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Abstract

This paper describes a new electrical circuit model of the refurbished Z machine (ZR)
at Sandia National Laboratories that accurately predicts shaped current pulses used for
Dynamic Materials Program (DMP) experiments. Particular pulse shapes are obtained by
individually configuring gas-switch trigger time and water-switch gaps in each of the 36
pulse lines. This mode of operation differs from standard Z-pinch operation where all 36
pulse lines are configured identically to deliver the same short pulse simultaneously to
the load. Accurate model predictions are essential for determining how to configure the
pulse lines prior to a shot to achieve the desired current-pulse shape.

The new circuit model includes both 1-D and 2-D networks of transmission line
elements and was based on prior models that had been benchmarked to measurements
under Z-pinch mode operation. Recent model developments are described which
include improved switch models, improved coupling between adjacent pulse lines, and
runtime optimizations. These improvements have allowed better predictions in less time
to determine how to configure the machine. The most important of the improvements is
a self-breaking water switch model that predicts water switch closure given only the
switch gap, even when the field in the gap initially reverses due to coupling between
early-triggered and late-triggered pulse lines. The runtime optimizations include an
extension to parallel processing and a custom user interface. Also described are
benchmarks to DMP shots, to well defined test-load shots, and between circuit codes.



Background

Circuit model predictions are used to determine the pulse line
configuration for Dynamic Material shots
— Pulse line mode: long, medium, short, bussed out
— Marx charge, IS switch time (laser-gas), PFL and OTL1 water switch
gaps
Circuit is based on Z circuit previously developed to model z-
pinch mode operation



/R circuit topology
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* Model probes placed at same location as physical probes in ZR
* Vacuum loss models for un-insulated flow, insulated flow lost in vacuum convolute,
resistive wall losses, effect of cathode plasma closure (as for SATURN, Z)



Circuit features

Edge of TL Mesh
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Full ZR Model (6 of 18 modules shown)
* 36 pulse line modules
*18 2-D OTL2 and WC
* 61,000 TL elements
* 26,000 resistor elements
* passive loss
e active switches
* active vacuum region loss



/R Bertha Model Implementation
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/R pulse line model, probes, and operation
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* Voltage probes located away from the water switch
* Circuit model switch closure times matched to up- and down-stream measurements

* Pulse shapes match well on some lines, shots, some locations; others not

*Measured PFL amplitudes are suspect (scatter, probes moved after calibration, damage to inner)
* Circuit model used to calculate voltage on gap



Self Breaking Water Switch Model

* Model depends on initial switch gap, time history of voltage in gap (circuit model)
» Assumed general form of past fits to point plane data:

* F=V/d, (MV/cm); tin us

Ft=k

* n and k determined by fit to given shot data ( n range 1/2 to 1/3 in literature)

* used integral form (JFY/ndt)" for running calculation in simulation

* Fit to data on three shots (data for 30-36 pulse lines each)

Z Shot Number 2114 1990 2019
Marx charge (kV) 50 80 80
d (cm) 3.5 12 3.5
Average V (MV) 1.9 4.1 2.1
Average teff (ns) 47/35 56/42 32/27
Ft/2 0.117 0.0814 0.109
c (%) 5.8 3.8 6.7
Ft'3 0.178 0.119 0.181
o (%) 5.2 3.6 5.6
Ft'3 d13 0.273 0.273 0.2745
3.400E-01
* Best fit for n was 0.35 3.200€-01 O

(approximated by 1/3)
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addition of a gap term
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* Switch threshold k = (dfF3dt)/3 calculated at each time step of simulation
* Switch modeled by usual tanh function after threshold k is reached

- R(t) for resistive phase set 300 ohms at threshold (same as model fit)
* Switch jitter modeled by assuming normal distribution of k, = 0.02

- Actual distribution not symmetric (also cited by others)

- Random number generator used to set up circuit parameters

- Multiple simulations are used to assess effect of jitter on pulse shape

Unipolar Switch Model
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Switch operation is complicated by large range
of pulse line trigger times

* Pulse shaping requires mixed pulse line modes and firing times
- Modes: long (water gaps shorted); medium (small main gap, PPSW shorted); short (nominal gaps)
- Firing times: long pulse lines fired up to ~500 ns before shorter pulse lines
* set by laser trigger times
* Earlier lines couple to later through water convolute (adjacent) and through vacuum region
-“back-pulse” reverses field in open switch gaps
- can lead to early closure if not anticipated

Module Configuration Water Switch Confiquration Trigger
Timing 3.500E+06
Main Switch | Peaking |Pre-Pulse | Advance 5.000E+05idiv |
Mode Module Gaps Gaps Boards (ns)
Long Pulse 1 0 1] no 500
Long Pulse 3 o] 0 no 120
Long Pulse 5 0 o] no 360
Medium Pulse 7 3.5 o] no 20 r
Medium Pulse 9 3.5 0 no 60 E(i__Z_O___ -
Medium Pulse 11 3.5 0 no ] 1
Long Pulse 13 o] 0 no 500
Long Pulse 15 0 0 no 60 V36 2 )
Long Pulse 17 o] 0 no 460 = =
Medium Pulse 19 25 0 no 110 1
Medium Pulse 21 3.5 0 no 40 e
Medium Pulse 23 3.5 o] no 0 g
Long Pulse 25 0 0 no 500
Long Pulse 27 o] 0 no 30
Long Pulse 29 0 0 no 480
Medium Pulse 31 3.5 0 no 130
Medium Pulse 33 3.5 o] no 20
Medium Pulse 35 3.5 0 no (1] L
Long Pulse 2 0 0 no ! 513 -3.000E+06 . . L L L . . .
Long Pulse | 4 0 0 no | 133 2.300E-06 3.200E-06
Long Pulse 6 0 0 no 373 TIME 1 000E-07 /di
Medium Pulse 8 3.5 0 no : 103 i
Medium Pulse 10 3.5 o] no 73 “ ”
Medum puise | 12 3.5 0 oo [ 13 PFL gaps closed on “back-pulse” from
Long Pulse 14 0 o] no L 513
Long Pulse 16 8] 0 no 73 H 1 H ~ 1
e | : : oot adjacent lines fired ~500ns earlier
Medium Pulse 20 3.5 0 no : 123 . . .
Medium Pulse | 22 35 0 o [ 53 * line set for medium pulse delivered an
Medium Pulse 24 3.5 0 no 13
Long Pulse 26 0 0 no r 513 H
Long pue | 25 0 0 o [ w earlier long pulse
Long Pulse 30 0 0 no r 493
Medium Pulse | 32 3.5 0 no [ 143
Medium Pulse | 34 3.5 0 no r 33
Medium Pulse | 36 3.5 0 no r 13




Reverse Polarity and Bipolar Switch Model

* Reverse polarity and bi-polar switching was observed on 18 pulse lines of shot 2095
* 9 switched on reversal, 9 were bipolar
 Additional data from every other pulse line of shot 2137
* Limited data shows reverse polarity can be fits F(dt)}/3=0.133
* Roughly half the opposite polarity threshold
* Consistent with the difference between positive and negative breakdown formulas
* Bipolar data suggests that two opposite polarity stress can be combined in a single threshold
* Kpp = [ (dfF3dt)Y/3 + 8(dfF,3dt) ]/3
where F_is the average field in the negative enhanced gap and F, is the positive

2.000E+06 T T T T T T T T T 2.000E+06 T T T
2.600E+05 /div | N i 2.600E+05 /div | .
Unipolar Bipolar
Pulseline 7 | | Pulseline 12 i
07VPg ] 12VPg I -
owvg .o 4 1 . 12VPg

- ) | | \\J
-6.000E+05 . . , \ \ \ . -6.000E+05 . . . , \ ,

0.000E+00 2.200E-06 0.000E+00 TIME 2.200E-06
TIME 2.200E-07 /div 2.200E-07 /div

Shot 2181
* Bipolar model prediction — black
* Switch times matched to data postdiction - blue



Circuit run time optimization

The iteration time for pulse shape design and analysis is critical
- Circuit run times ~ 1 minute are generally required
-Trial and error match circuit prediction to target pulse shape
* new shapes or make adjustments between shots
* many iterations are often needed in short time
- presently done manually
- future will try genetic optimization algorithm (may need many more
iterations)
- runtime < 1 minute may be needed

Two efforts have resulted in greatly reduced times
1. preprocessor for the BERTHA simulations
. ZR Bertha Interface (ZRBI)
e Graphical interface for manual pulse shaping
*  Fortran routines will be used for automated pulse shaping
2. Running a single circuit on multiple processors



/R Bertha Interface (ZRBI)

D The ZR Bertha Interface (ZRBI) is a standalone application which allows

users to easily manipulate model parameters such as switch timing, loss 2=el ey
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ZR Bertha Interface (ZRBI)
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Runtime optimizations -
Serial and Parallel processing

Wall clock benchmarks:
e TLrunon 4 core Intel® Xeon ® CPU at 2.67GHz
— 23,000 time step (2.3us) simulation
* One processor: 70 seconds
e BERTHA run under Open MPI running 8 core Xeon Linux 3.3GHz workstation
— 20,000 time step (2.0us) simulation
* One Processor: 125 second
e Seven processors: 30 seconds
— Circuit grouped into 7 MPI modules
= 6 MPI modules each containing 3 PFL pairs and WCs
= 1 MPI module containing stack MITLs and load



TL circuit model of ZR reproduces many of
the measured waveform features

Z-pinch Load — synchronous pulse lines

Intermediate Store Voltage PFL Voltage Total Stack Current
5.000E+05 /div | “ 5.000E+05 /div /\ 5.000E+06 /div
* AVISL \ * AVPML / \K\ * ltube
" isvd_even \ pfveven ‘ bsave_189
\\/”/ﬂ R 100ns
L \ \L N
0.000E+00 TS YT 0.000E+00 ——— 3300E;06 0.000E+00
TIME 2000807 /dv ’ TIME 1000507 v 2.900E-06 TIME 353)25;23
Shot 1896 Shot 1896 Shot 1896
Material Response Load — pulse lines staggered over ~500ns
Load Current Load Current _
- * Simulated load current
compared to unfold from VISAR
VIS2138 Vis2141 data
* lload L * lload t
h - L(t) unfolded from VISAR and
100ns 2-D MHD 5|mulfat|on§
— - Matched switch times

ZR Shot Data (blue)




Still more work to be done ...

1.000E+07
1.000E+06 /div
* lload
BMAVE_213
1-2D unfld
—
0.000E+00

2.100E-06 3.200E-06
TIME 1.000E-07 /div

Conflicting data on peak currents:
* Postdiction load current - black
* Measured MITL current — blue

* Unfolded VISAR current — pink
Shot 2138



