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Outline

Implosion and Stagnation of a Large Diameter 
Stainless Steel Wire Array

 Describe the implosion and stagnation of stainless 
steel large diameter k-shell source

 Outline processes responsible for high photon 
energy emission

 Describe the effect this has on the interpretation of 
certain diagnostics
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GORGON code well suited to model discrete wires in 

the full array volume

GORGON – 3D Resistive MHD

Fixed square grid finite volume hydrodynamics

Single fluid – separate electron and ion 

temperatures

Explicit electro-magnetic field solution (wave 

equation in vacuum / diffusion equation in 

plasma) 

Van Leer Advection

Constrained Transport for Magnetic Field 

Advection

Driven from measured voltage to account for 

current losses

Tables are based on the screened-hydrogenic/ 

UTA non-LTE model SCSF [1], which, like 

LLNL’s DCA [1], compares well to more detailed 

atomic codes (e.g. SCRAM [2], [3])

[1] H. Scott and S.B. Hansen, HEDP 6, 39 (2010)

[2] S.B. Hansen et al., HEDP 3, 109 (2007)

[3] Brown, Hansen et al., PRE 77, 066406 (2008)
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70mm Stainless Steel, nested arrays radiate ~80kJ at photon 

energies > 5keV

~90ns

7cm

Log(density) of 81M cell calculation of a stainless steel array 

imploded on Z
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The first material to reach the axis is the lower density 

leading edge of the imploding array

0 10 20 30 40
1E-4

1E-3

0.01

0.1

1

L
o

g
 D

e
n

s
it

y
 K

g
/m

3

Radius / mm

0 10 20 30 40
1E-4

1E-3

0.01

0.1

1

L
o

g
 D

e
n

s
it

y
 K

g
/m

3

Radius / mm

0 10 20 30 40
1E-4

1E-3

0.01

0.1

1

L
o

g
 D

e
n

s
it

y
 K

g
/m

3

Radius / mm

-40ns

-20ns

-10ns

Instabilities 

significantly 

broaden 

imploding shell

Low density 

material 

assembles on 

axis first



DJA  6/2/2011 6

0 10 20 30 40
1E-4

1E-3

0.01

0.1

1

10

100

L
o

g
 D

e
n

s
it

y
 K

g
/m

3

Radius / mm

The first material to reach the axis is the lower density 

leading edge of the imploding array
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Dense imploding shell stagnates on low density, high 

pressure material that first arrives on axis
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K-shell Emission Predominantly comes from leading 

edge of stagnating shell impacting high pressure on axis
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K-shell emitting leading edge can look like a uniform 

compressing pinch
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Post Peak X-ray Pinch Disassembles
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Comparison of actual and Synthetic Pinhole images
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Lower Photon Energy 277eV MLM Camera shows 

similar structures

277eV
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Doppler shifted emissivity is calculated from MHD 

model
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At peak k-shell power line width 

measurements are seriously compromised 

by motion of the plasma

Line shape calculated by applying Doppler shift to each emitting zone, and summing 

over all plasma.  To account for Doppler broadening the Doppler shifted delta function of 

each emitting zone can be convolved with appropriate Gaussian using that zones ion 

temperature.

Line shapes calculated using Mn-He-a emissivity

Spectral Line Widths can be dominated by plasma 

motion

Ion temperature contribution to 

broadening of spectral line width in 

negligible
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MHD simulations post-processed to compare with 

specific line widths appears to give reasonable fit to the 

experiments
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Reconstructing spectral line features 

using specific line emissivity to compare 

effects of ion temperature and motional 

broadening
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• Line width ion temperature is 

seriously contaminated by plasma 

motion, so significantly 

overestimates ion temperature

• Volume averaged ion temperature 

is skewed to emphasize very hot 

low density material so does not 

represent the temperature of 

material emitting

• Emissivity weighted ion 

temperature is ~15keV around 

peak k-shell power.

• The material actually radiating has 

a relatively low ion temperature

With a highly structured pinch, different measurements 

can sample different things
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Plasma decelerating throughout stagnation, so motional 

contribution to line width gets smaller.  i.e FWHM gets smaller 

during x-ray pulse.  If this were interpreted as ion temperature it 

would look like the plasma has cooled from ~140keV to 80keV in 

the 2ns after peak power.

From comparison with measured K-shell power the calculated 

rise and fall are too slow, so need to refine calculations

Line width narrows significantly over K-shell Power 

Pulse
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• Emissivity weighted ion 

temperature is the average 

temperature of the material that 

is emitting

• Density weighted ion 

temperature better represents 

the temperature that determines 

the pressure and drives the 

dynamics – these differ by ~60% 
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Ion temperature of material emitting is not the same as 

the ion temperature that drives the dynamics
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Red=average electron temperature

Blue=emission weighted electron 

temperature
Lineout's through end on profiles integrated along z
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Emission diagnostic samples 

the electron temperature, 

then it does not capture the 

low density hot material that 

can dictate the emission 

process, but does not itself 

emit very strongly
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Emission diagnostics will only sample the areas that are 

emitting
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Red=emissivity weighted density

Black = average density
Lineout's through end on profiles integrated along z
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Similarly, emission features used to locate density may 

not represent the mass distribution 

At late times opaque regions will not contribute to 

emission, so we expect a discrepancy, but at early 

times an emission diagnostic preferentially 

samples emitting regions, so does not represent 

the mass distribution
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Summary

 K-shell emission predominantly comes from the 
inside surface of an imploding shell impacting hot, 
low density material assembled on axis

 Pinch is highly structured at stagnation, but 
integrated diagnostics do not necessarily represent 
this

 Large non-uniformities throughout a dynamic 
stagnation necessitate development and direct 
comparison of real and synthetic diagnostics so 
assumptions on plasma conditions are not 
introduced.




