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Summary

Large diameter wire array z-pinches reach
Interesting plasma conditions

= Te ~ few keV

= Ni~few 1020 cm3

Strong K-shell emission is observed
= For SS (> 5keV) ~35TW, >80kJ
= For Al (>1keV) ~35TW, 430kJ

3D MHD simulations are providing
significant insight into these arrays

= Matching significant fraction of data

= Nearing a predictive capability

Radiation can drive basic science experiments o Sandia
ationa
Laboratories
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Experiments use large diameter wire array z-pinches

to produce intense few keV emission

Large diameters & fast rising current

High implosion velocities

!
High electron temperatures when they stagnate
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For increasing atomic number, temperature and hence
velocity required for efficient K-shell radiation increases

= Increasing Z leads to

Increase in K-shell photon energy

Increase in electron temperature
required to radiate efficiently

Higher velocity required to heat

=  For Al

Hea at 1.6keV
~1keV required to radiated efficiently

~50cm/us required to heat to 2x
ionization energy (n~2)

= ForFe

Hea at 6.7keV
~4keV required to radiated efficiently

~100cm/us required to heat to 2x
ionization energy (n~2)
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Al wire arrays at 40, 50, 65mm have been “=
flelded on Z since the refurbishment

= All wire arrays discussed
here are nested wire arrays

= 2:1 Inner:Outer mass ratio
= 2:1inner:outer diameter ratio

= Al wire arrays use Al 5056
= Alloy with 5% Mg
= Stronger than pure Al

= Useful as spectroscopic
analysis
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Al mass and diameter variations show significant variation of
pulse shape and energy for different diameters and masses

Pulse shape varies considerably
with different setups

Significant fraction of energy
comes from second hump

As diameter is increased rise
becomes slower and FWHM
grows

Optimal K-shell setup is different
for yield and power

= Max K-shell power at 40mm

= Max K-shell yield at 50mm

K-shell (>1keV) power

K-shell (>1keV) power

K-shell (>1keV) power
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Z2076 shows significant structure in MLM images
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Implosion of ‘optimal’

Al wire arrays is not

clean

Significant structure is

observed

Bright spots are
present

Non-uniformity has
effect of reducing
overall opacity of
system
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More symmetrical implosion leads higher opacity =
and lower >1keV yield

Z2076: 50mm 95ns Implosion

= High degree of non-
uniformity at stagnation

Al = Low opacity
g . .
= Larger radiated yield
. >1kev 35 300000
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Spectrum (kJ/keV)

Spectrum (kJ/keV)

10+

0.14

0.01

Considerable Free-bound radiation is produces

by Al wire arrays
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Continuum is fitted and extrapolated

assuming

P(v) e~ (kT

hV)

Find temperature of emitting regions
~1.6 keV

Energy in free-bound emission ~135kJ

above K edge

Variety of filter cuts are consistent
with this extrapolated spectrum

22171

Diagnostic Filter Yield behind filters (kJ)

Description  Recorded  From Spect.

PCD 38um Be 190 190

PCD 8umBe +CH 313 312

PCD 250pm 19 18
Kapton

PCD 750um 6 4
Kapton
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Plasma conditions required to radiate higher atomic
number materials are harder to reach

= Higher atomic number of
Fe/Cu/Kr means much _ —Em——ry
harder to reach K-shell - ® Measured |

= Use larger diameter loads
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= Larger diameter loads are
essential to reach
sufficient electron
temperatures to radiate
efficiently
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Behavior of higher-Z arrays influenced by

competing constraints

In many cases high temperatures and high densities are
contradictory aims

Large diameters needed are not good for symmetry
= Large implosion distances lead to instability growth
= Low wire numbers and large interwire gaps are bad for symmetry
= Bright spot can easily dominate the radiating column

Large implosion velocities equate to a high rate of change of
inductance, stressing the machine

Efficiency is aided by

= Good driver to Kinetic Energy conversion through magnetic
coupling

= Efficient transfer of kinetic energy to K-shell line radiation

—

Cu pinch at peak
X-ray power

<— Bright spots
SP L
!

_10 o -

Dist. {mm)

15

4 2 0 2 4

Dist. (mm)

See J.P. Apruzese analysis
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Variety of masses/diameters used to optimize

= All shots discussed use

= Nested wire arrays
= Stainless steel wires

= 2:1 mass and diameter ratio

= Variations are performed in

= Array Diameters:
65mm, 70mm, 75mm

= Masses
1.01lmg to 5mg

= |Implosiontime
90ns to 130ns

Subset of shots discussed:

Shot Outer Total Mass Implosion
Number Diameter Time
Z1857/1860* 65mm 2.5mg 103ns
Z2011 70mm 1.23mg 90ns
21995/ 72079/ ... 70mm 1.38mg 92ns
Z1996 70mm 2.25mg 102ns
72021 75mm 1.26mg 92ns

* 71857-1861, Z2077-2082 were performed jointly with B. Jones

N
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implosion velocity (cm/ps)

\|

electron temperature (keV)

L.
Initial 65mm diameter nested arrays on refurbished Z
showed low electron temperature at stagnation
nested load diameter (mm)
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Velocity cm/us

implosion velocity (cm/ps)
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Larger array diameter and lower masses will lead
to higher implosions velocities
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Gorgon MHD simulations used to
determine peak center of mass velocity

Higher velocities are achievable by
Using larger array diameters
Using earlier implosion times

Both also lead to lower masses

Spectrum (normalized)
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K-shell Power (TW)

A
‘

Diameter scan at various implosion times
Indicates that 70mm is optimal mass
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Arrays massed such that similar
implosion times at each diameter

Over various diameters and masses
70mm is optimal diameter
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K-shell power (TW)

K-shell Yield (kJ)

SS mass scan at 70mm has demonstrated =
~1.38mg Is optimum mass, imploding at ~95ns

—— Z1995-1.38mg
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Optimal K-shell power achieved with
= 95ns implosion time
= 1.4mg total array mass

K-shell yield reasonably independent of
iImplosion time
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Despite radiating ~85kJ, optimal arrays have significant current==—s
loss due to voltage needed to drive implosion

Implosions velocities ~110cm/us
produces large dL/dt 160 | —— 2079-BOLTEPO5AQ0L. J2s

|| —— 2079-PCD05A13050.
—— 2079-PCDO05A15112.

140

| 2079-BIAVE. 120
Effect of interaction pulse 120 ——DEEHEE -
observed on delivered current s :
g 80 - g
dL/dt voltage significantly " 3
Impacts ability of generator to 7
deliver current 21
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Time (ns)

Convolute loss drops the
current able to drive the load
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K-shell radiated energy (kJ)

Reproducibility of Z1995 looks reasonable
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Good shot chosen to investigate
reproducibility

On all shots Standard Error in
measured PCD yields <10%

Z2077 had significantly lower yield
= All others 280kJ

= Number of diagnostic issues on
Z2077 led to inconsistent
diagnostics from other shots

Neglecting 22077

= Mean = 88kJ
= St. Dev = 6kJ

Recent shots have not
maintained this reproducibility

= More work needed to
understand
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Pulse shape for 1.4mg 70mm load is highly

reproducible
1.0 ————————7————f 11—
Very good reproducibility of K-shell | A e peo0oALI00
radiation pulse shape o  oezrCD0SALIN
FWHM is 2.42 %+ 0.15ns T 061
<
Rise time is 1.90ns =+ 0.14ns s
=
0.2
Heavier masses have longer rise ]
and FWHM 0.0 Asrmerm e gt
-15 -10 -5 0

Time (ns)
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Pinhole camera imaging at different photon energies <
provides insight into dynamics of implosion

277eV
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= Pinhole cameras on MLM instrument show time history of emitting regions
= One camera filtered to look at SS K-shell
= Two cameras look at bulk emission (277eV)

= 277eV shows imploding ‘hollow shell’ approaching axis

= Some hollowness seen on K-shell before peak x-rays
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K-shell emitting region is compressed
through the x-ray rise

K-shell emission is always
more confined to the axis

Data is consistent with hot
spike on inner edge of
colder annulus

Locally K-shell image is
also somewhat hollow,
however axial averaging
does not show
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FWHM of K-shell emitting region is consistent with =
compression of the column during x-ray rise

Integral of K-shell filtered
pinhole camera strongly follows ] | ©
K-shell x-ray pulse

444444
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Rise of x-ray pulse coincides

with decrease in FWHM of vt _
K-shell region 18] —8— MLMintegral (AU) {014
16—_ ] 1.
—~ 144
Reason for earlier rapid E Ll S| E
expansion unclear . Sle
= Very low emitted power at that time % g ~§ _Zé
From images, expansion post- ]
peak is representative of 2 _
COIumn break—up ’ 30I78I30I79I30I80I3OISlI3(;82I30I83I30I84I3(;85I3(;86I30I87 Ingg% -
= Instability growth Time (ns)
= Angular momentum
= Hot spot formation
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Dist. (mm)
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3D MHD modeling by C.A. Jennings i
(in collaboration with S.B. Hansen)

MHD simulations are able to reproduce the global =—.
structures seen in MLM images
Gorgon simulations post-processed with tabulated emissivities for
>5keV filter cut (work in progress)
Matches well to dynamics seen in MLM images
0 or " 0 ’ 0 0
. i b
B ;E; 5P ‘ % N g 5P ! \E 5 .
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FWHM of K-shell emission provides
comparison between simulations

Line-out from both simulated
and experimental K-shell images

Both limited to top 6mm which
many other diagnostics view

Very good agreement on FWHM
during times of K-shell emission

Work continuing on simulations
to better match pulse shape

Modeled K-shell yields in good
agreement for heavier cases

Power (K-shell, TW)
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For Stainless Steel pinches, optically thin lines can be
used to put limits on ion temperature

Z2011 gives narrow Mn He-a lines at stagnation

Space and time resolved side-on specta
= End-on being pursued for similar measurements

= Line narrows in the ~1ns interframe time of TREX

= May provide a bound on ion temperature
= Bound will include bulk motion
= Small radius(~1mm) may help counter this

= Current estimate, neglecting plasma motion, ion
temperature decreases from 60 keV to 40 keV over ~1ns

= Very early stages of analysis!
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MHD simulations post-processed to compare with
specific line widths give reasonable fit to the
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Reconstructing spectral line features
using specific line emissivity to compare
effects of ion temperature and motional
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K-shell sources discussed in this presentation
can be used to drive basic physics experiments

photoionization

- N - N

/ /
0000
~ ~ ~ -

2p
\/\/\) \oo 25
00
S
Auger decay

(autoionization)

O 2

1s

oo 2S

1s

= Resonant Auger Destruction leads to
uncertainty in black hole accretion disk

dynamics

= Autoionization competes with radiative
decay following inner-shell
photoionization

= K-shell lines can be used to excite
specific transitions

black hole

slga l
.

hard X ray

Fe K line
last stable

circular orbit
Fe L layer

‘cold" optically thick disk disk atmosphere

Courtesy of Duane Liedahl, LLNL
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1MA generators can provide insight into specific questions that
arise for large diameter arrays at 20MA

= Large diameter implosions are sometimes
seriously impacted by end-effects
= Primarily near cathode
= First seen on MAGPIE
= Presently on Z appears for some setups but not all
= Insufficient shots on Z to really investigate

No end-effect With end-effect

= Gas puffs are an upcoming capability at Z
= Minimal data on whether pre-ionizer helps

= What density profiles are optimal
Trade off between R-T and pinch temperature

= Understanding specifics of wire array
physics is incredibly useful
=  Wireinitiation
=  Wire ablation
= Precursor formation
= Stagnation dynamics
= Requires good time and spatial resolution

.
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Upcoming experiments plan to expand the photon
energies covered by K-shell x-ray sources on Z

=  Wire array experiments continue

Optimization of ~8.4keV Cu wire arrays
continuing this year

Study of Free-Bound continuum available
from both Al and SS arrays continuing

= (Gas puffs are being reestablished on Z

Will allow ~3.1keV Argon gas puff
experiments

Combination of large (~12cm) gas puff with
improved delivered energy on Z will allow
investigation of ~13keV Kr gas puffs

Electron temperature (keV)
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Summary

Higher K-shell powers and yields have been achieved with recent SS
and Al arrays on Z

= SS wire arrays have produced ~85kJ of >5keV emission
= Al wire arrays have produced ~400kJ of >1keV emission

70mm wire arrays have demonstrated reasonable reproducibility
despite large implosion distance for instabilities to grow

MHD simulations are playing a major role in design and understanding
of experiments

= 3D MHD coupled to tabulated atomic physics models are recreating many
features seen in the experiment

= Significant modeling insight also from NRL using more detailed transport &
in-line atomic physics

Development of Al, Ar, SS, Cu and Kr K-shell sources are continuing

Large diameter wire arrays create interesting plasma conditions and
can be used to drive basic science experiments S
ﬁ'{' National
Laboratories






