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Summary

 Large diameter wire array z-pinches reach 

interesting plasma conditions

 Te ~ few keV

 Ni ~ few 1020 cm3

 Strong K-shell emission is observed

 For SS (> 5keV) ~35TW, >80kJ

 For Al (>1keV) ~35TW, 430kJ

 3D MHD simulations are providing 

significant insight into these arrays

 Matching significant fraction of data

 Nearing a predictive capability

 Radiation can drive basic science experiments

50-75mm
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Experiments use large diameter wire array z-pinches 

to produce intense few keV emission

Large diameters & fast rising current 

↓

High implosion velocities

↓

High electron temperatures when they stagnate

↓

Ionization to the K-shell and hence emission
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For increasing atomic number, temperature and hence 

velocity required for efficient K-shell radiation increases

 Increasing Z leads to 
 Increase in K-shell photon energy

 Increase in electron temperature 

required to radiate efficiently

 Higher velocity required to heat

 For Al
 Heα at 1.6keV 

 ~1keV required to radiated efficiently

 ~50cm/us required to heat to 2x 

ionization energy (η~2)

 For Fe
 Heα at 6.7keV 

 ~4keV required to radiated efficiently

 ~100cm/us required to heat to 2x 

ionization energy (η~2)

Coverdale et al., HEDP 6, 143 (2010)
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Al wire arrays at 40, 50, 65mm have been 

fielded on Z since the refurbishment

 All wire arrays discussed 

here are nested wire arrays

 2:1 Inner:Outer mass ratio

 2:1 inner:outer diameter ratio

 Al wire arrays use Al 5056

 Alloy with 5% Mg

 Stronger than pure Al

 Useful as spectroscopic 

analysis
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Al mass and diameter variations show significant variation of 

pulse shape and energy for different diameters and masses

 Pulse shape varies considerably 

with different setups

 Significant fraction of energy 

comes from second hump

 As diameter is increased rise 

becomes slower and FWHM 

grows

 Optimal K-shell setup is different 

for yield and power
 Max K-shell power at 40mm

 Max K-shell yield at 50mm
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Z2076 shows significant structure in MLM images

 Implosion of ‘optimal’ 

Al wire arrays is not 

clean

 Significant structure is 

observed

 Bright spots are 

present

 Non-uniformity has 

effect of reducing 

overall opacity of 

system
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More symmetrical implosion leads higher opacity 

and lower >1keV yield

 Z2076: 50mm 95ns Implosion

 Z1907: 40mm 95 ns implosion

 High degree of non-

uniformity at stagnation

 Low opacity

 Larger radiated yield 

>1keV

 Uniform column 

produced

 Higher opacity

 Lower yield >1keV
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Considerable Free-bound radiation is produces 

by Al wire arrays

Diagnostic Filter

Z2171 
Yield behind filters (kJ)

Description Recorded From Spect.

PCD 38µm Be 190 190

PCD 8µmBe +CH 313 312
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 Continuum is fitted and extrapolated 

assuming

 Find temperature of emitting regions 

~1.6 keV

 Energy in free-bound emission ~135kJ 

above K edge

 Variety of filter cuts are consistent 

with this extrapolated spectrum
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Plasma conditions required to radiate higher atomic 

number materials are harder to reach

 Higher atomic number of 

Fe/Cu/Kr means much 

harder to reach K-shell

 Use larger diameter loads

 Larger diameter loads are 

essential to reach 

sufficient electron 

temperatures to radiate 

efficiently
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Behavior of higher-Z arrays influenced by 

competing constraints

 In many cases high temperatures and high densities are 

contradictory aims

 Large diameters needed are not good for symmetry

 Large implosion distances lead to instability growth

 Low wire numbers and large interwire gaps are bad for symmetry

 Bright spot can easily dominate the radiating column

 Large implosion velocities equate to a high rate of change of 

inductance, stressing the machine

 Efficiency is aided by

 Good driver to Kinetic Energy conversion through magnetic 

coupling

 Efficient transfer of kinetic energy to K-shell line radiation

Cu pinch at peak 

x-ray power
Z1863, B. Jones

Bright spots

See J.P. Apruzese analysis
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Variety of masses/diameters used to optimize

 All shots discussed use 

 Nested wire arrays

 Stainless steel wires

 2:1 mass and diameter ratio

 Variations are performed in 

 Array Diameters: 

65mm, 70mm, 75mm 

 Masses 

1.01mg to 5mg

 Implosion time 

90ns to 130ns

Shot

Number

Outer 

Diameter

Total Mass Implosion 

Time

Z1857/1860* 65mm 2.5mg 103ns

Z2011 70mm 1.23mg 90ns

Z1995 / Z2079 / … 70mm 1.38mg 92ns

Z1996 70mm 2.25mg 102ns

Z2021 75mm 1.26mg 92ns

* Z1857-1861, Z2077-2082 were performed jointly with B. Jones

Subset of shots discussed:
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Initial 65mm diameter nested arrays on refurbished Z 

showed low electron temperature at stagnation

 Initial SS shots on ZR used 65mm 

diameter

 B-dots: Higher coupled energy than 

pre-refurbishment Z

 Spectroscopy: Te lower than optimum 

on old Z

 Need higher KE/ion therefore higher 

velocity

 Larger diameter and earlier implosion 

time arrays explored with SS

Fe

(f
ro

m
 0

D
)

J.P. Apruzese et al., JQSRT 57, 41 (1997): 0.9mm SS Pinch 

K power (TW/cm) , Cr(Ly+He) / Fe(Ly+He) Good shot on old-Z

(Z580)

Initial shot on new Z

(Z1860)
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Larger array diameter and lower masses will lead 

to higher implosions velocities

 Gorgon MHD simulations used to 

determine peak center of mass velocity

 Higher velocities are achievable by

 Using larger array diameters

 Using earlier implosion times

 Both also lead to lower masses3060 3080 3100 3120
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Diameter scan at various implosion times 

indicates that 70mm is optimal mass

 Arrays massed such that similar 

implosion times at each diameter

 Over various diameters and masses 

70mm is optimal diameter
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SS mass scan at 70mm has demonstrated 

~1.38mg is optimum mass, imploding at ~95ns

 Optimal K-shell power achieved with 

 95ns implosion time 

 1.4mg total array mass

 K-shell yield reasonably independent of 

implosion time
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Despite radiating ~85kJ, optimal arrays have significant current 

loss due to voltage needed to drive implosion

 Implosions velocities ~110cm/us 

produces large dL/dt

 Effect of interaction pulse 

observed on delivered current

 dL/dt voltage significantly 

impacts ability of generator to 

deliver current

 Convolute loss drops the 

current able to drive the load
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Reproducibility of Z1995 looks reasonable

 Good shot chosen to investigate 
reproducibility

 On all shots Standard Error in 
measured PCD yields <10%

 Z2077 had significantly lower yield

 All others ≥80kJ

 Number of diagnostic issues on 
Z2077 led to inconsistent 
diagnostics from other shots

 Neglecting Z2077

 Mean = 88kJ

 St. Dev = 6kJ

 Recent shots have not 
maintained this reproducibility 

 More work needed to 
understand
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Pulse shape for 1.4mg 70mm load is highly 

reproducible

 Very good reproducibility of K-shell 

radiation pulse shape

 FWHM is 2.42 ± 0.15ns

 Rise time is 1.90ns ± 0.14ns

 Heavier masses have longer rise 

and FWHM
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Pinhole camera imaging at different photon energies 

provides insight into dynamics of implosion

 Pinhole cameras on MLM instrument show time history of emitting regions
 One camera filtered to look at SS K-shell 

 Two cameras look at bulk emission (277eV)

 277eV shows imploding ‘hollow shell’ approaching axis

 Some hollowness seen on K-shell before peak x-rays

-4.2ns -3.2ns -2.2ns -1.2ns -0.2ns +0.8ns +1.8ns +2.7ns

>5keV

277eV
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K-shell emitting region is compressed 

through the x-ray rise

 K-shell emission is always 

more confined to the axis

 Data is consistent with hot 

spike on inner edge of 

colder annulus

 Locally K-shell image is 

also somewhat hollow, 

however axial averaging 

does not show

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

In
te

n
s
it
y
 (

A
U

)

Position (mm)

 K-shell

 277eV

-2.2ns -1.2ns

Position (mm)

-0.2ns

Position (mm)



DJA  6/1/2011 22

FWHM of K-shell emitting region is consistent with 

compression of the column during x-ray rise

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088

0

2

4

6

8

10

12

14

16

18

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0

2

4

P
o
w

e
r 

(K
-s

h
e
ll
, 

T
W

)

Time (ns)

 2011-PCD05A31051.

 M
L

M
 i
n

te
g
ra

l 
(A

U
)

 MLM integral (AU)

F
W

H
M

 /
 D

ia
m

e
te

r 
(m

m
)

 Exp FWHM K-shell

 

 Integral of K-shell filtered 

pinhole camera strongly follows 

K-shell x-ray pulse

 Rise of x-ray pulse coincides 

with decrease in FWHM of 

K-shell region

 Reason for earlier rapid 

expansion unclear
 Very low emitted power at that time

 From images, expansion post-

peak is representative of 

column break-up
 Instability growth

 Angular momentum

 Hot spot formation
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MHD simulations are able to reproduce the global 

structures seen in MLM images

 Gorgon simulations post-processed with tabulated emissivities for 

>5keV filter cut (work in progress)

 Matches well to dynamics seen in MLM images

-2.2ns -1.2ns -0.2ns +0.8ns +1.8ns

3D MHD modeling by C.A. Jennings 

(in collaboration with S.B. Hansen)
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FWHM of K-shell emission provides a more quantitative 

comparison between simulations and experiments

 Line-out from both simulated 

and experimental K-shell images 

 Both limited to top 6mm which 

many other diagnostics view

 Very good agreement on FWHM 

during times of K-shell emission

 Work continuing on simulations 

to better match pulse shape

 Modeled K-shell yields in good 

agreement for heavier cases
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For Stainless Steel pinches, optically thin lines can be 

used to put limits on ion temperature

Z2011 gives narrow Mn He-α lines at stagnation

 Space and time resolved side-on specta

 End-on being pursued for similar measurements

 Line narrows in the ~1ns interframe time of TREX

 May provide a bound on ion temperature

 Bound will include bulk motion

 Small radius(~1mm) may help counter this

 Current estimate, neglecting plasma motion, ion 

temperature decreases from 60 keV to 40 keV over ~1ns

 Very early stages of analysis!

Initial analysis by Itsic

Initial analysis by Itsic
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MHD simulations post-processed to compare with 

specific line widths give reasonable fit to the 

experiments
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K-shell sources discussed in this presentation 

can be used to drive basic physics experiments

 Resonant Auger Destruction leads to 

uncertainty in black hole accretion disk 

dynamics

 Autoionization competes with radiative

decay following inner-shell 

photoionization

 K-shell lines can be used to excite 

specific transitions

1s

2s

2p

Auger decay

(autoionization)

photoionization

1s

2s

2p

1s

2s

2p

Courtesy of Duane Liedahl, LLNL
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1MA generators can provide insight into specific questions that 

arise for large diameter arrays at 20MA

 Large diameter implosions are sometimes 

seriously impacted by end-effects

 Primarily near cathode

 First seen on MAGPIE

 Presently on Z appears for some setups but not all

 Insufficient shots on Z to really investigate

 Gas puffs are an upcoming capability at Z

 Minimal data on whether pre-ionizer helps

 What density profiles are optimal

• Trade off between R-T and pinch temperature

No end-effect With end-effect
Z2021 Z2020

 Understanding specifics of wire array 

physics is incredibly useful

 Wire initiation

 Wire ablation

 Precursor formation

 Stagnation dynamics

 Requires good time and spatial resolution
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Upcoming experiments plan to expand the photon 

energies covered by K-shell x-ray sources on Z

 Wire array experiments continue

 Optimization of ~8.4keV Cu wire arrays 

continuing this year

 Study of Free-Bound continuum available 

from both Al and SS arrays continuing

 Gas puffs are being reestablished on Z

 Will allow ~3.1keV Argon gas puff 

experiments

 Combination of large (~12cm) gas puff with 

improved delivered energy on Z will allow 

investigation of ~13keV Kr gas puffs
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Summary

 Higher K-shell powers and yields have been achieved with recent SS 

and Al arrays on Z

 SS wire arrays have produced ~85kJ of >5keV emission

 Al wire arrays have produced ~400kJ of >1keV emission

 70mm wire arrays have demonstrated reasonable reproducibility 

despite large implosion distance for instabilities to grow

 MHD simulations are playing a major role in design and understanding 

of experiments

 3D MHD coupled to tabulated atomic physics models are recreating many 

features seen in the experiment

 Significant modeling insight also from NRL using more detailed transport & 

in-line atomic physics

 Development of Al, Ar, SS, Cu and Kr K-shell sources are continuing

 Large diameter wire arrays create interesting plasma conditions and 

can be used to drive basic science experiments




