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Outline

Implosion and Stagnation of a Large Diameter
Stainless Steel Wire Array

= Describe the implosion and stagnation of stainless
steel large diameter k-shell source

= Qutline processes responsible for high photon
energy emission

= Describe the effect this has on the interpretation of
certain diagnostics
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GORGON code well suited to model discrete wires In
the full array volume

GORGON — 3D Resistive MHD

Radiation is flux limited diffusion out of a zone
Fixed square grid finite volume hydrodynamics then lost

Emissivity's € and Rosseland/Planck opacities

Single fluid — separate electron and ion
are tabulated on p, T,, and f;,4 (T,ag=To)-

temperatures

Explicit electro-magnetic field solution (wave

equation in vacuum / diffusion equation in Tables are based on the screened-hydrogenic/

UTA non-LTE model SCSF [1], which, like

plasma) ; _
_ LLNL’'s DCA [1], compares well to more detailed
Van Leer Advection atomic codes (e.g. SCRAM [2], [3])
Constrained Transport for Magnetic Field 1Ev1d Fe emissivity for Te = 1keV, p = 9 mg/em’ (fras = 0)
Advection ~1E13] —— SCRAM (etaiied K-shell
5 1 —— SCSF (hydrogenic)

Driven from measured voltage to account for
current losses

I”|
) 1E+08 T — T — T
Full array \ ( J [1] H. Scott and S.B. Hansen, HEDP 6, 39 (2010)
modeled as | H i/ [2] S.B. Hansen et al., HEDP 3, 109 (2007)
discrete I ! [3] Brown, Hansen et al., PRE 77, 066406 (2008)
wires | { | i
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70mm Stainless Steel, nested arrays radiate ~80kJ at photon
energies > 5keV

140
120+ n lMJ
100+
= ]
= 80
= ]
= 60-
8 4
401 ~80kJ
J\\
0' T T T
3060 3080 3100
Time / ns

~1.2mg total mass, with 2:1
inner to outer mass ratio
~80kJ emitted in photon
energies > 5keV

Log(density) of 81M cell calculation of a stainless steel array
imploded on Z
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The first material to reach the axis is the lower density
leading edge of the imploding array
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The first material to reach the axis is the lower density
leading edge of the imploding array
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Dense imploding shell stagnates on low density, high
pressure material that first arrives on axis

Log Density Pressure
At foot of (Kg/m?3) (Mbar)
power pulse
‘shell’ W 103 p°
implodes on
top of hot,
high pressure
low density
material a2 - 1
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K-shell Emission Predominantly comes from leading
edge of stagnating shell impacting high pressure on axis
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Power / TW
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K-shell emitting leading edge can look like a uniform

35+
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251
201
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Slice through High Photon Energy Emission

pressing pinch

0 . .
3080 3085 3090
Time/ns

Rise of K-shell x-ray
pulse is more like
snow plough radiation

as pinch collapses.

From the outside
world this can look like
a uniform pinch
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Power / TW

Post Peak X-ray Pinch Disassembles
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Time/ns

Post stagnation the
material is unstable
and disassembles,
but continues to
look like a uniform
pinch
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Comparison of actual and Synthetic Pinhole images
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Lower Photon Energy 277eV MLM Camera shows

similar structures
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Doppler shifted emissivity is calculated from MHD
model

A/l _ (Vx)plasma
A C

A

—AA ﬂo +AA —AA /10 +AA —AA ﬂ“o +AA
Stationary Thin Shell MHD model
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Spectral Line Widths can be dominated by plasma
motion

Line shape calculated by applying Doppler shift to each emitting zone, and summing
over all plasma. To account for Doppler broadening the Doppler shifted delta function of
each emitting zone can be convolved with appropriate Gaussian using that zones ion
temperature.

Line shapes calculated using Mn-He-o emissivity

— Motional + Ti
14 Motional
12-
-]
< 104
z 8
2 6
Q
£ 4
2_
0

SAMn | le-3

At peak k-shell power line width
measurements are seriously compromised

by motion of the plasma

lon temperature contribution to
broadening of spectral line width in
negligible
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Line width during K-shell
power pulse is massively
dominated by motion in the

stagnating plasma
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MHD simulations post-processed to compare with
specific line widths appears to give reasonable fit to the
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Reconstructing spectral line features
using specific line emissivity to compare
effects of ion temperature and motional
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With a highly structured pinch, different measurements
can sample different things

lon Temperature / keV

Power / TW
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 Line width ion temperature is

seriously contaminated by plasma

motion, so significantly

overestimates ion temperature

represent the temperature of
material emitting

* Emissivity weighted ion

temperature is ~15keV around

peak k-shell power.

a relatively low ion temperature

» Volume averaged ion temperature
is skewed to emphasize very hot
low density material so does not

» The material actually radiating has

i
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Line width narrows significantly over K-shell Power

Pulse

- 1 - -
3507 | ine width 140 10
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Plasma decelerating throughout stagnation, so motional
contribution to line width gets smaller. i.e FWHM gets smaller
during x-ray pulse. If this were interpreted as ion temperature it
would look like the plasma has cooled from ~140keV to 80keV in
the 2ns after peak power.
From comparison with measured K-shell power the calculated
rise and fall are too slow, so need to refine calculations —
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lon temperature of material emitting is not the same as
the ion temperature that drives the dynamics

507 —— emissivity Ti 140 L : :
emissivity Tl ] - Emissivity weighted ion

> - density Ti 135 .
T 40- i _ temperature is the average
= 130 > temperature of the material that
S 30- 125 Is emitting
© : 120 § * Density weighted ion
(b ]
o 20+ 115 E temperature better represents
o - ) 110 & the temperature that determines
= 10+ K-Powe,r,x""' w15 the pressure and dr_ives the
- dynamics — these differ by ~60%
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Red=average electron temperature
Blue=emission weighted electron
temperature

Electron Temp / keV

Power / TW

-
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Emission diagnostics will only sample the areas that are
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Lineout's through end on profiles integrated along z

104

84

6

104

2 0

Radius / mm

2

2

Radius / mm

0
3080

3085

3090

Time / ns

3095

0

2 4 4 2 0

Emission diagnostic samples

the electron temperature,
then it does not capture the
low density hot material that
can dictate the emission
process, but does not itself
emit very strongly
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Density Kg/m
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Similarly, emission features used to locate density may
not represent the mass distribution

Red=emissivity weighted density

Black = average density
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Summary

K-shell emission predominantly comes from the
iInside surface of an imploding shell impacting hot,
low density material assembled on axis

Pinch is highly structured at stagnation, but
irp}’gegrated diagnostics do not necessarily represent
this

Large non-uniformities throughout a dynamic
stagnation necessitate development and direct
comparison of real and synthetic diagnostics so
assumptions on plasma conditions are not
Introduced.
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