Abstract

While neurological systems carry information as electrical signals, the typical neurological circuit topology is very
different from a circuit topology. For example, neurons within the brain connect to on the order of 10* neurons, and
not always the nearest neighbors.[Gordon20 04] Additionally, the underlying electrical signal is analog in nature and
has many forms of sub-critical, bias like behavior, single spikes to spike trains or packets. The resulting functional
unit is capable of apparent computational efficiency at very low power. [Brown & Bashir, 2002]

The goal of this work is to develop computational and statistical tools to enable efficient parallel simulation of
neurologically inspired systems. Specifically, we're extending traditional Spice style circuit simulation to accurately
model individual neuron behavior in a highly connected circuit. An important additional aspect to this work is
uncertainty quantification of neural model parameters so that one can gauge stability of a neural based system. We
have implemented common neurological ion-channel models (e.g. Hodgkin-Huxley, Connor-Stevens) in a dynamic
cable-equation format within a circuit simulator, Xyce (xyce.sandia.gov); see simulation outline below. This allows
one to use a netlist style syntax to describe a collection of neurons for simulation. As with any circuit simulation, the
model parameters for the circuit components are critical in determining the circuit’s performance.

Method

Neurons are highly branched cells that maintain a potential difference between the cell’s interior and exterior. The
branching and topological complexity is exemplified by the imaging from
Caja shown at Figure 1.

Given a section of neuron membrane, the voltage potential across the

membrane (i.e. from inside to outside) is described by Koch and Dayan

[2001]
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where C, is the membrane capacitance, V is the voltage difference, ¢ is
time, i is the current through the membrane while 7, represents any

externally applied current into the cell and A is the surface area of the
membrane.

The membrane current is dependent on the type of ion channels within the
membrane. In this work we the Hodgkin-Huxley model where the current is
described by:
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Figure 1 Texture of the Nervous System of Man and the
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Vertebrates by Santiago Ramon y Caja where i, is the current that naturally leaks through the membrane, i, is

Na

the current associated with sodium ion channels and i, is the current

associated with potassium ion channels. This descriptive equation can be refined with algebraic expressions for the
individual currents as:
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Parameters in this equation are: g, is the maximal membrane conductance, E, is the membrane reversing potential,
2. is the sodium ion channel conductance, E,, is the sodium channel reversing potential while g, and E, are the
potassium channel maximal conductance and reversing potential respectively. The variables, m, h and »n are voltage

dependent gating variables that model the relative availability of the sodium and potassium channels. Gating
variables, m, h and »n are described by the ordinary differential equations:
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The voltage dependent coefficients, «(v) and g(v) are:
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Note, in the equations for =, » and#, the voltage is given in units of milli-volts and time in milli-
seconds.

These equations describe the voltage behavior of a section of neuron membrane. To model a section of a neuron
process, such as an axon, a cable-equation formulation is used. Here, the cable equation is specified as:

The following equation was used to model the cable properties of the neuron:
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where C, is the membrane capacitance, V, is the voltage in compartment i relative to an external ground, ¢ is time, i”
is the current through the membrane in compartment i, I* represents any externally applied current into the cell and
A. is the surface area of the membrane in compartment i. The final two terms represent current flow into the

adjoining compartments, i -1, for the previous compartment and i +1 for the next compartment. Conductance
between the compartments, g, and g, , can be calculated by:
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where ¢, is the radius of compartment i, L, is the length of compartment i and r,,,, is the longitudinal intracellular
resistance.

A benefit of the cable equation formulation is that a complex neuron can be represented as a collection of attached
cable segments. These segments can then be divided and partitioned when simulating the system in parallel.

To simulate systems of graded complexity, we generated random networks of 1000 branched neurons connected on
average at 10, 50 and 100 synapses per neuron. These systems were simulated for 1.0 sec while applying random
inputs to all the neurons in the system. Additionally, the simulations were conducted using 1 to 64 processors on a
cluster computer. In serial, Xyce and Neuron took similar times to run the test problems with Xyce taking average
time steps of 4.2e-4 and Neuron taking 4.2e-5. Thus the advanced algorithms allow for larger time steps. In parallel,
the best improvement (factor 3.3) in overall runtime came from using graph based partitioning and parallel-solvers
coupled with inexact preconditioning (see attached figure). Analysis of the runtime data show that improvements in
the system loading scale linearly until the size of the system per processor is small (approximately 22,000
unknowns) but this will vary with computer cluster. Switching from serial to parallel solvers pays off when the
system size is over around 250,000. Thus, this work demonstrates that significant improvements in simulation
capacity can be gained by using advanced algorithms.
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Figure 2: Paralel Scaling of Neural Circuits

Conclusions

Electrical circuit simulation tools can successfully address the greater topological complexity of neuron systems. The
high degree of connectivity can be addressed by constructing the neuron unit from many devices. While synaptic
densities have not yet approached that found in nature, hundreds to thousands of synapses per neuron is feasible.

References

Brown, M. W. & Bashir Z. ., “Evidence concerning how neurons of the perirhinal cortex may effect familiarity
discrimination,” Phil. Trans. R. Soc. Lond. B, 356, 10821095 (2002).

Dayan, Peter & Abbott L. F., “Theoretical Neuroscience: Computational and Mathematical Modeling of Neural
Systems” MIT Press, Cambridge Massachusetts 2001

Keiter E., Thornquist H., Hoekstra R., Russo T., Schiek R., Rankin E., “Parallel Transistor Level Circuit Simulation”, Pp
1—21, Advanced Simulation and Verification of Electrical and Biological System, ed. Ping Li, Luis Miguel Silveira, Peter
Feldmann, Springer 2010.

Koch, Christof, “Biophysics of Computation: Information Processing in Single Neurons,” 1998

Shepherd, Gordon M., “The Synaptic Organization of the Brain,” 5th edition, Oxford University Press, pg 7 & 458,
Oxford University Press, 1998.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a EE——
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2011-3893C



