

# **Applications of Self-Correcting Hybrid Causal-Learning Systems to Opinion Dynamics on Networks**

Alexander Outkin and Robert Glass

June 27

*ICCS 2011, Boston, MA*

# Motivation

- Social systems can be represented as:
  - Engineered component - *interaction structure and rules*. Enforces constraints and processes.
  - Decisional component - *agent's strategies*. Drives the system.



# Networks and Markets

- Agent-based models can be thought of as representing the causal structure and mechanics of the world
  - Social networks: dynamics is driven by agents decisions, within social or technological constraints
  - Markets: agent's have heterogeneous strategies, operate within rules, regulations, and existing infrastructure

# Question

- How predictive power generated by understanding of causal mechanisms can be incorporated into real-time decision-making?
- Difficulties:
  - Social systems are only partially observable - thus matching output of causal model to observed data is difficult
  - Both strategies and causal structure of the system can change abruptly

# Approach

- Create causal (agent-based) model(s) of the system
- Enable incorporation of information from multiple models into a learning framework and evaluation of individual model contributions
- Enable causal models partial re-calibration as new data arrives

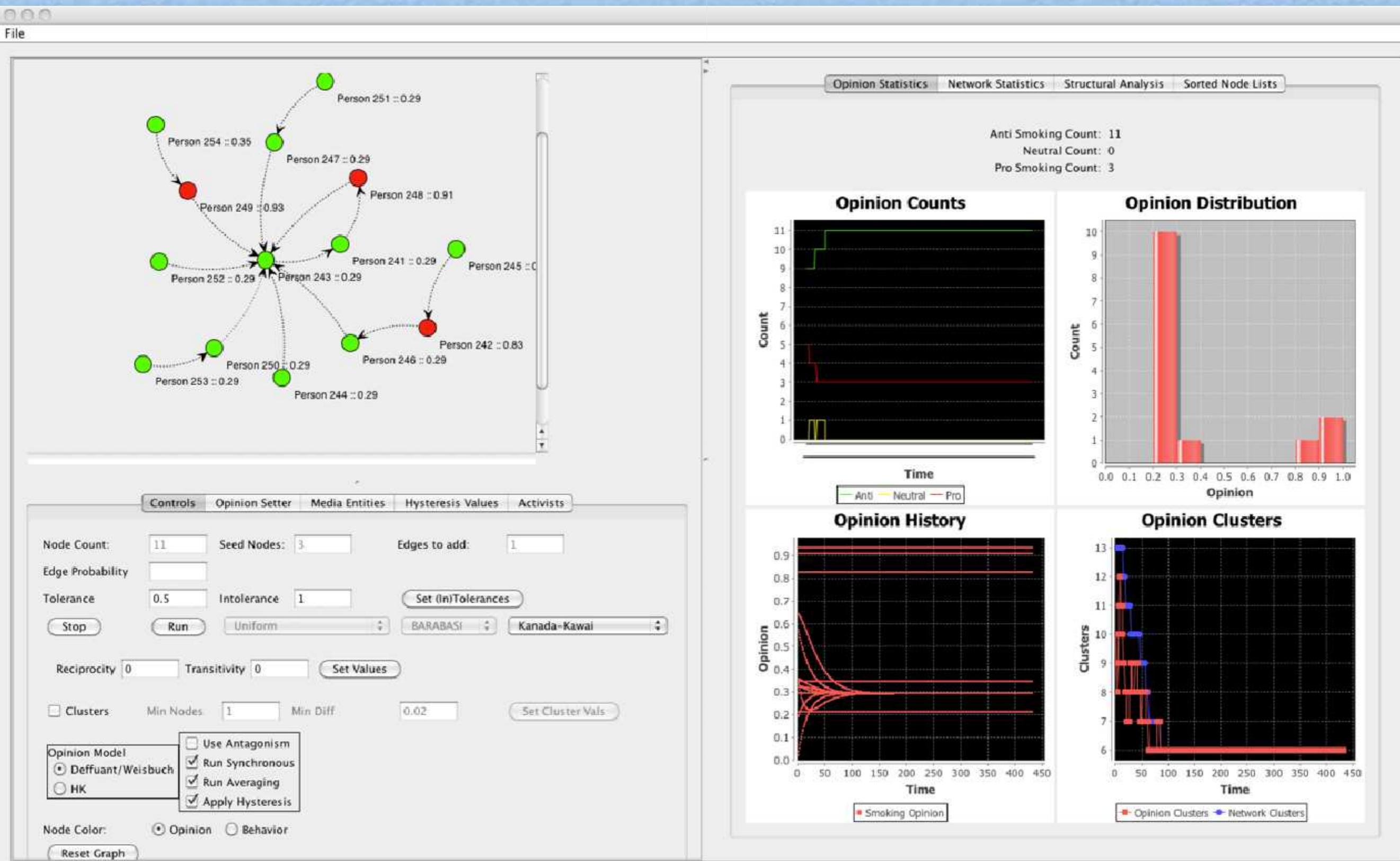
# Opinion dynamics

- Real-world applications: identify a (set of) causal models that predict the future system performance and response to interventions
- Test case: create a randomly generated opinion model and underlying network and apply the learning framework to predict its dynamics

# Test model

- Developed by Sandia CASoS initiative
- Network of agents who share and affect each other opinions
  - Weisbuch updating rule for example
- Network topology may vary: Barabasi, random, ring...

# Test Model



# Experiment Parameters

- What we can observe:
  - Average behaviors
  - Number of nodes (more or less)
  - Some topological or connectivity parameters
- What we cannot observe:
  - Individual strategies
  - Exact topology
  - Opinions or at times behaviors for individual agents

# Learning Framework

- A set of inputs  $X = x_1, \dots, x_K$ . Those can represent past historic observations of the system's behavior.
- A set of outputs  $Y = y_1, \dots, y_L$ . Those represent system responses to the inputs.
- A set of interaction and correlation models:  $M = m_1, \dots, m_N$ , each representing a (sub) set of the systems behavior.
  - Each model  $m_i$  has a set of inputs  $x_{ij}$ , where  $i \in K_i \subseteq \{1, \dots, K\}$ .
  - Each model  $m_i$  has a set of outputs:  $y_{il}$ , where  $l \in L_i \subseteq \{1, \dots, L\}$ .
  - A goal of individual models is to represent its outputs as a function of inputs.
  - Additionally, a goal of interaction model is to represent the causal structures and interactions that give rise to its dynamics.
  - We calibrate the individual interaction models to their individual inputs and outputs.

# Learning Framework

- A learning model, which is a function  $F$  of outputs of all models, whose goal is to predict the model outputs.

$$Y(t + 1) = F(m_1(t), \dots, m_N(t)) + \epsilon(t)$$

Compare this with a standard linear model, where

$$Y(t + 1) = \sum_i w_i x_i(t) + \varepsilon(t)$$

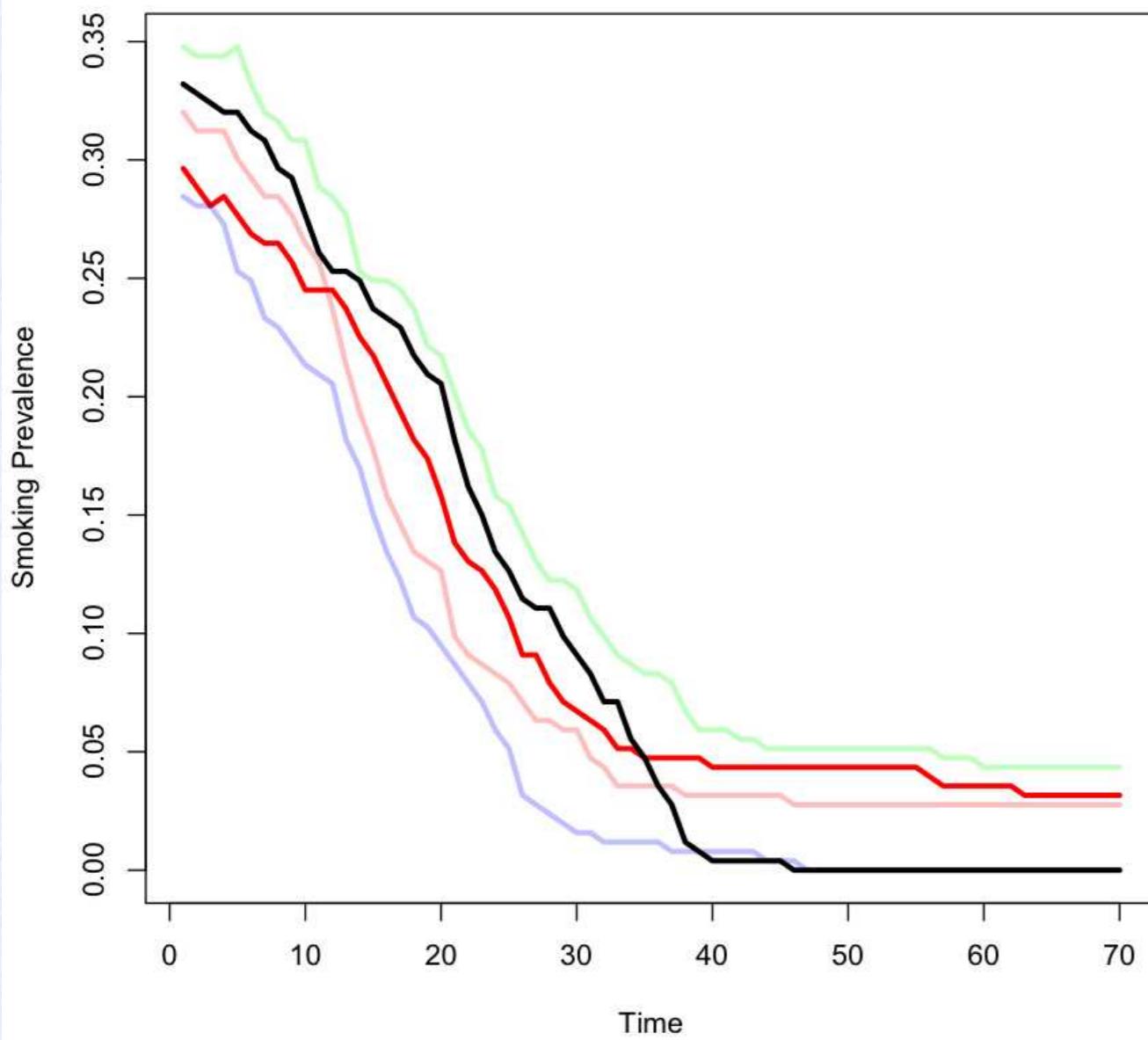
- In an online setting a key question is also how to re-calibrate the causal models with the newly arrived data

# Experimental Setup

- Create a single instance of a network
  - Some of its parameters and initial values are randomly generated. Their actual values are not used for creation of “basis” models
- Create a set of families of models using known parameters:
  - Average opinion
  - Number of nodes
  - Information on network structure

# Experimental Setup

- Example objective function – red
- Basis models are drawn from “same” distribution



# Off-line Estimation

- Two randomly generated models are sufficient to represent the test model output when the “learning” function is a simple linear regression

$$Y(t + 1) = \sum_i w_i m_i(t) + \varepsilon(t)$$

Coefficients:

|              | Estimate | Std. Error | t value | Pr(> t )     |
|--------------|----------|------------|---------|--------------|
| Experiment.1 | 0.31113  | 0.03716    | 8.373   | 1.46e-11 *** |
| Experiment.2 | 0.56198  | 0.02927    | 19.197  | < 2e-16 ***  |

---

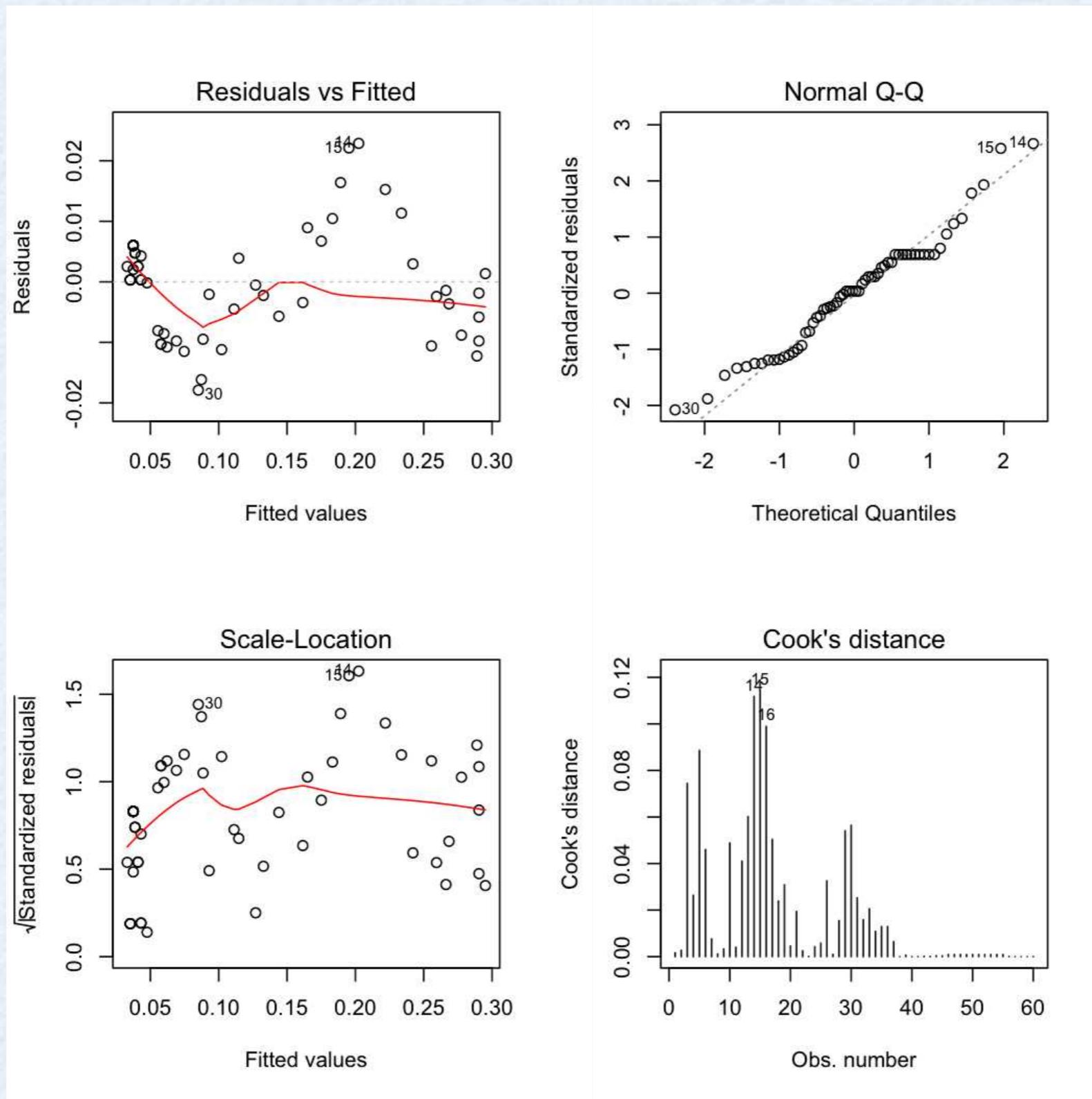
Signif. codes: 0 ‘\*\*\*’ 0.001 ‘\*\*’ 0.01 ‘\*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.008718 on 58 degrees of freedom

Multiple R-squared: 0.9968, Adjusted R-squared: 0.9966

F-statistic: 8914 on 2 and 58 DF, p-value: < 2.2e-16

# Diagnostics

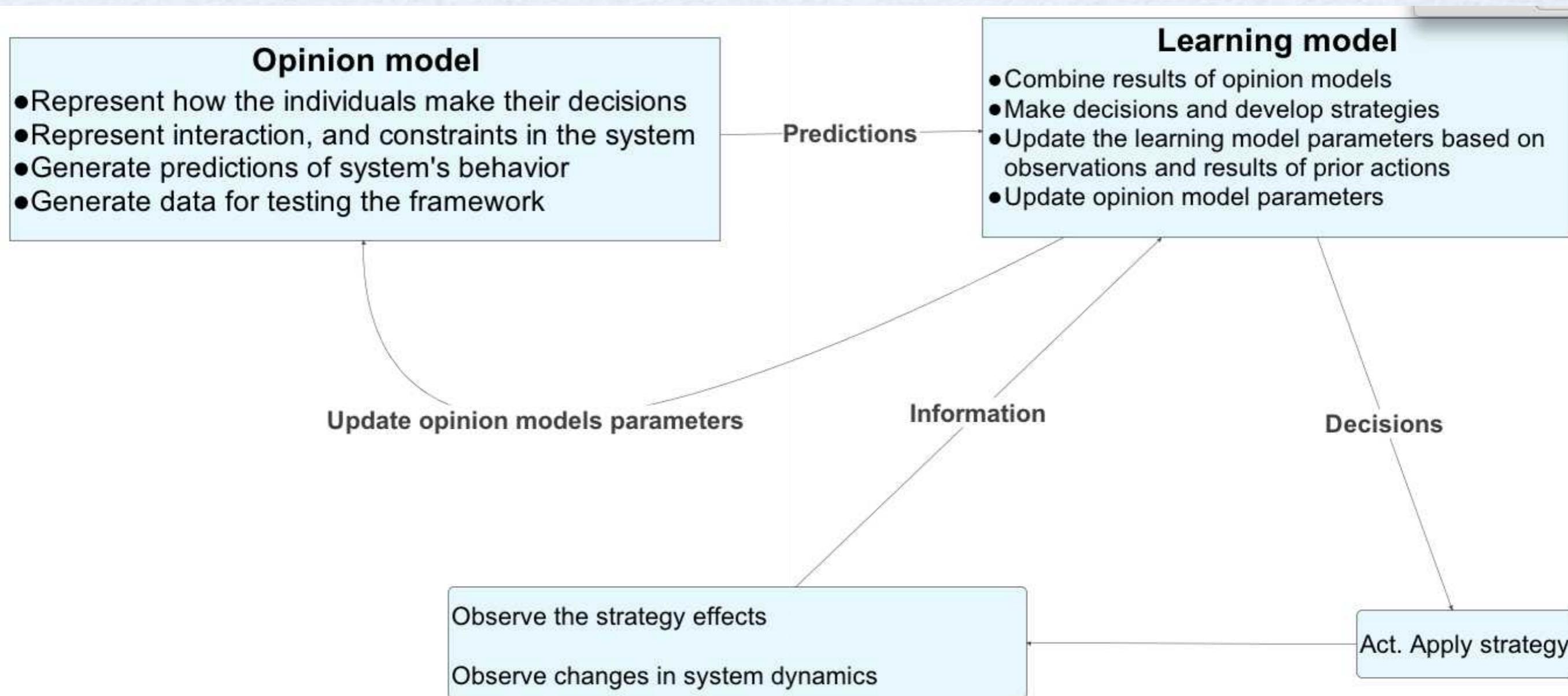


# On-line Notes

- In on-line or real-time setting, the key usefulness of the causal models is in the ability to select across the models based on newly arrived information and to re-calibrate the models
- The main tasks are:
  - Which of the “basis” models are closes to the observed data?
  - How identify when the basis model ensemble is insufficient: regime changes?

# Conceptual Framework

- Act/Observe>Select/Recalibrate



# Conclusions

- Connecting causal models to an on-line or off-line learning framework provides an ability to use incomplete causal information for prediction and ability to select across many possible causal models.
- Preliminary results in the opinion dynamics demonstrate ability to replicate the results of a causal model with randomly generated causal models
- Future directions include online estimation and model selection, and regime changes identification