

Adiabatic quantum computing with dressed Rydberg atoms

SAND2011-4006C

Krittika Goyal
with Bob Keating, Ivan Deutsch,
Yuan-Yu Jau*, Grant Biedermann* and Andrew Landahl*

University of New Mexico
*Sandia National Laboratories

June 2011
DAMOP

LABORATORY DIRECTED RESEARCH & DEVELOPMENT

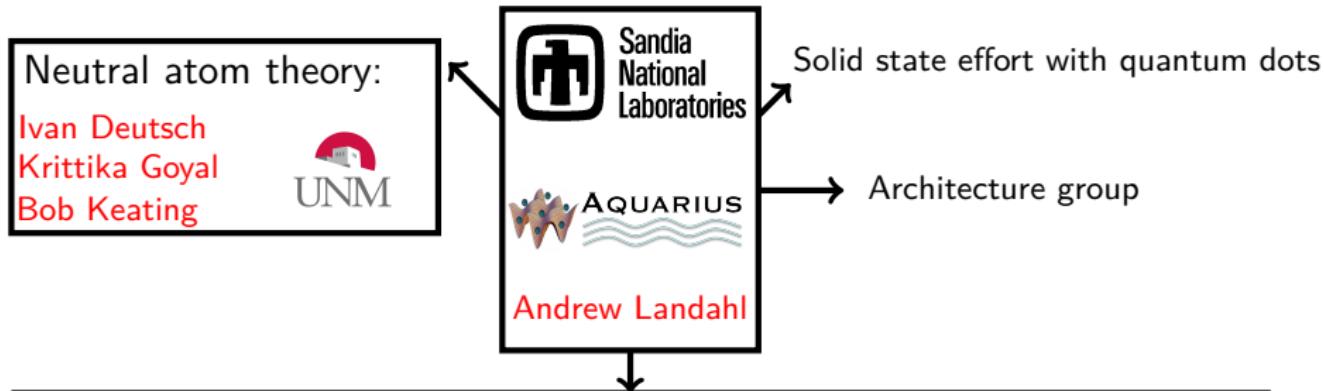
Krittika Goyal (CQuIC, UNM)

This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000

AQC with dressed Rydberg atoms

DAMOP 1 / 16

Adiabatic QUantum ARchitectures In Ultracold Systems



Neutral Atom Expt:

Greg Brady, Kevin Fortier, Tom Hamilton,
Aaron Hankin, **Yuan-Yu Jau**, Cort Johnson,
Shanalyn Kemme, Michael Mangan, Paul Parazzoli,
Peter Schwindt and **Grant Biedermann**

What is AQC?

- Goal: Solve an optimization problem using Adiabatic Quantum Computation (AQC)

¹E. Farhi and J. Goldstone, arXiv:quant-ph/0001106v1 (2000).

What is AQC?

- Goal: Solve an optimization problem using Adiabatic Quantum Computation (AQC)
- Map on to problem Hamiltonian $H_P \Rightarrow$ *Ground state is the solution*

¹E. Farhi and J. Goldstone, arXiv:quant-ph/0001106v1 (2000).

What is AQC?

- Goal: Solve an optimization problem using Adiabatic Quantum Computation (AQC)
- Map on to problem Hamiltonian $H_P \Rightarrow$ *Ground state is the solution*
- Beginning Hamiltonian $H_B \Rightarrow$ *Ground state is easy to prepare*
- $H(s) = (1 - s)H_B + sH_P$ ¹
Change s *adiabatically (slowly)* so that system is always in the *ground state* of $H(s)$

¹E. Farhi and J. Goldstone, arXiv:quant-ph/0001106v1 (2000).

Quadratic Unconstrained Binary Optimization (QUBO)

- The general QUBO problem is to find the $\vec{z} = (z_1, z_2, \dots, z_n)$ that **minimizes** the function

$$f(\vec{z}) = \sum_{i=1}^n h_i z_i + \sum_{i,j=1}^n J_{ij} z_i z_j, \text{ where } z_i \in \{0, 1\}$$

- NP-hard because the number of possible values of \vec{z} scales as 2^n .

Quadratic Unconstrained Binary Optimization (QUBO)

- The general QUBO problem is to find the $\vec{z} = (z_1, z_2, \dots, z_n)$ that **minimizes** the function

$$f(\vec{z}) = \sum_{i=1}^n h_i z_i + \sum_{i,j=1}^n J_{ij} z_i z_j, \text{ where } z_i \in \{0, 1\}$$

- NP-hard because the number of possible values of \vec{z} scales as 2^n .
- This problem is equivalent to finding the ground state of the Hamiltonian

$$H_P = \sum_{i=1}^n h_i \left(\frac{\mathbb{I} - \sigma_z^{(i)}}{2} \right) + \sum_{i,j=1}^n J_{ij} \left(\frac{\mathbb{I} - \sigma_z^{(i)}}{2} \right) \otimes \left(\frac{\mathbb{I} - \sigma_z^{(j)}}{2} \right)$$

The z_i have been mapped onto $\left(\frac{\mathbb{I} - \sigma_z^{(i)}}{2} \right)$

Why dressed ground state Rydberg atoms?

- Ground state neutral atoms allow for precise and robust single qubit control.

D. Schrader PRL **93**, 150501 (2004)

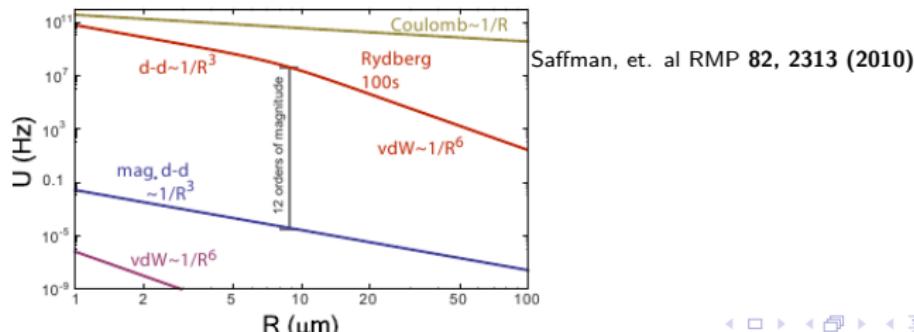
C. Zhang PRA **74**, 042316 (2006)

W. Rakreungdet PRA **79**, 022316 (2009)

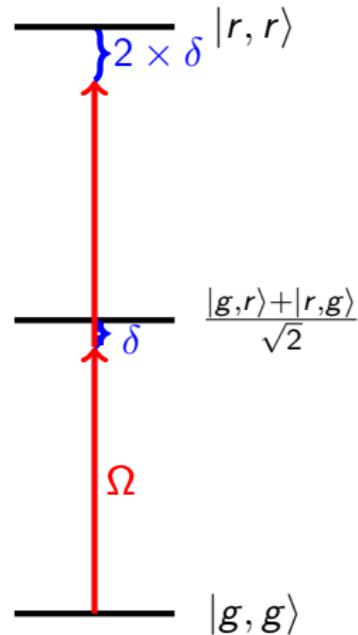
- Interactions between ground state neutral atoms are very weak, making it hard to implement two qubit gates, without contact interaction

Why dressed ground state Rydberg atoms?

- Ground state neutral atoms allow for precise and robust single qubit control.
- Interactions between ground state neutral atoms are very weak, making it hard to implement two qubit gates, without contact interaction
- Dipole-dipole interactions between Rydberg atoms are several orders of magnitude stronger than ground state neutral atoms.

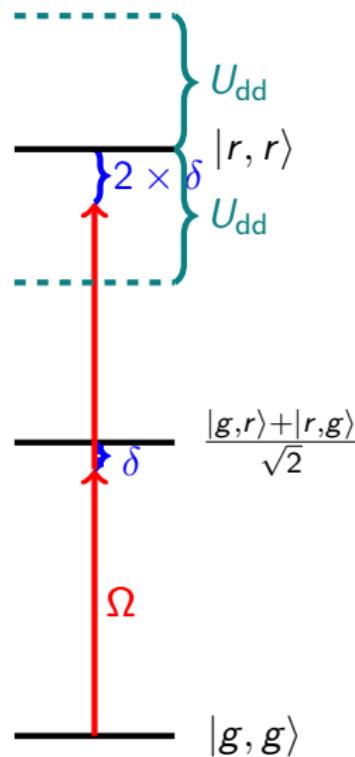


The Rydberg blockade



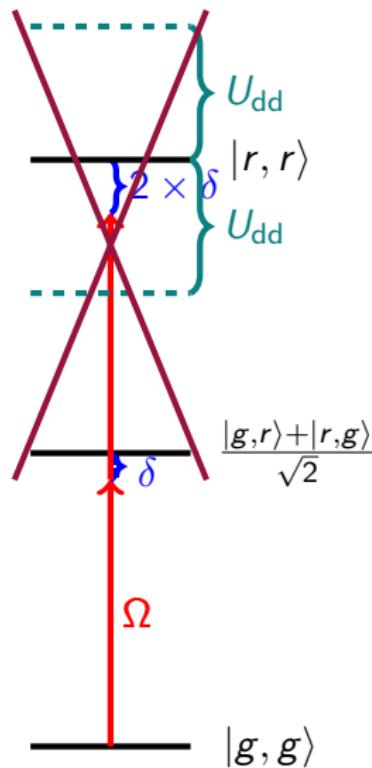
- U_{dd} is the interaction energy between two Rydberg atoms.
- Blockade interaction results in entangled state $\frac{|g, r\rangle + |r, g\rangle}{\sqrt{2}}$
- References: Y. Miroshnychenko et al. PRA **82**, 013405 (2010).
E. Urban et al. Nature Physics **5**, 110. (2009).

The Rydberg blockade



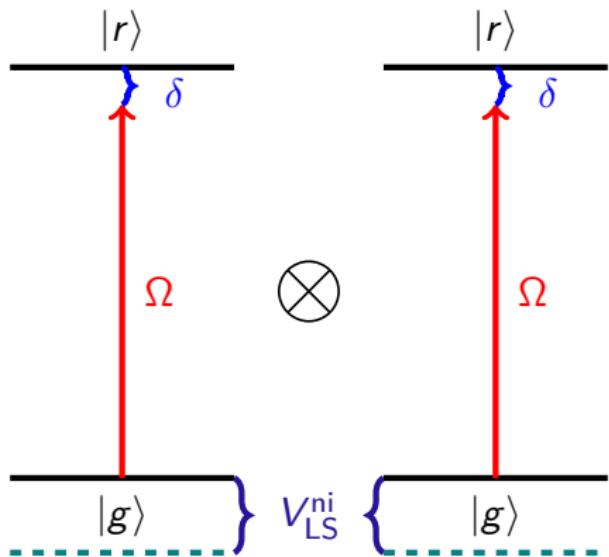
- U_{dd} is the interaction energy between two Rydberg atoms.
- Blockade interaction results in entangled state $\frac{|g, r\rangle + |r, g\rangle}{\sqrt{2}}$
- References: Y. Miroshnychenko et al. PRA **82**, 013405 (2010).
E. Urban et al. Nature Physics **5**, 110. (2009).

The Rydberg blockade

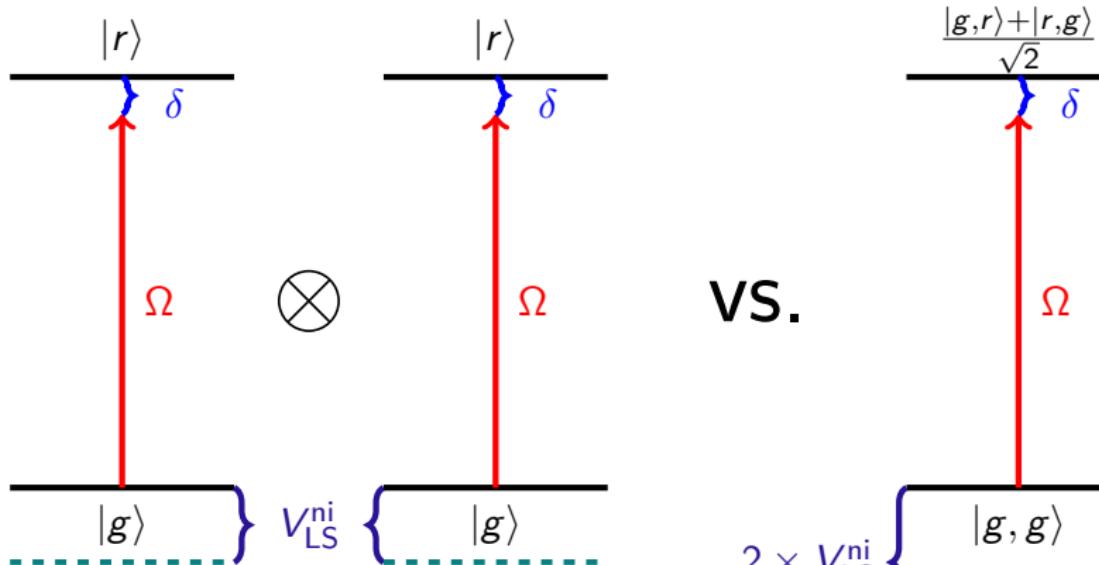
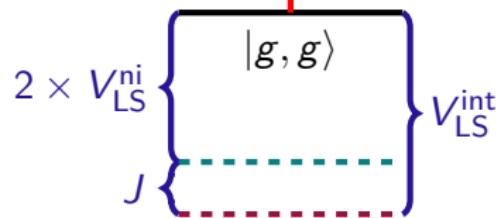


- U_{dd} is the interaction energy between two Rydberg atoms.
- Blockade interaction results in entangled state $\frac{|g,r\rangle+|r,g\rangle}{\sqrt{2}}$
- References: Y. Miroshnychenko et al. PRA **82**, 013405 (2010).
E. Urban et al. Nature Physics **5**, 110. (2009).

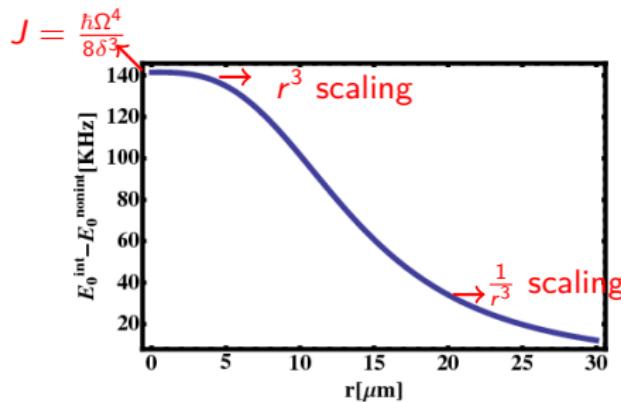
Dressed ground state Rydberg atoms



Dressed ground state Rydberg atoms



Dressed ground state Rydberg atoms



J. E. Johnson and S. L. Rolston,
PRA **82**, 033412 (2010)

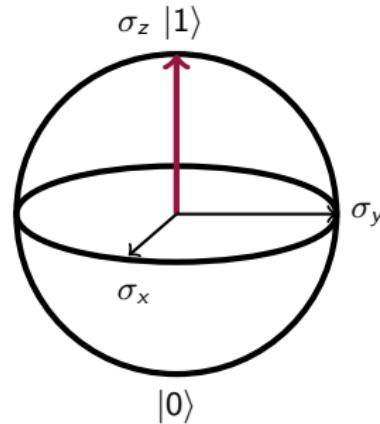
- The interaction is robust to fluctuations in r .
- Dressed ground state Rydberg atoms are easy to trap.
- The interaction can stay on at all times which is required for AQC.

Cs energy level diagram:

 $100S_{1/2} \rightarrow |r\rangle$

- Prepare atoms in $6S_{1/2}F = 3 \rightarrow |1\rangle$ (eigenstate of σ_z)

- Turn on $\pi/2$ microwave pulse $\rightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ (ground state of σ_x)

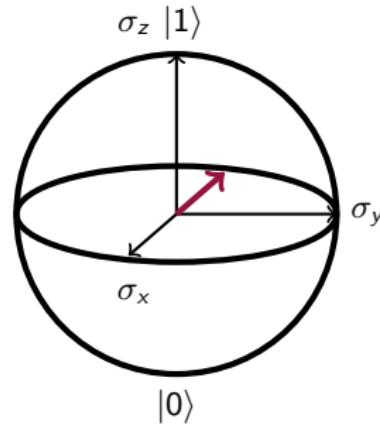
 $7P_{1/2}$ $6P_{1/2}$ $6S_{1/2}F = 4 \rightarrow |0\rangle$ $6S_{1/2}F = 3 \rightarrow |1\rangle$ 

Cs energy level diagram:

 $100S_{1/2} \rightarrow |r\rangle$

- Prepare atoms in $6S_{1/2}F = 3 \rightarrow |1\rangle$ (eigenstate of σ_z)

- Turn on $\pi/2$ microwave pulse $\rightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ (ground state of σ_x)

 $7P_{1/2}$ $6P_{1/2}$ $6S_{1/2}F = 4 \rightarrow |0\rangle$ $6S_{1/2}F = 3 \rightarrow |1\rangle$ 

Cs energy level diagram:

— $100S_{1/2} \rightarrow |r\rangle$

- Prepare atoms in $6S_{1/2}F = 3 \rightarrow |1\rangle$ (eigenstate of σ_z)

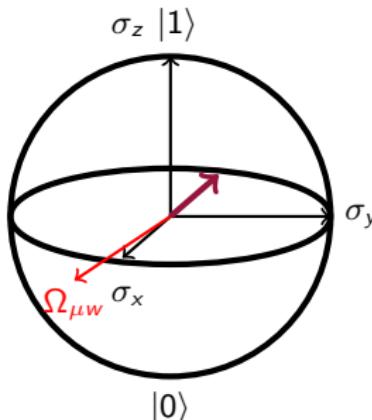
- Turn on $\pi/2$ microwave pulse $\rightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ (ground state of σ_x)

— $7P_{1/2}$

- Turn on the microwaves.

$$H_B = \frac{\hbar\Omega_{\mu w}(t)}{2} \left(\sigma_x^{(1)} + \sigma_x^{(2)} \right)$$

— $6P_{1/2}$



9.2GHz
 $\Omega_{\mu w}$

— $6S_{1/2}F = 4 \rightarrow |0\rangle$
 { — $6S_{1/2}F = 3 \rightarrow |1\rangle$

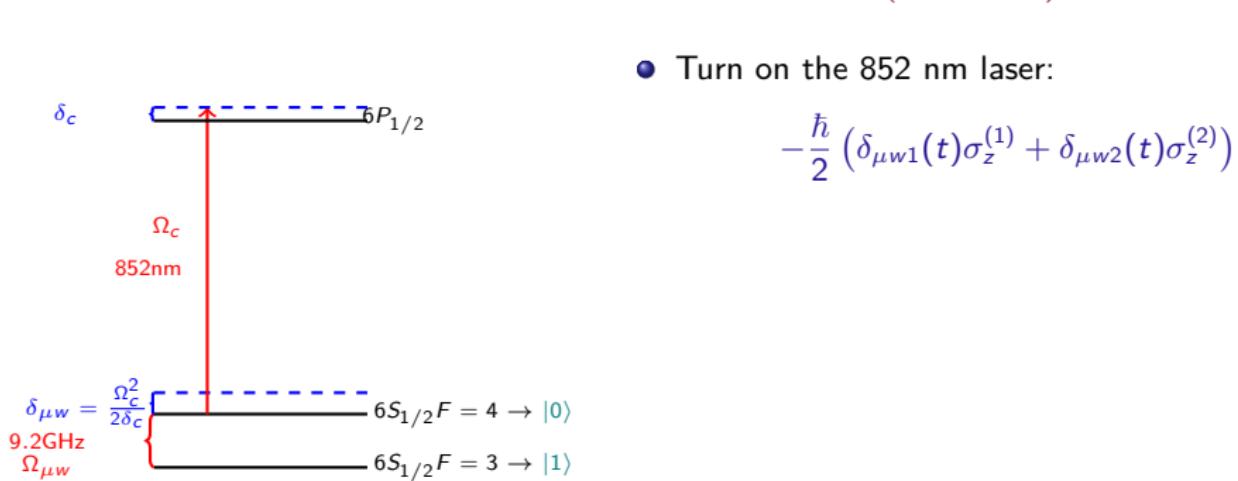
Cs energy level diagram:

$$\text{---} 100S_{1/2} \rightarrow |r\rangle$$

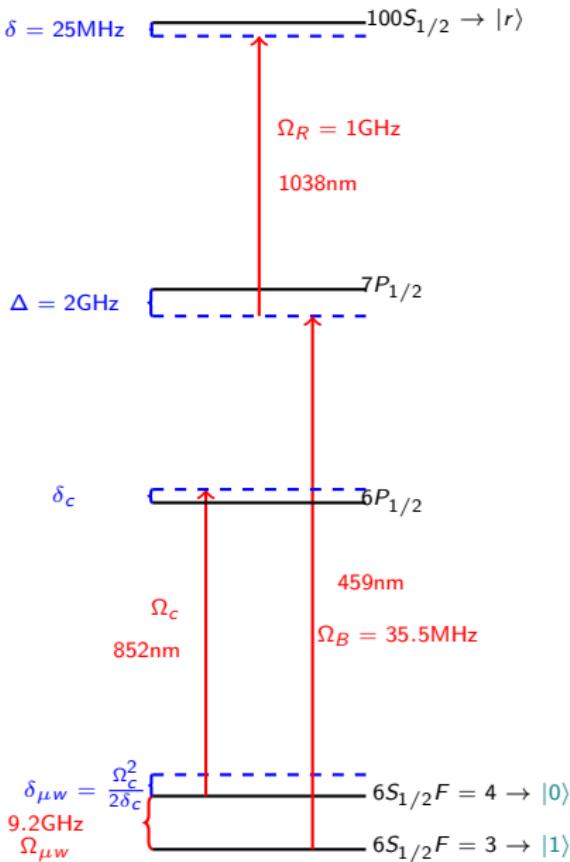
- Prepare atoms in $6S_{1/2}F = 3 \rightarrow |1\rangle$ (eigenstate of σ_z)

$$\text{---} 7P_{1/2}$$

- Turn on $\pi/2$ microwave pulse $\rightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ (ground state of σ_x)



Cs energy level diagram:



- Prepare atoms in $6S_{1/2} F = 3 \rightarrow |1\rangle$ (eigenstate of σ_z)
- Turn on $\pi/2$ microwave pulse $\rightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ (ground state of σ_x)
- Turn on the microwaves.

$$H_B = \frac{\hbar\Omega_{\mu w}(t)}{2} \left(\sigma_x^{(1)} + \sigma_x^{(2)} \right)$$
- Turn on the 852 nm laser:

$$-\frac{\hbar}{2} \left(\delta_{\mu w 1}(t) \sigma_z^{(1)} + \delta_{\mu w 2}(t) \sigma_z^{(2)} \right)$$
- Turn on Rydberg lasers:

$$J(t) \left(\frac{\mathbb{I} - \sigma_z^{(1)}}{2} \right) \otimes \left(\frac{\mathbb{I} - \sigma_z^{(2)}}{2} \right)$$

Evolution time: 2 qubit QUBO

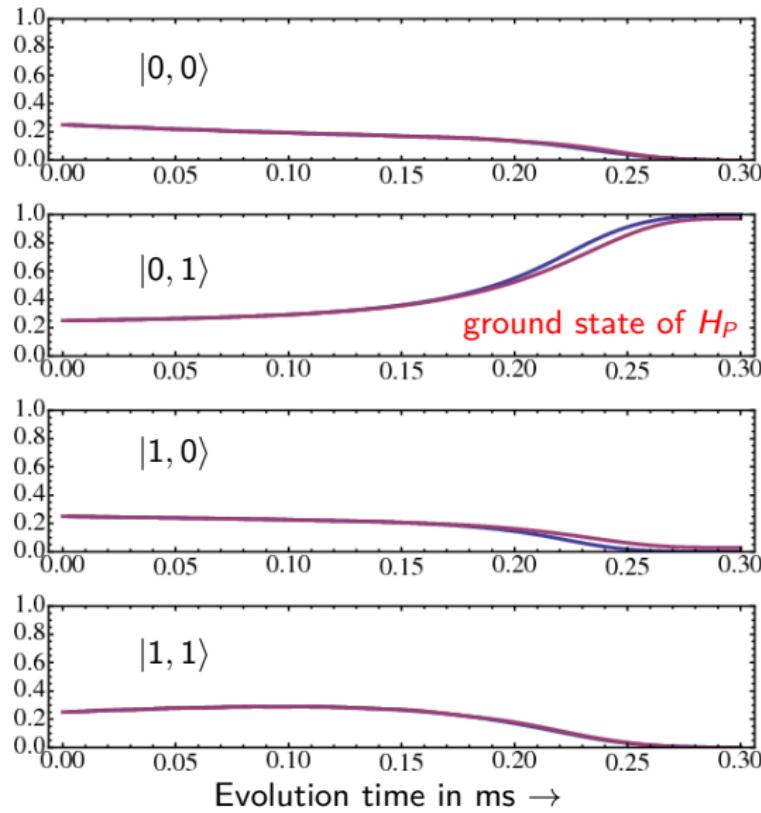
2 qubit QUBO Hamiltonian in KHz:

$$H(t) = 20 \left(1 - \frac{t}{t_{\max}}\right) \left(\sigma_x^{(1)} + \sigma_x^{(2)}\right) + \\ 5 \frac{t}{t_{\max}} \sigma_z^{(1)} + 10 \frac{t}{t_{\max}} \sigma_z^{(2)} + 10 \left(\frac{t}{t_{\max}}\right)^2 \left(\frac{\mathbb{I} - \sigma_z^{(1)}}{2}\right) \otimes \left(\frac{\mathbb{I} - \sigma_z^{(2)}}{2}\right)$$

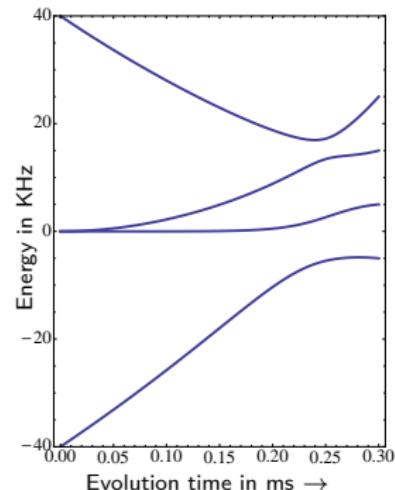
Ground state of H_P is $|0, 1\rangle$

Evolution time: 2 qubit QUBO

Population

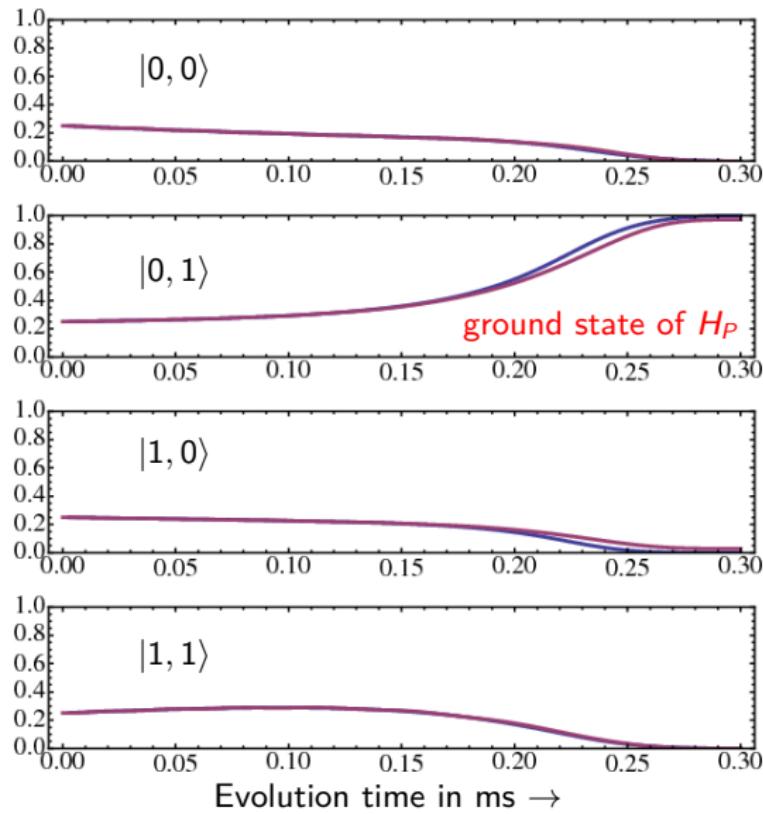


— Adiabatic evolution
 — Time dependent Schrödinger eqn

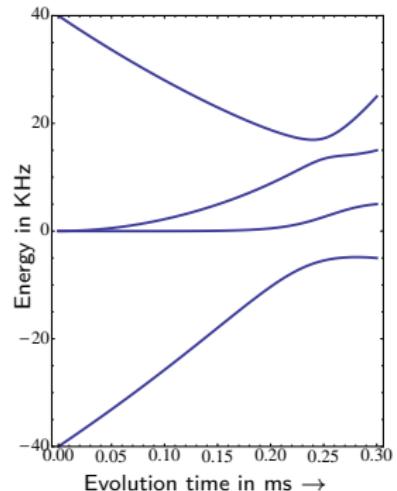


Evolution time: 2 qubit QUBO

Population

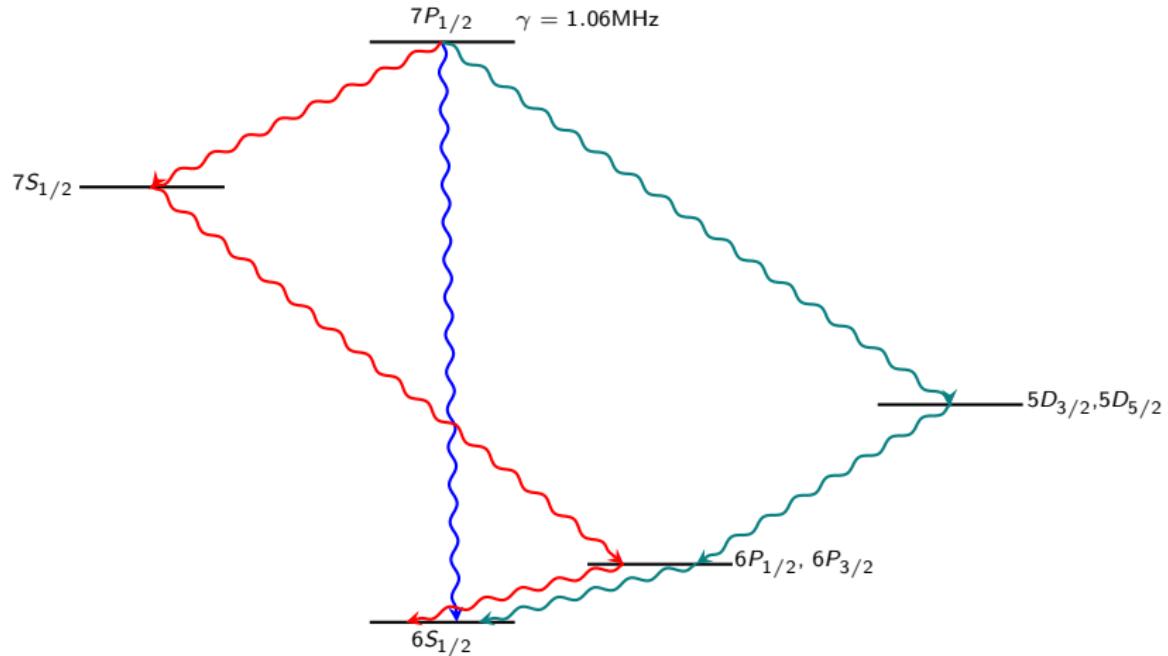


Adiabatic evolution
Time dependent
Schrödinger eqn



What about photon
scattering?

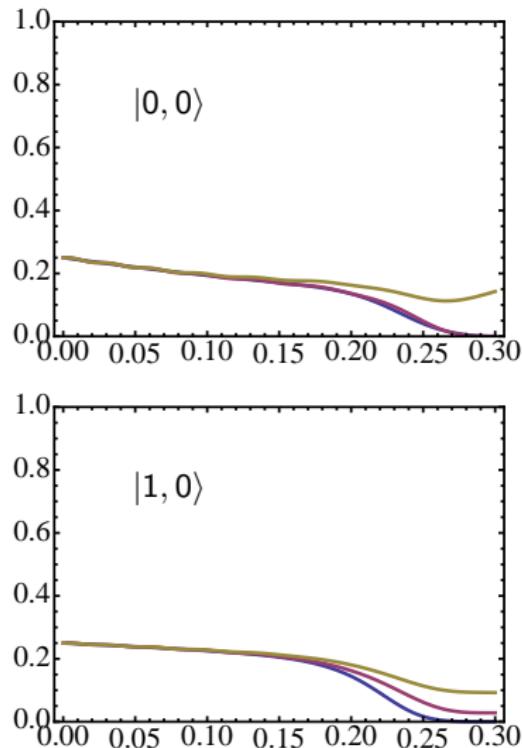
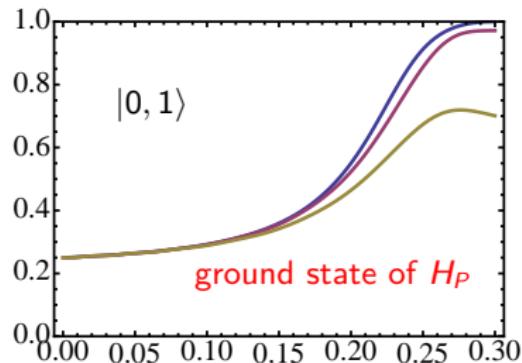
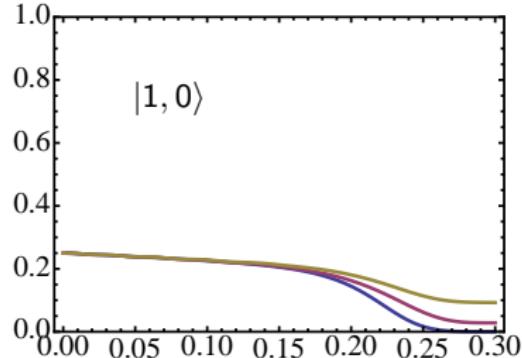
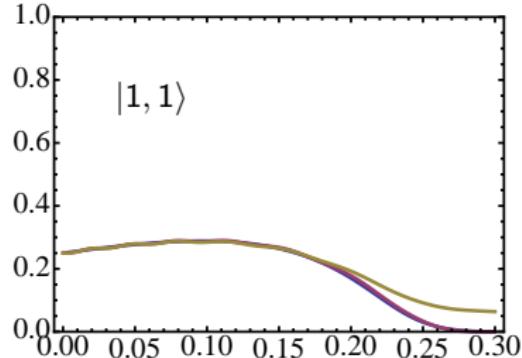
Photon scattering



Photon scattering randomizes qubit, i. e. returns qubit with approximately equal probability to $F = 3$ and $F = 4$ states.

Effect of dissipation

Population



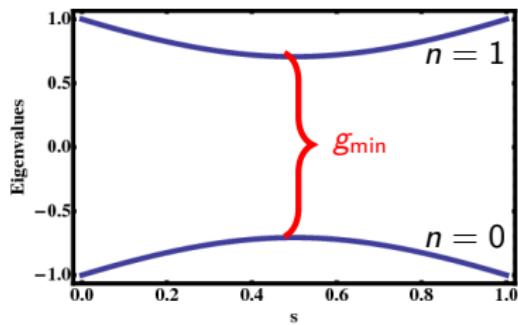
Evolution time in ms →

Summary And Outlook

- Experimental scheme for two qubit QUBO problem.
- We need to combat the effects of dissipation.
- Optimize ramp to minimize time required for adiabaticity

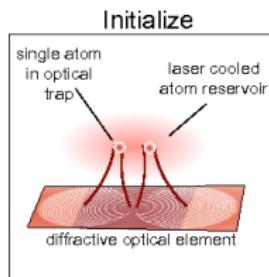
How Slowly?

$$H(s) = (1 - s)\sigma_x + s\sigma_z$$



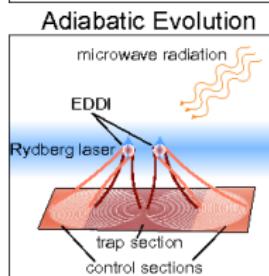
- By the adiabatic theorem the timescale for evolution must satisfy $T \gg \frac{\varepsilon}{g_{\min}^2}$ ^a, where $\varepsilon = \max \left| \langle n = 1; s | \frac{dH(s)}{ds} | n = 0; s \rangle \right|_{0 < s < 1} \approx 1$
- The feasibility of AQC depends on the scaling of g_{\min} with number of qubits.

^aE. Farhi and J. Goldstone, arXiv:quant-ph/0001106v1 (2000).



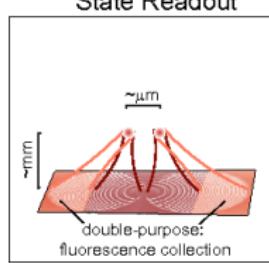
Prepare atoms in
 $6S_{1/2}F = 3 \rightarrow |1\rangle$

Turn on $\pi/2$ microwave
 pulse $\rightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}}$



Turn on and adiabatically
 ramp down $\Omega_{\mu w}$

Adiabatically ramp up
 intensities of all lasers.



Evolution time

Population

