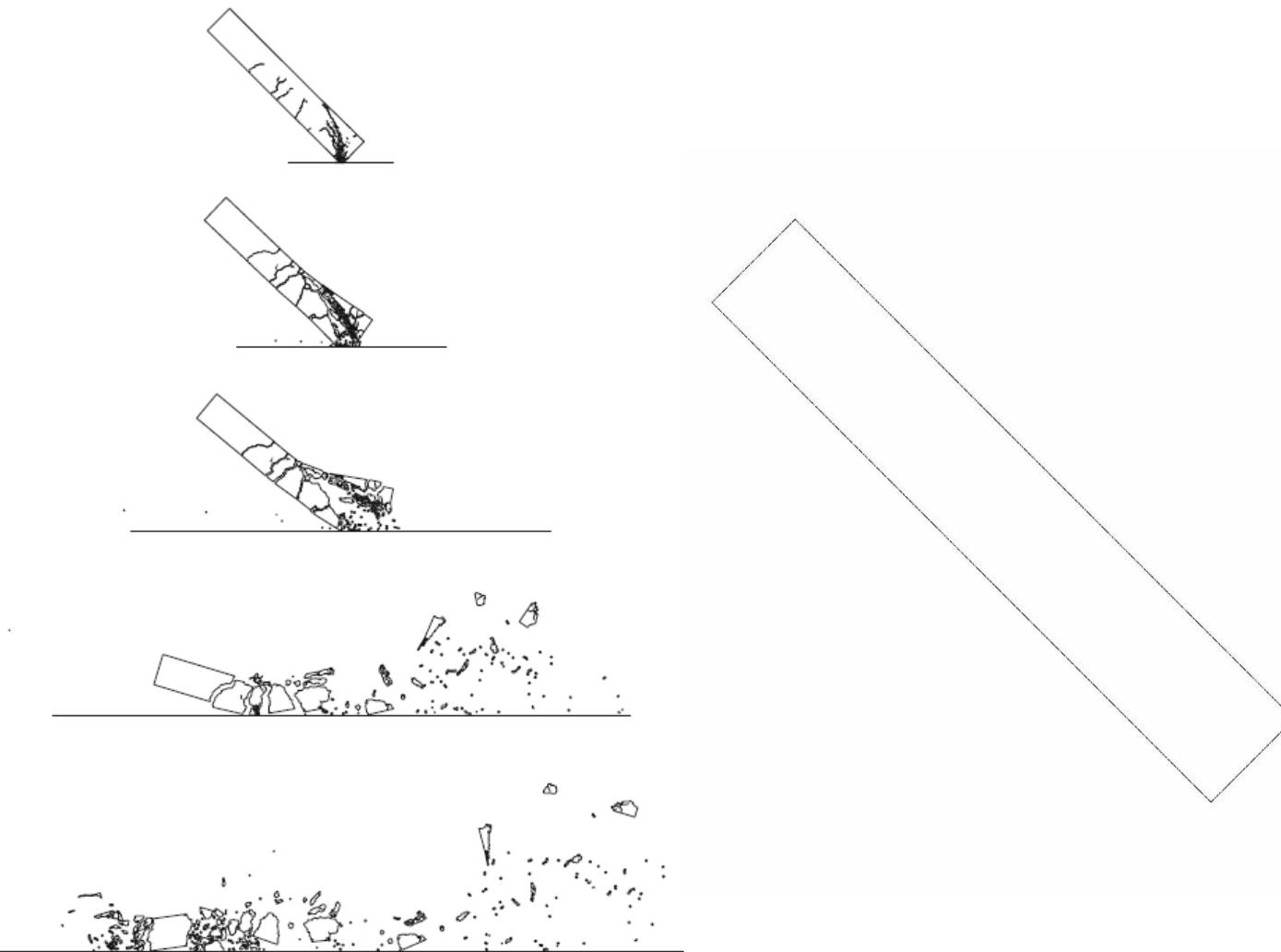
same as conventional FEM



Dynamic Mesh Connectivity

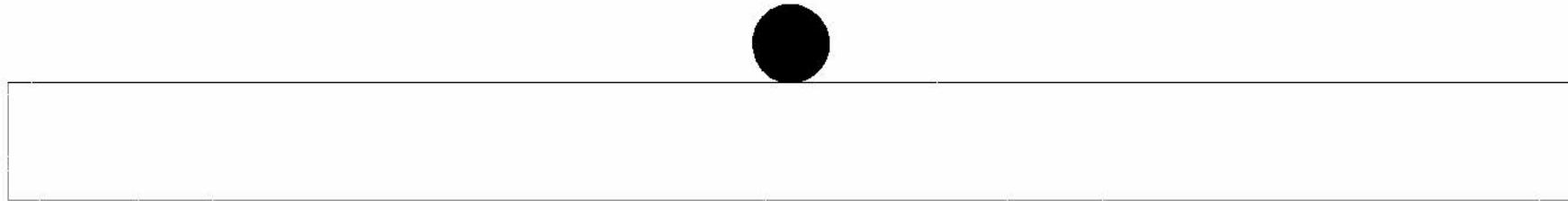
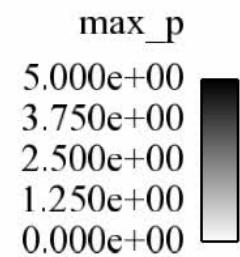


Quasi-Brittle Material Impact



Impact Example

Time = 0.000000

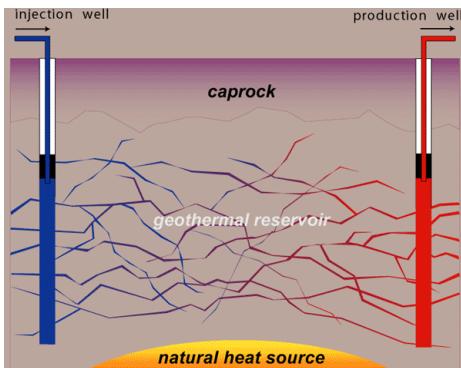


Outline

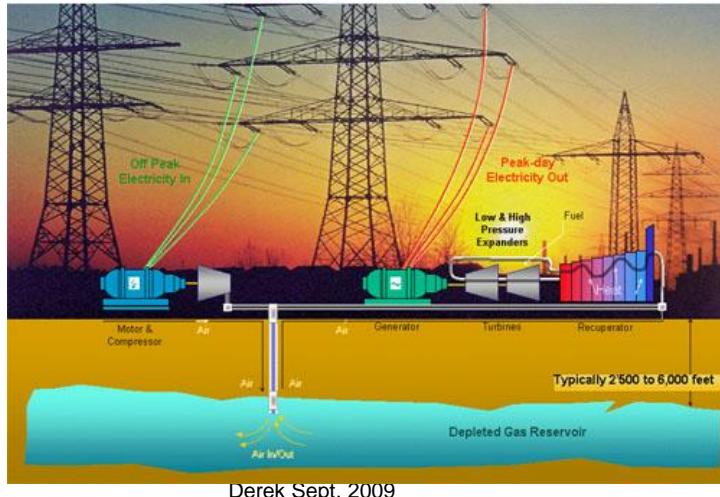
1. Disordered media, pervasive fracture
2. Modeling approach
3. Application to geosystems: hydro-mechanical coupling
4. 3D formulation and verification
5. Summary

Geo Applications

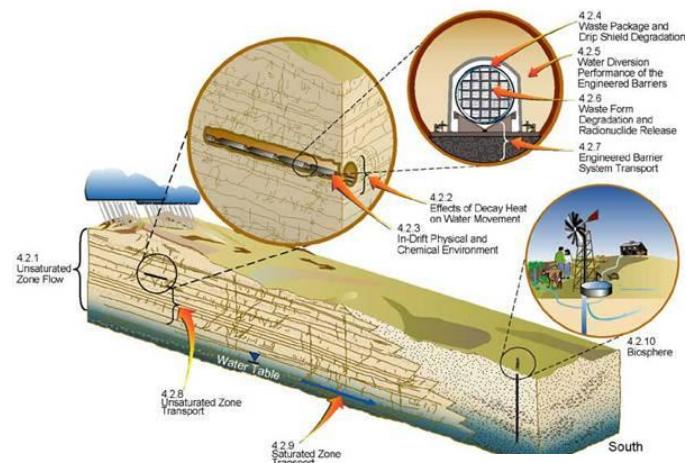
Engineered Geothermal



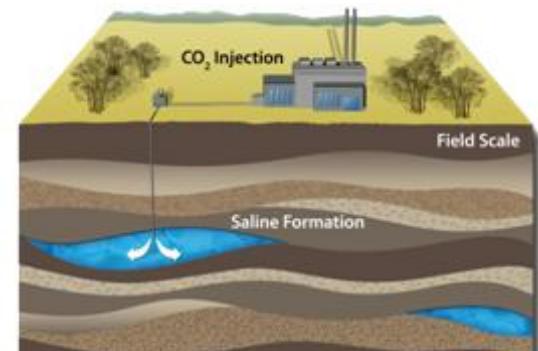
Compressed Air Energy Storage



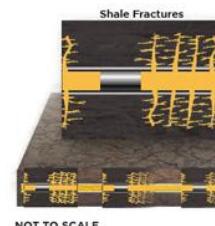
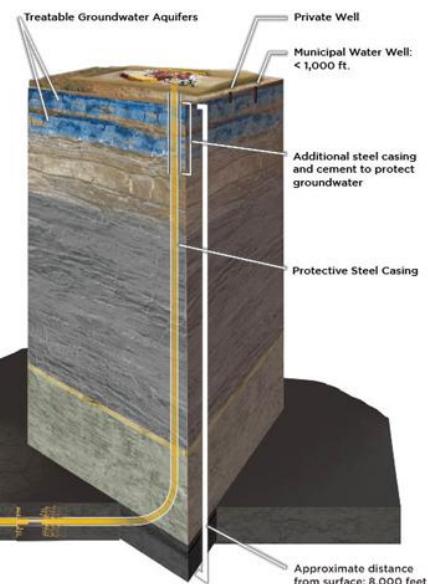
Nuclear Waste Isolation



CO₂ Sequestration



Hydraulic Fracturing

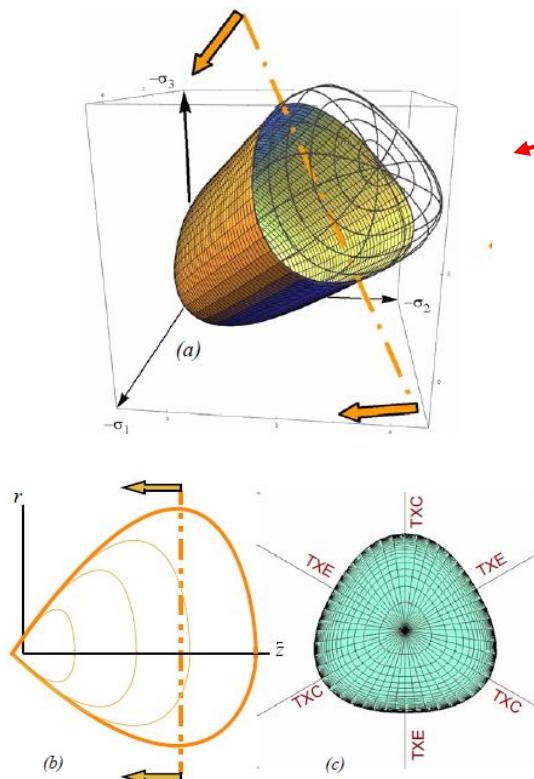


<http://www.hydraulicfracturing.com>

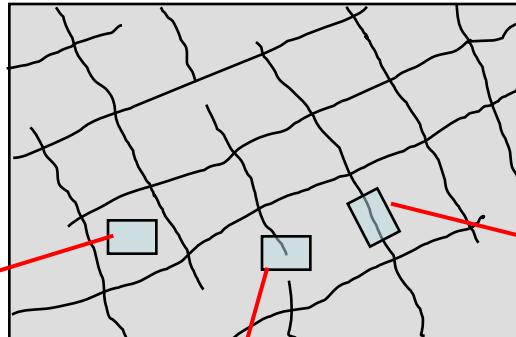
Hydromechanical Coupling in Fractured Rock

bulk constitutive properties

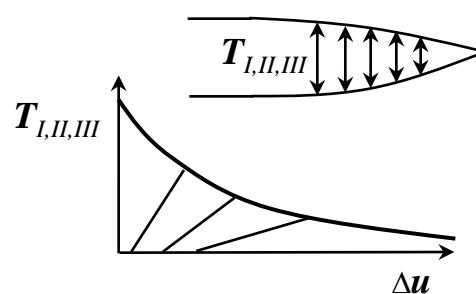
(Sandia GeoModel
Fossum & Brannon, 2004)



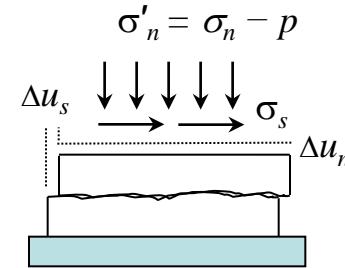
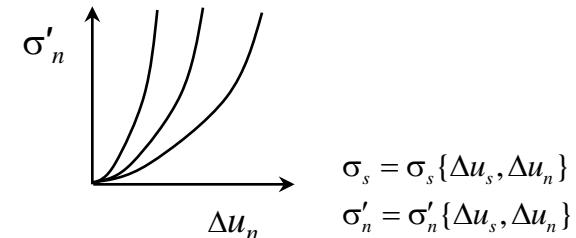
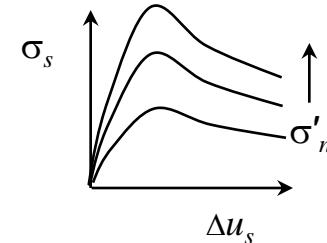
Fractured Porous Rock



crack-tip cohesive properties



fracture contact properties



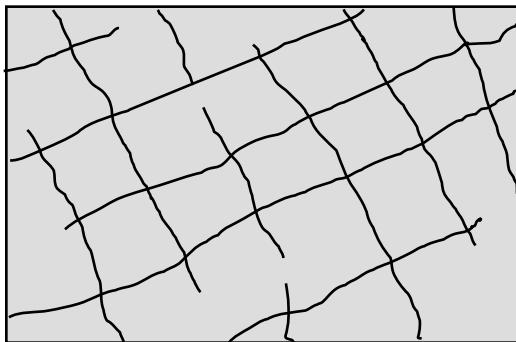
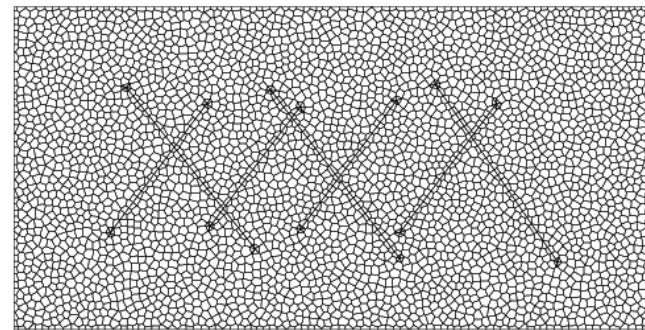
additional challenges

- scale dependence
- history dependence
- precipitation
- dissolution

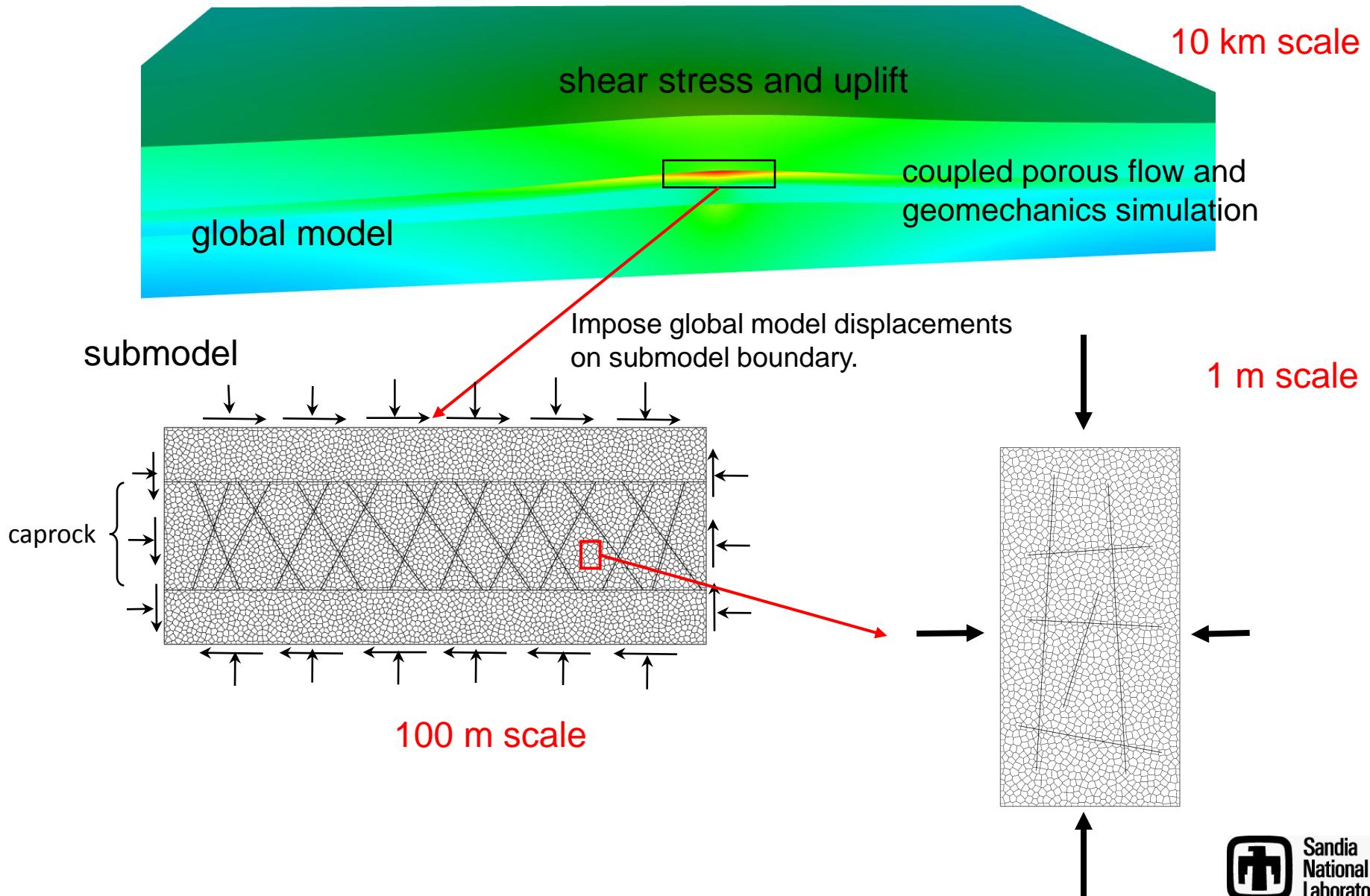
MeshingGenie (Trilinos)

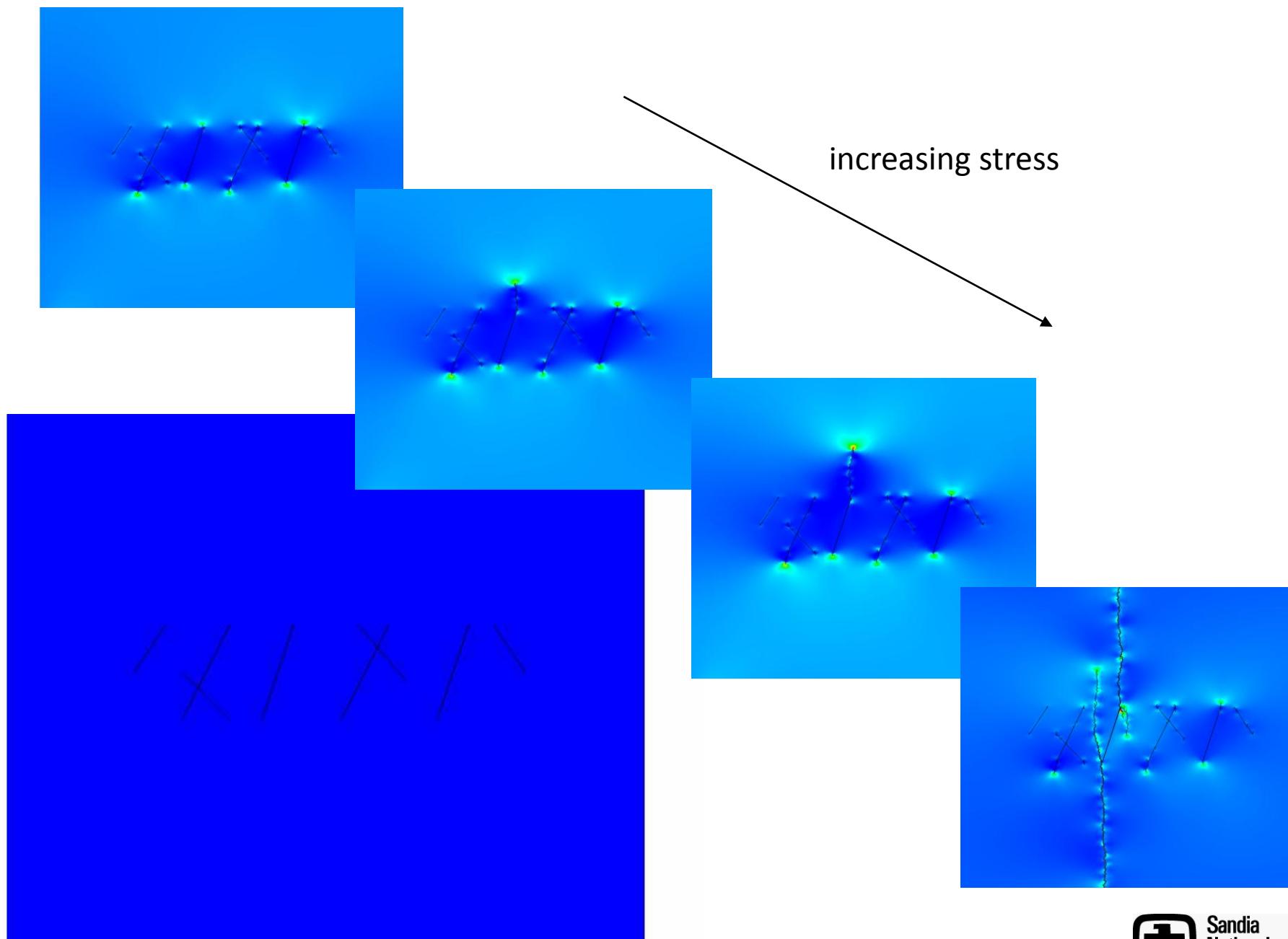
(Ebeida, M., Knupp, P., Vitus Leung, Sandia National Laboratories)

Fractured Rock

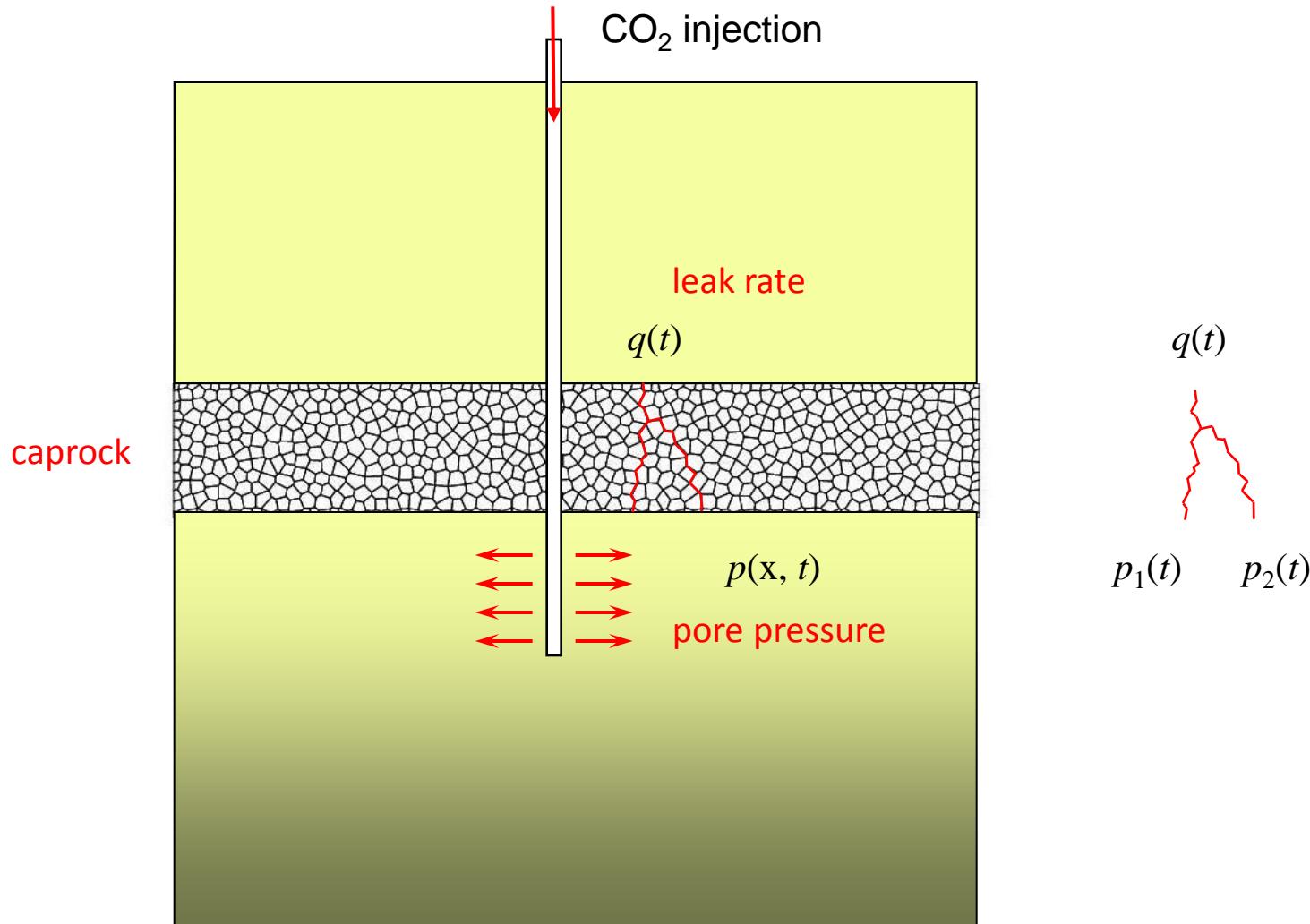


Multiscale analysis of caprock integrity during CO₂ injection



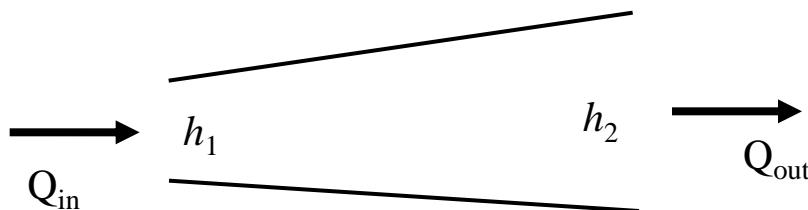
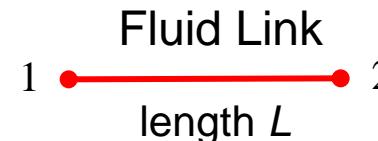


Fluid Flow in 2D Discrete Fracture Networks



Fluid Flow in 2D Discrete Fracture Networks

Solve fluid network to get nodal pressures and flow rates.



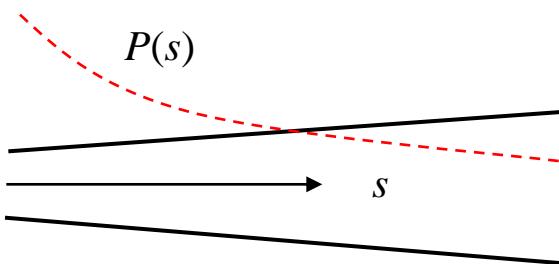
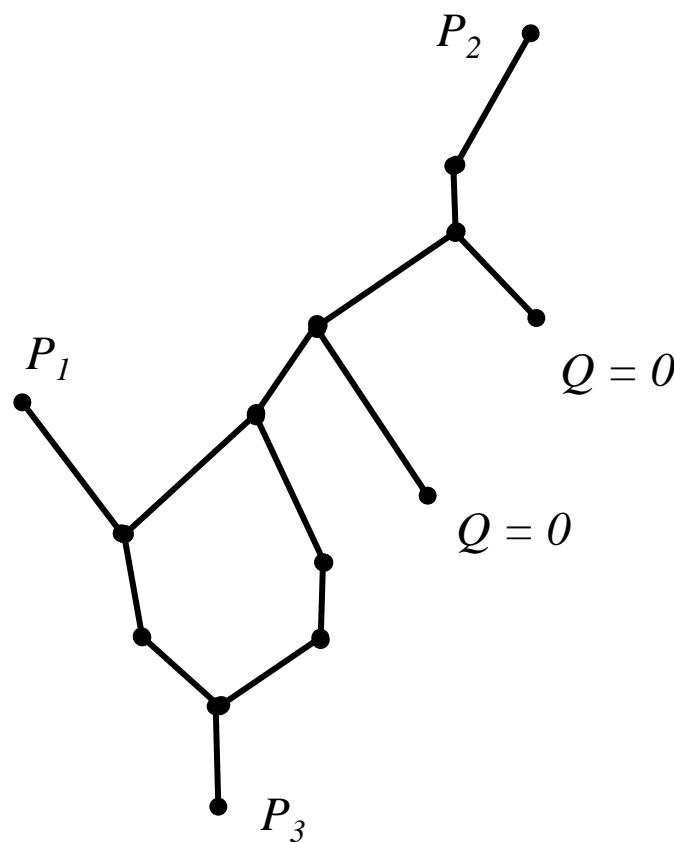
$$\begin{Bmatrix} Q_1 \\ Q_2 \end{Bmatrix} = \frac{T}{\mu} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} P_1 \\ P_2 \end{Bmatrix}$$

$$T = \frac{h_1^2 h_2^2}{6L} \frac{1}{h_1 + h_2}$$

Reynold's lubrication equation

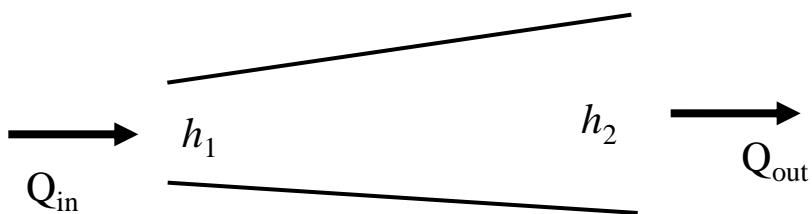
$$\nabla(\rho \mathbf{Q}) = 0$$

$$\mathbf{Q} = -\frac{h^3}{12\mu} (\nabla p - \rho g h)$$



Q = flow rate
 P = pressure
 μ = viscosity
 T = transmissibility

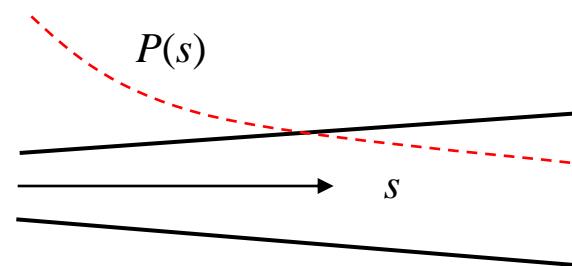
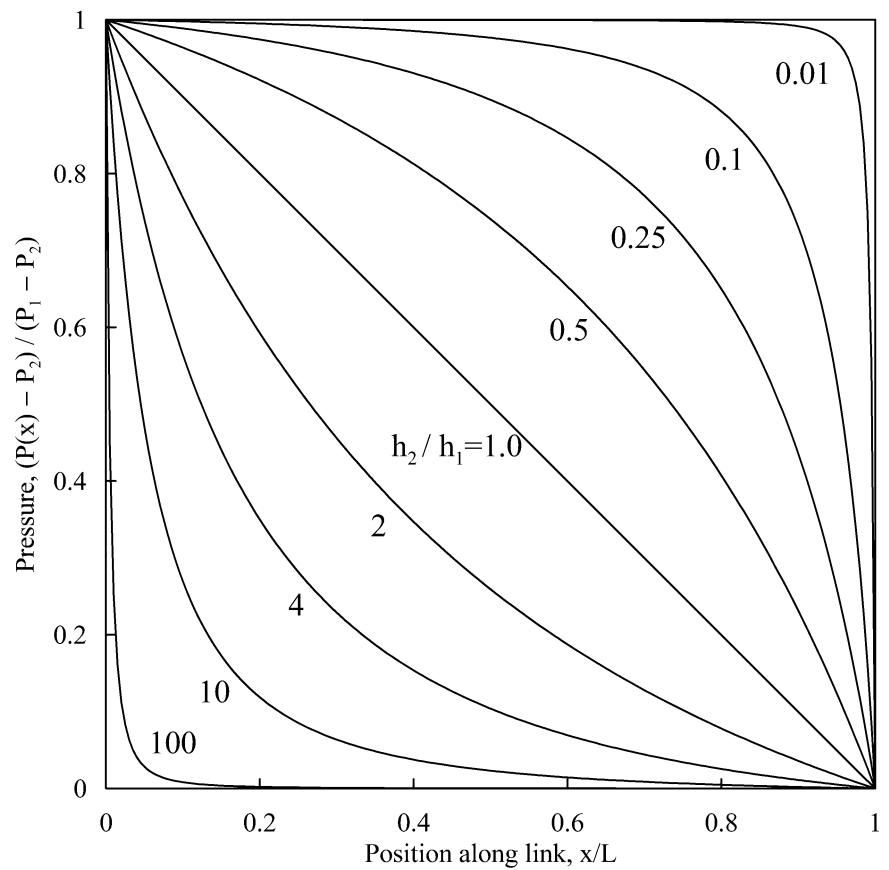
Fluid Flow in Discrete Fracture Networks



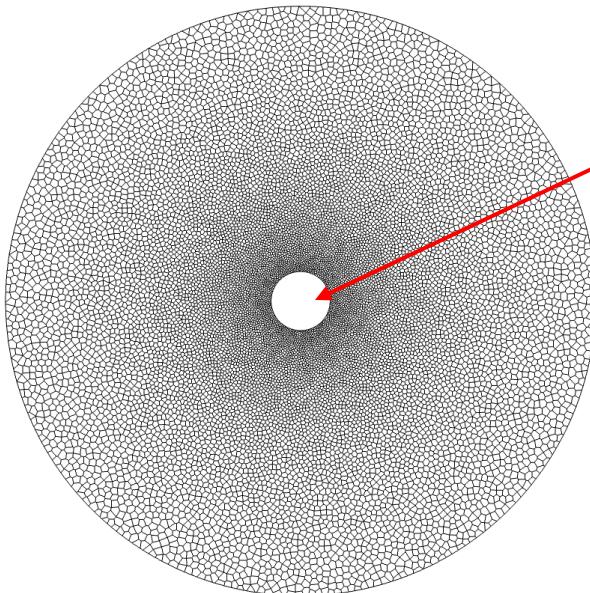
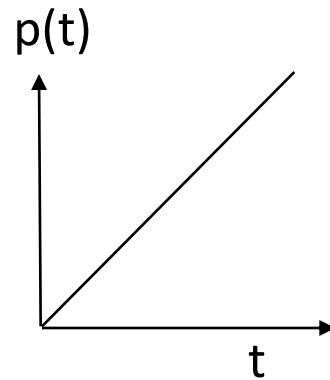
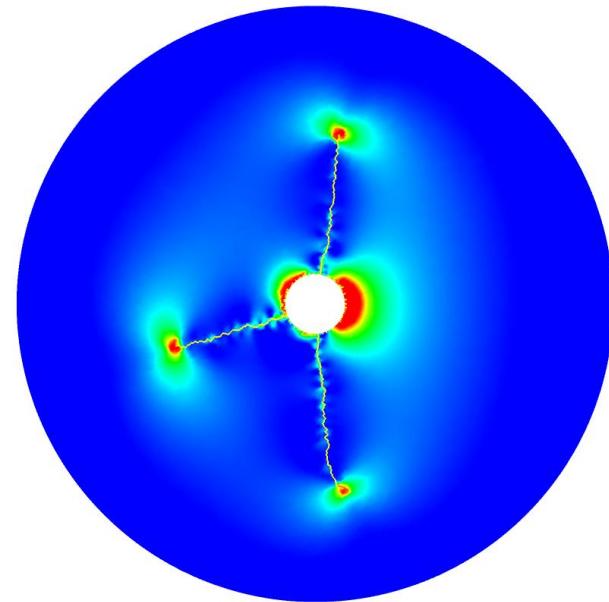
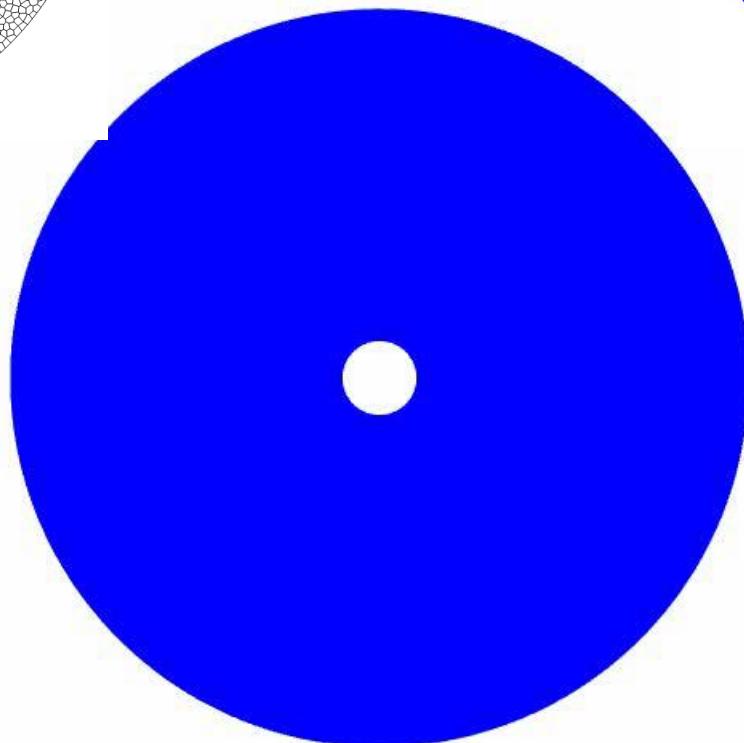
Reynold's lubrication equation

$$\nabla(\rho \mathbf{Q}) = 0$$

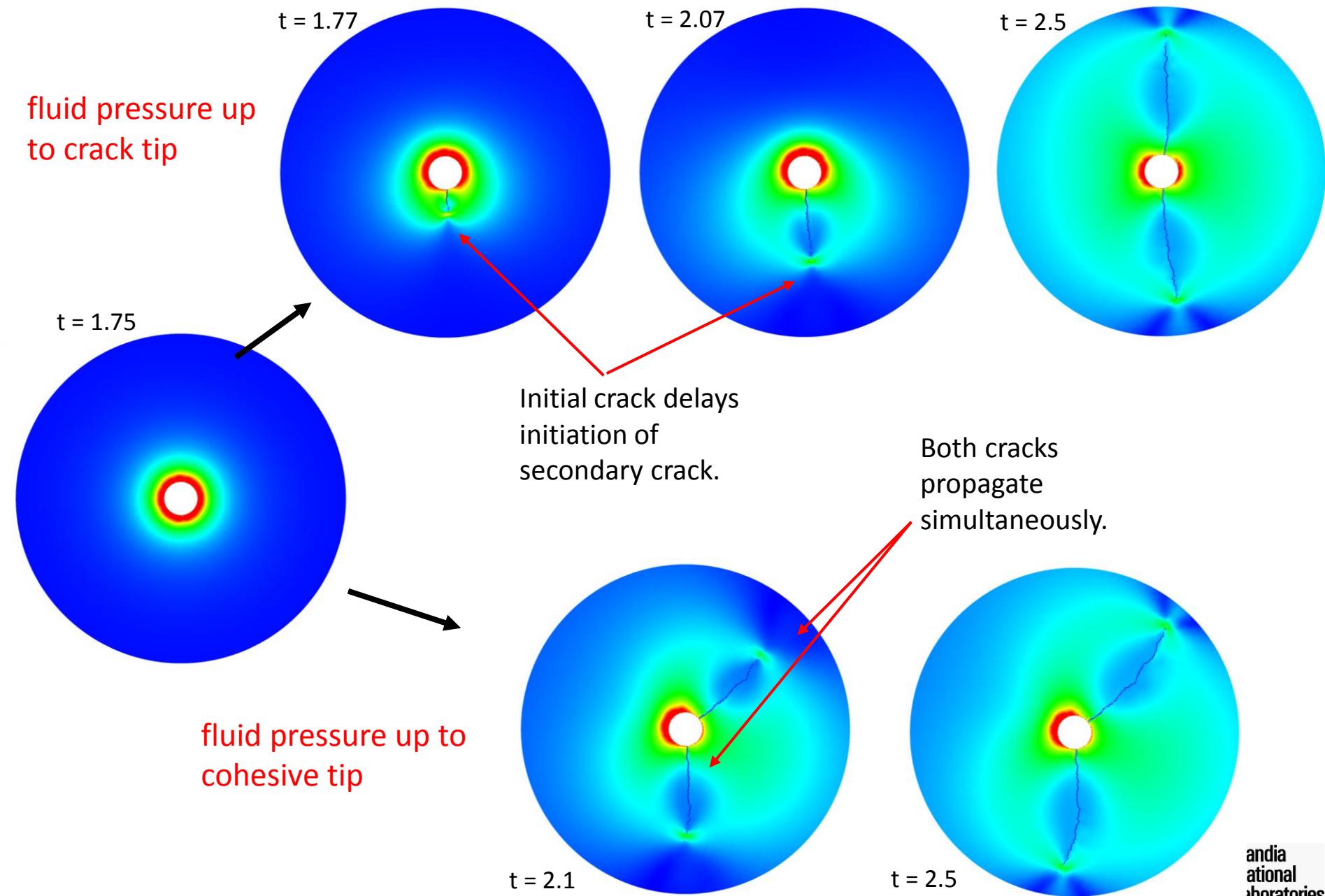
$$\mathbf{Q} = -\frac{h^3}{12\mu}(\nabla p - \rho gh)$$



Hydraulic Fracture Simulation

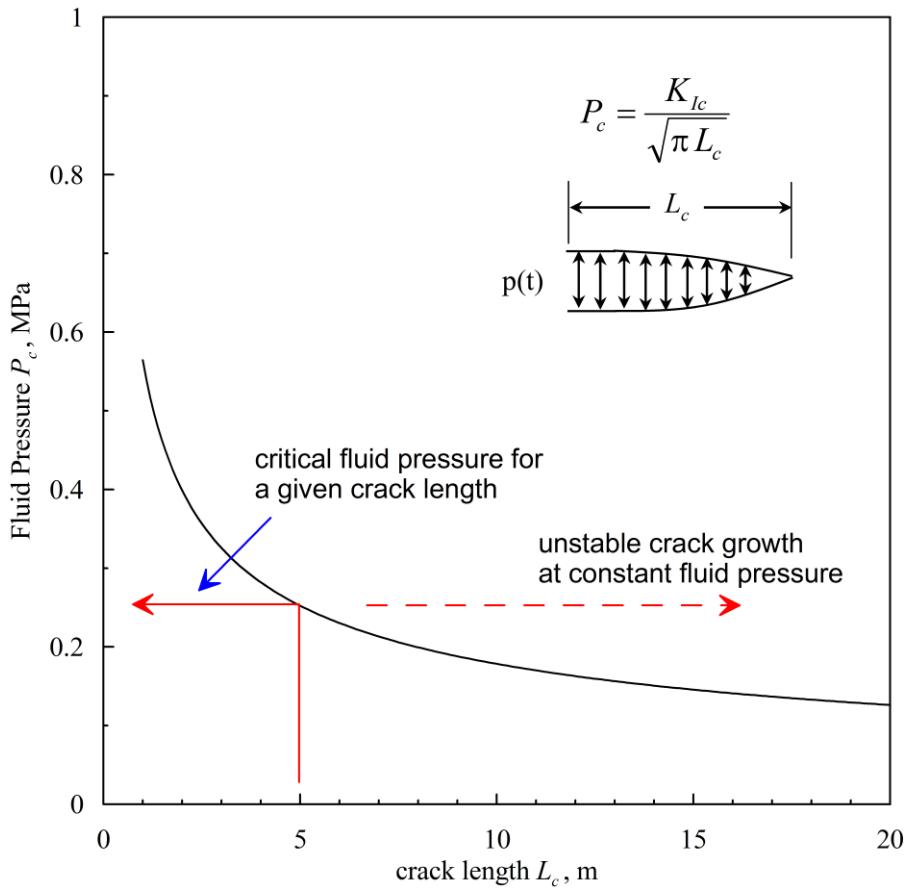


Hydraulic Fracture Simulation



Hydraulic Fracture Simulation

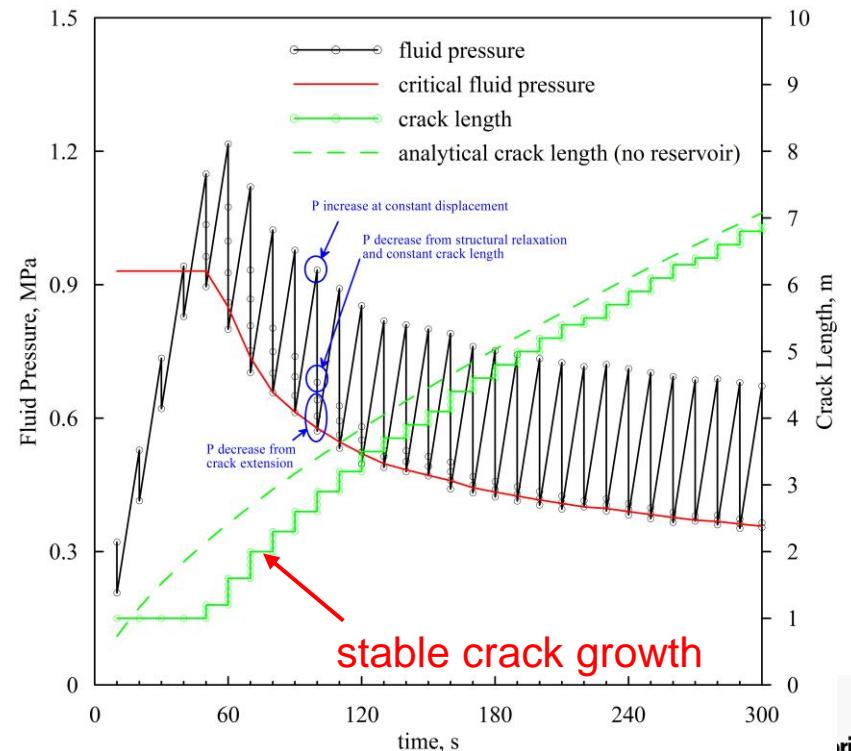
- Constant fluid pressure causes unstable crack growth.
- Use fluid-mass control.



```

do
  increment fluid mass, Δm
  equilibrate at constant crack length, a.
  while (KI > KIc)
    increment crack length, Δa.
    equilibrate at constant crack length, a + Δa.
  end while
end do

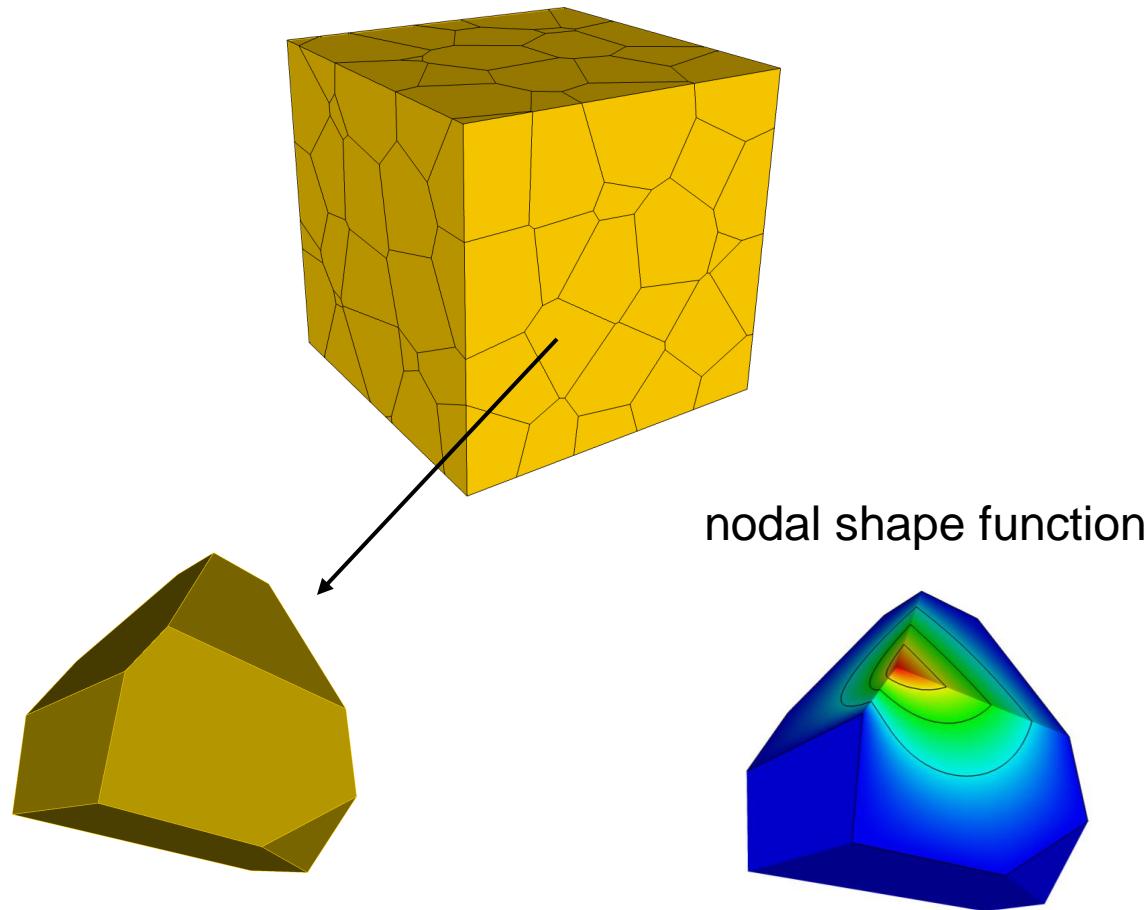
```



Outline

1. Disordered media, pervasive fracture
2. Modeling approach
3. Application to geosystems: hydro-mechanical coupling
4. **3D formulation and verification**
5. Summary

3D Element Formulation



Harmonic Functions

A harmonic function is a solution of Laplace's equation.

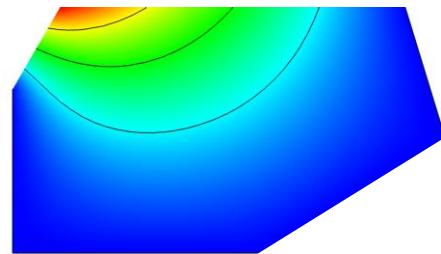
$$\nabla^2 \varphi = 0$$

or

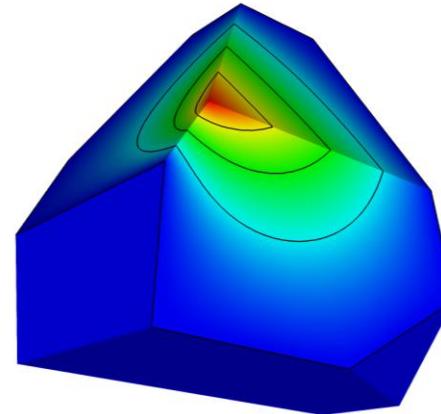
$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$

Can solve efficiently using BEM, or can just use FEM.

example in 2D



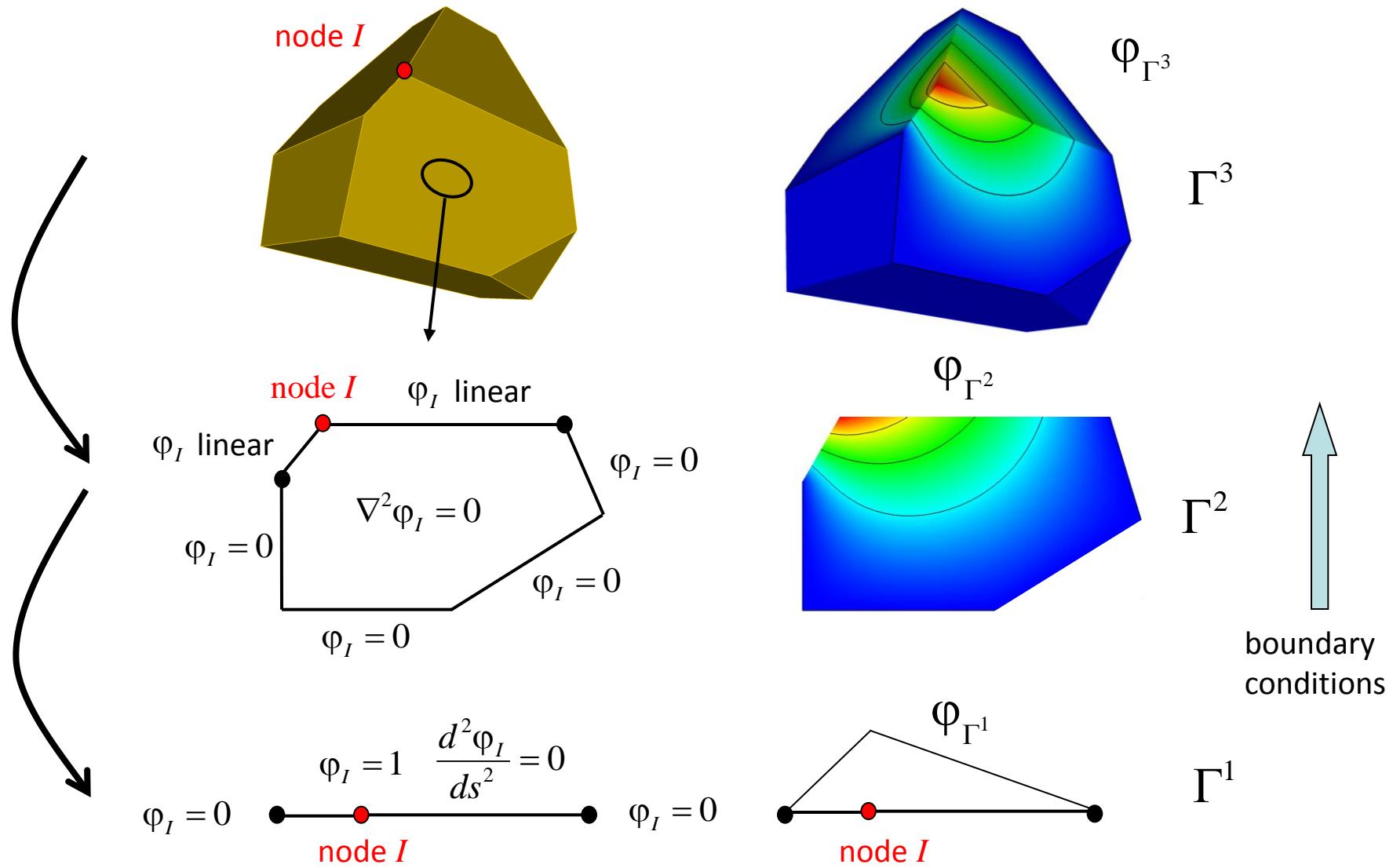
example in 3D



A subset of a broader notion of “energy minimizing” functions.

Construction of Harmonic Shape Functions in 3D

(Joshi, 2007, "Harmonic coordinates for character articulation")

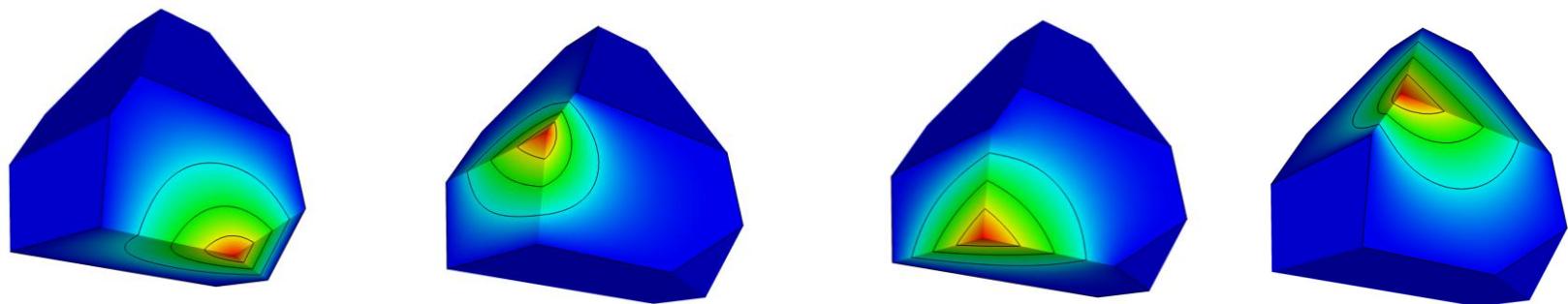


Harmonic Shape Function Properties

- partition of unity and reproduce space $\sum_I \psi_I(\mathbf{x}) = 1, \quad \sum_I \psi_I(\mathbf{x}) \mathbf{x}_I = \mathbf{x}$

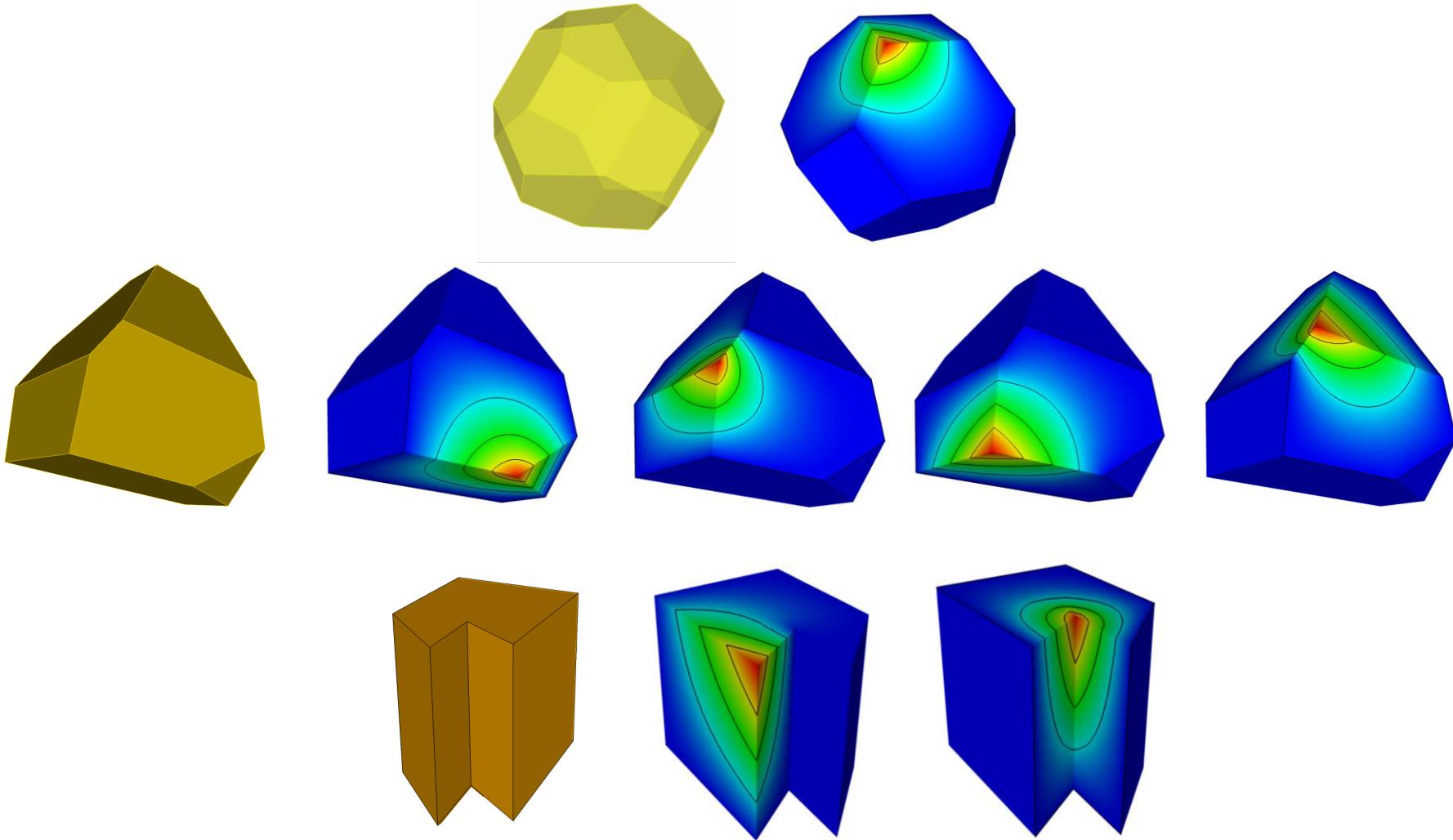
even for the discrete harmonic solution $\sum_I \psi_I^h(\mathbf{x}) = 1, \quad \sum_I \psi_I^h(\mathbf{x}) \mathbf{x}_I = \mathbf{x}$

- Kronecker delta property at nodes $\psi_I(\mathbf{x}_J) = \delta_{IJ}$
- linear on edges (low order)
- shape functions defined on original configuration (no mapping to 'parent' shape)



shape functions

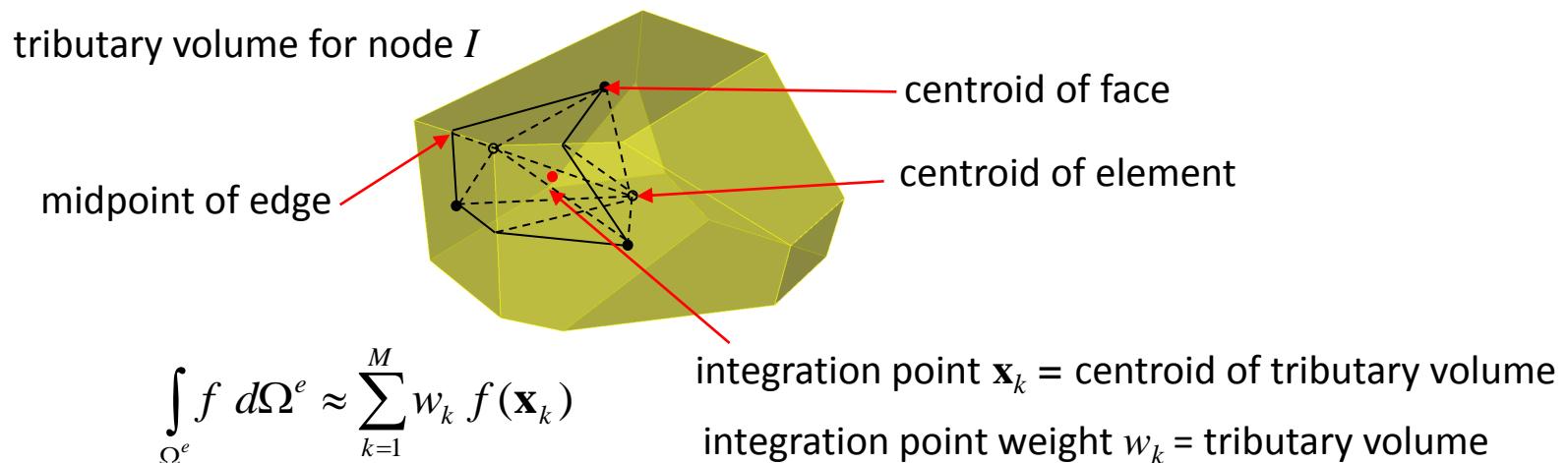
Harmonic Shape Function Examples



Only need to store shape functions and derivatives at integration points.
Discard everything else.

Element Integration

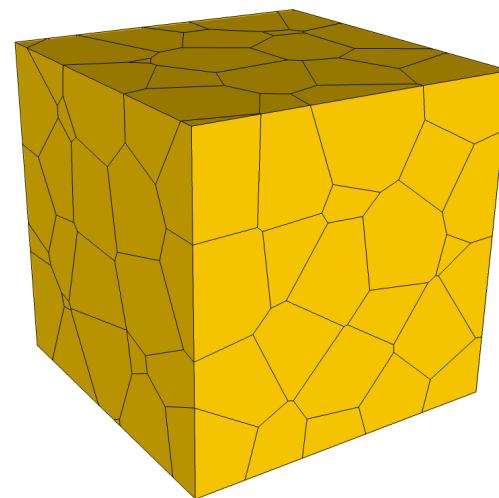
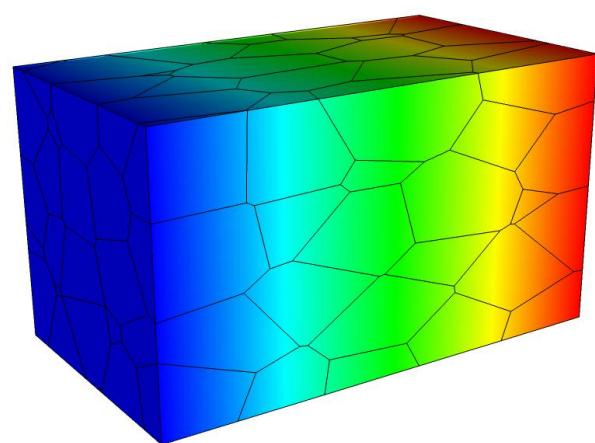
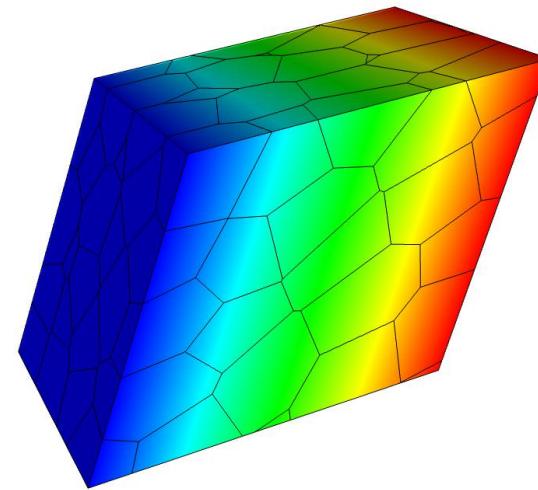
- Due to computational expense of plasticity models, want to minimize the number of integration points.
- Follow approach of Rashid and Selimotec, 2006.
- Each node is associated with a “tributary” volume, connected to the centroid. (more general approaches for non “star-shaped” elements.
- Number of integration points is equal to the number of vertices.



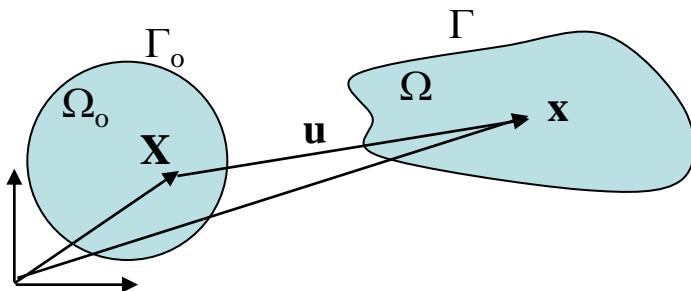
- Integration is only **first order accurate**.
- Sufficient to eliminate any zero energy modes.

However, can't pass the patch test with this low-order integration.

3D Verification: Engineering Patch Test



What About Large Deformations?



- Shape functions, their derivatives, and the integration points were defined in the initial configuration (Ω_0 , Γ_0).
- All integrations of the weak form are from the original configuration (**total-Lagrangian** formulation).

momentum strong form

$$\frac{\partial \mathbf{P}}{\partial \mathbf{X}} : \mathbf{I} + \rho_0 \mathbf{f} = \rho_0 \ddot{\mathbf{u}}$$

\mathbf{P} is the first Piola-Kirchhoff stress tensor.
 \mathbf{X} is the position vector of a material point.
 \mathbf{x} is the spatial vector.
 $\mathbf{u} = \mathbf{x} - \mathbf{X}$, is the displacement vector
 \mathbf{f} is the body force vector per unit mass.

momentum weak form

$$\int_{\Omega_0} \rho_0 \ddot{\mathbf{u}} \cdot \delta \mathbf{u} \, d\Omega_0 = \int_{\Gamma_0} \mathbf{t}_0 \cdot \delta \mathbf{u} \, d\Gamma_0 + \int_{\Omega_0} \rho_0 \mathbf{f} \cdot \delta \mathbf{u} \, d\Omega_0 - \int_{\Omega_0} \rho_0 \mathbf{P} : (\partial(\delta \mathbf{u}) / \partial \mathbf{X}) \, d\Omega_0$$

However, most material models are hypoelastic.

deformation gradient

$$F = \frac{\partial \mathbf{x}}{\partial \mathbf{X}} \quad (3 \times 3)$$

rate of deformation

$$\frac{\partial \mathbf{v}}{\partial \mathbf{x}} = \frac{\partial \mathbf{v}}{\partial \mathbf{X}} F^{-1}$$

PK1 stress

$$P = J \sigma F^{-T}$$

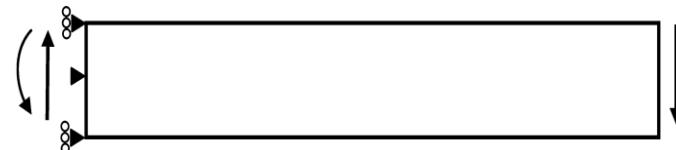
$$J = \det(F)$$

Cauchy stress

$$\sigma = J^{-1} P F^T$$

Lots of multiplications by
 F and F^{-1}

Verification Test: Beam with a Transverse End-Load



3D exact linear elasticity solution, (Barber, 2010)

$$\sigma_{xx} = \sigma_{yy} = \sigma_{xy} = 0$$

$$\sigma_{zz} = \frac{F_y}{I_x} yz$$

$$\sigma_{xz} = \frac{2F_y a^2}{\pi^2 I_x} \frac{\nu}{1 + \nu} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin\left(\frac{n\pi x}{a}\right) \frac{\sinh\left(\frac{n\pi y}{a}\right)}{\cosh\left(\frac{n\pi b}{a}\right)}$$

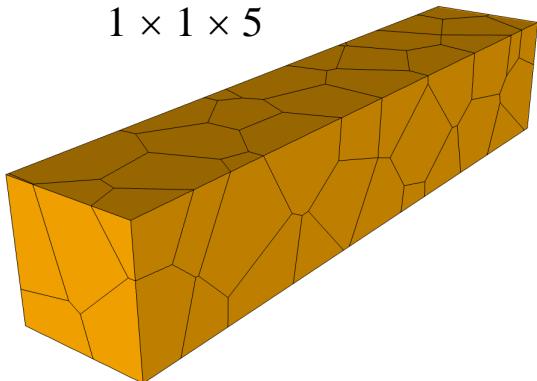
$$\sigma_{yz} = \frac{F_y}{I_x} \left\{ \frac{1}{2}(b^2 - y^2) + \frac{1}{6}(3x^2 - a^2) \frac{\nu}{1 + \nu} - \frac{2a^2}{\pi^2} \frac{\nu}{1 + \nu} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin\left(\frac{n\pi x}{a}\right) \frac{\sinh\left(\frac{n\pi y}{a}\right)}{\cosh\left(\frac{n\pi b}{a}\right)} \right\}$$

From this stress field \rightarrow strain field \rightarrow integrate to get displacement field using compatibility equations.

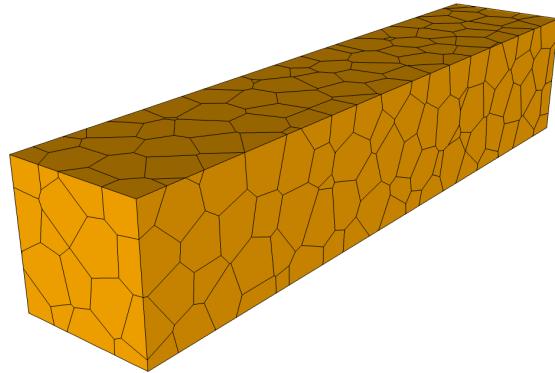
Randomly Close-Packed Voronoi Meshes

beam dimension =

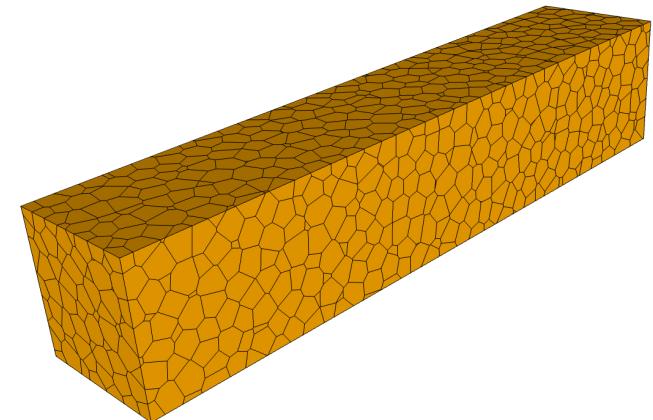
$$1 \times 1 \times 5$$



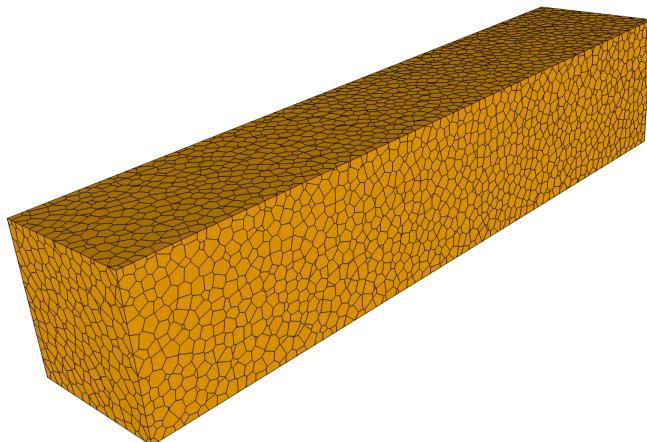
point spacing = 0.5



point spacing = 0.25

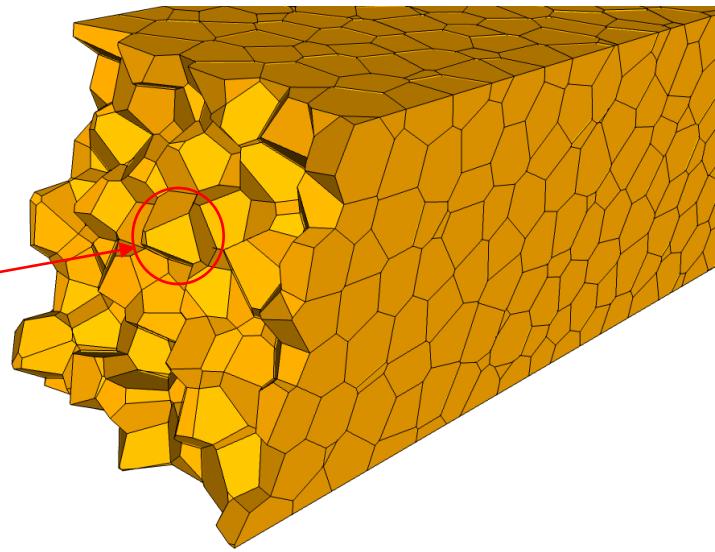


point spacing = 0.125

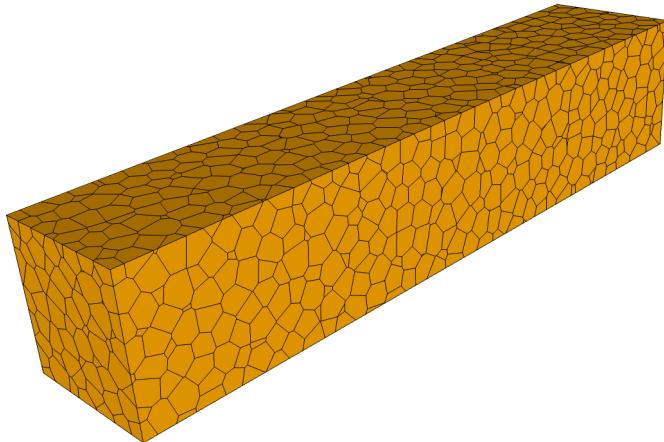


point spacing = 0.0625

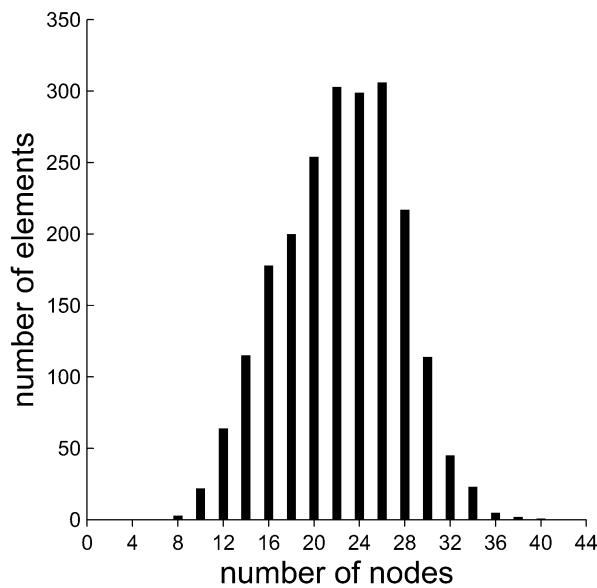
minimum edge
to diameter
ratio = 10^{-4}



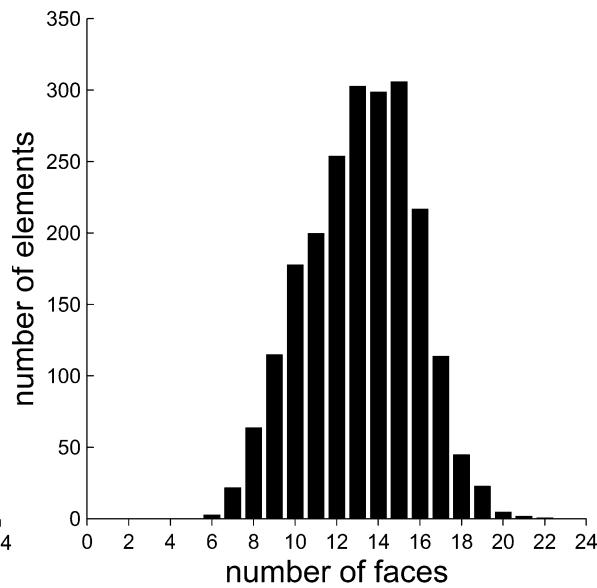
Randomly Close-Packed Voronoi Meshes



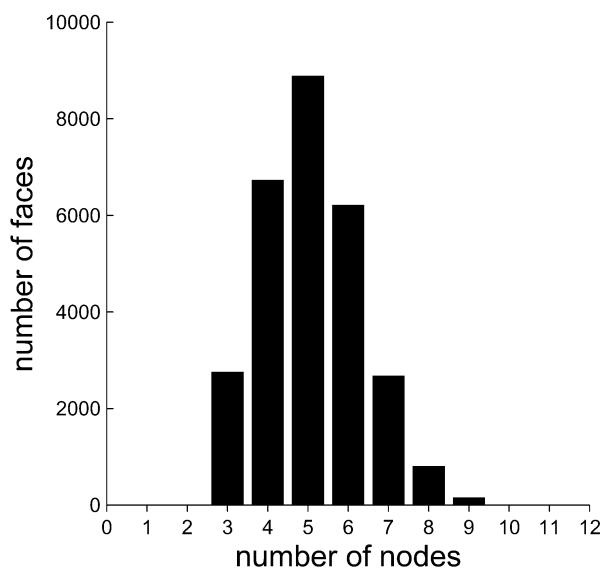
mesh statistics



median 24 nodes per element



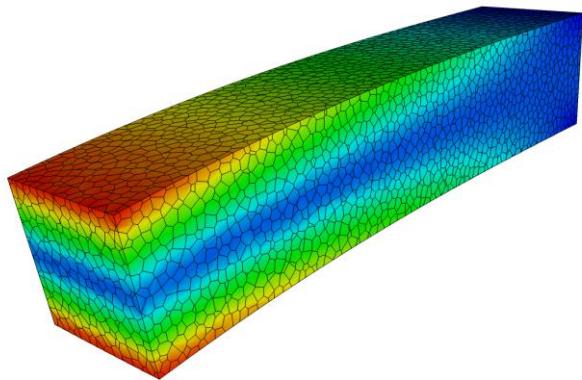
median 14 faces per element



median 5 nodes per face

Verification Test: Bending+Shear of a Prismatic Bar

deformed shape, Von Mises stress



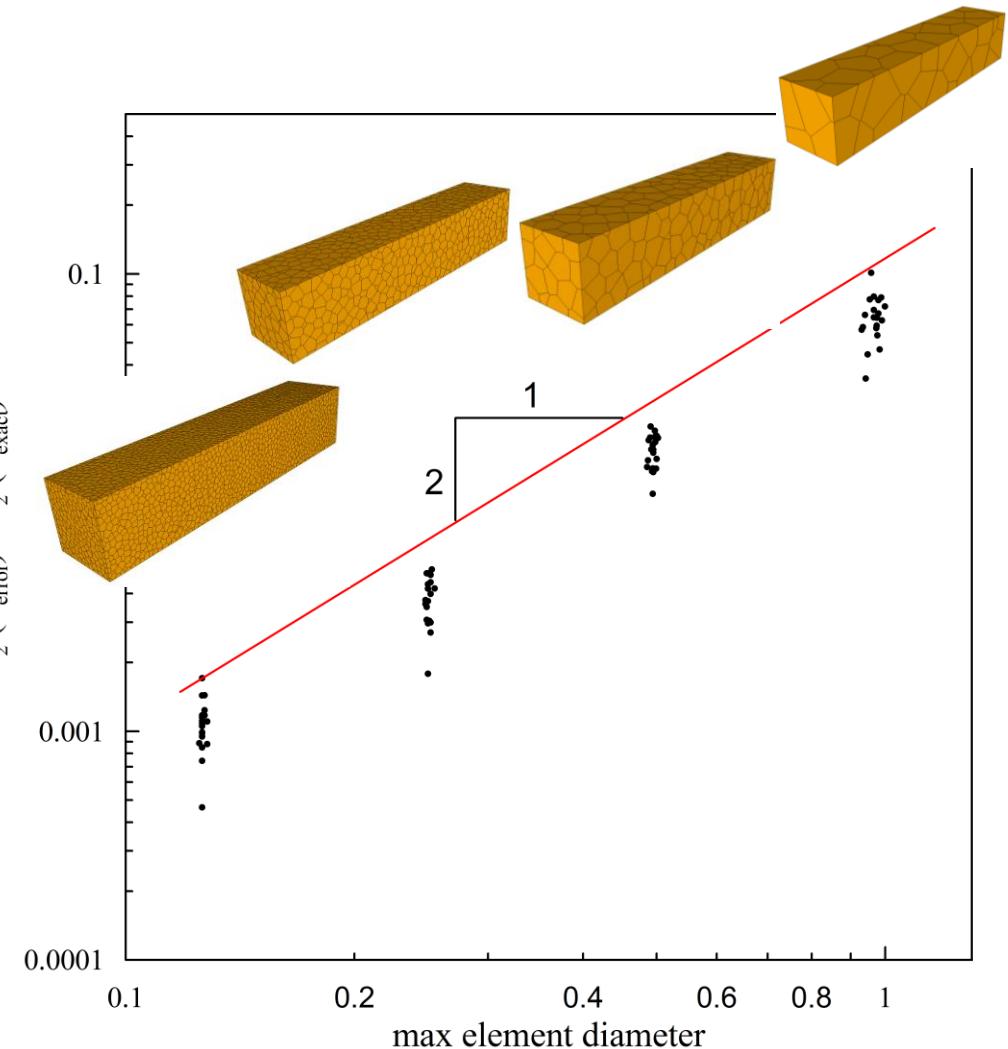
exact linear elasticity solution

$$\sigma_{xx} = \sigma_{yy} = \sigma_{xy} = 0$$

$$\sigma_{zz} = \frac{F_y}{I_x} yz$$

$$\sigma_{xz} = \frac{2F_y a^2}{\pi^2 I_x} \frac{\nu}{1+\nu} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin\left(\frac{n\pi x}{a}\right) \frac{\sinh\left(\frac{n\pi y}{a}\right)}{\cosh\left(\frac{n\pi b}{a}\right)}$$

$$\sigma_{yz} = \frac{F_y}{I_x} \left\{ \frac{1}{2}(b^2 - y^2) + \frac{1}{6}(3x^2 - a^2) \frac{\nu}{1+\nu} - \frac{2a^2}{\pi^2} \frac{\nu}{1+\nu} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin\left(\frac{n\pi x}{a}\right) \frac{\sinh\left(\frac{n\pi y}{a}\right)}{\cosh\left(\frac{n\pi b}{a}\right)} \right\}$$



Summary and Future Work

1. Researching the use of randomly close-packed Voronoi meshes for modeling pervasive fracture processes.
2. Finite-element formulations of 2D polygons and 3D polyhedra
3. Developed statistical methods for verifying mesh convergence in nonlinear dynamical systems displaying extreme sensitivity to initial conditions.
4. Applications to geomechanics, hydraulic fracturing, CO₂ sequestration.
5. Implementation into Sandia's massively-parallel multiphysics codes in progress:
 1. Aria – porous flow, flow in discrete fracture networks
 2. Adagio – solid mechanics

} coupled