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Motivation

« Numerous stochastic programming extensions to Algebraic Modeling
Languages (AMLs) have over been proposed over the last decade
— Useful and necessary, especially for creating extensive forms
* Modeling 1s not our objective here, but rather a necessary pre-requisite
* Our goals
1. Break down the barrier between modeling languages and solvers

2. Provide model-agnostic stochastic (integer) programming algorithms

3. Facilitate rapid prototyping, development, and extension of algorithms

. —
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Our Problem-Solving Objective

e Our “prime directive” is to solve large-scale stochastic programs
— Multiple stages (>=2)
— Integer decision variables in any stage
— Lots of scenarios (thousands to millions)

« Optimality is nice, but not realistic given these constraints and the

scale of problem we are interested in tackling

— QOur goal is to design practical, scalable, and high-performance
heuristics for the class of general stochastic program

. —
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Why Python? Why Open-Source?

e Python facilitates rapid prototyping and doesn’ t require a CS degree
— Important for modelers, OR grads, and general productivity

 Python ships with a huge number of very useful libraries, including
— Serialization, distributed computation, db/Excel interfaces, ...
— SciPy and NumPy

 Python introspection facilitates the development of generic algorithms
— If you don’ t know what this means, I can’ t tell you in 20 minutes

— But trust me — it’ s important!

 Why (noninfectious) open-source?

— We want the community to contribute, and we have customers that are
license-phobic and don’ t want to pay for third-party tools

: Sandi
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" Why Not Python?

* Reasons do exist, but not really good ones

—1Ifit’ s good enough for quantum chemistry, it’ s
good enough for operations research

* A great discussion topic for a break or the
conference banquet

. —
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PYOMO: PYthon Optimization Modeling Objects

2 PYOMO

An Open-Source Optimization Modeling Tool
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Modeling Capabilities =
- Abstract model definition - LP and MILP models Cé pgthon) - Pyomo modeling language
- Manage multiple model instances - Stochastic programming - Solver Interfaces

Coopr Capabilities

- Stochastic modeling extenslons - Modeling extensions - GUI front-end

Key Features

- Parallel solver execution - Extensible framework Coopr Resources

- Interface to many data sources - Portability - Coopr installer script - Wikl documentation
- Embedded In mod: ming lang - Examples - Trouble tickets

ey -
- Freely avallable . Unrestricted open source license - Malling lists

) TO LEARN MOREVISIT >>
e https://software.sandia.gov/pyomo
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Step #1: Formulate the Deterministic Model (1)

from coopr.pyvomo import =*

model=

Model ()

# Parameters

model
model
model

model

model

model

.CROPS=Set ()

. TOTAL ACREAGE=Param( within=PositiveReals)

. PriceQuota=Param( model .CROPS, within=PositiveReals)
model .
.SuperQuotaSellingPrice=Param( model . CROPS)

model .

SubQuotaSellingPrice=Param( model .CROPS, within=PositiveReals)

CattleFeedRequirement=Param( model .CROPS, \
within=NonNegativeReals)

.PurchasePrice=Param(model .CROPS, within=PositiveReals)
model .

. Yield=Param( model .CROPS, within=NonNegativeReals)

PlantingCostPerAcre=Param( model .CROPS, within=PositiveReals)

# Variables

model .

model

model .

model

Slide 7 ReferenceModel.py @ Sandia

DevotedAcreage=Var( model . CROPS, \
bounds=(0.0, model . TOTALACREAGE))

. QuantitySubQuotaSold=Var( model .CROPS, bounds=(0.0, None))

model .

QuantitySuperQuotaSold=Var( model .CROPS, bounds=(0.0, None))

QuantityPurchased=Var( model .CROPS, bounds=(0.0, None))

.FirstStageCost=Var ()
model .

SecondStageCost=Var ()

National
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Step #1: Formulate the Deterministic Model (2)

# Constraints
def total_acreage_rule(model):
return summation(model. DevotedAcreage) <= model . TOTALLACREAGE

model. ConstrainTotalAcreage=Constraint (rule=total_acreage_rule)

def cattle_feed_rule(i, model):
return model. CattleFeedRequirement [1] <= \
(model. Yield[i] * model. DevotedAcreage[i]) + \
model. QuantityPurchased [i] — \
model. QuantitySubQuotaSold [i] — \
model . QuantitySuperQuotaSold [ 1]
model . EnforceCattleFeedRequirement=Constraint ( model .CROPS, \
rule=cattle_feed_rule)

def limit_amount_sold_rule(i, model):
return model. QuantitySubQuotaSold[i] + \
model. QuantitySuperQuotaSold[i] <= \
(model. Yield[i] * model.DevotedAcreage[i])
model . LimitAmountSold=Constraint ( model . CROPS,

rule=limit_amount_sold_rule)

def enforce_quotas_rule(i, model):
return (0.0, model. QuantitySubQuotaSold[i], model.PriceQuota[i])
model . EnforceQuotas=Constraint ( model .CROPS, \

rule=enforce_quotas_rule)

Slide 8 ReferenceModel.py @ el
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| Step #1: Formulate the Deterministic Model (3)

# Stage—specific cost computations
def first_stage_cost_rule(model):
return model. FirstStageCost =
summation (model. PlantingCostPerAcre, model. DevotedAcreage)
model. ComputeFirstStageCost=Constraint (rule=first_stage_cost_rule)

def second_stage_cost_rule(model):
ex pr=summation ( model. PurchasePrice , model. QuantityPurchased)

expr —— summation(model. SubQuotaSellingPrice, \
model . QuantitySubQuotaSold)

expr ——= summation(model. SuperQuotaSellingPrice, \
model . QuantitySuperQuotaSold)

return (model. SecondStageCost — expr) = 0.0

model . ComputeSecondStageCost=Constraint (rule=second_stage_cost_rule)

# Objective
def total_cost_rule(model):

return (model. FirstStageCost + model. SecondStageCost )
model . Total_Cost_Objective=0Objective(rule=total_cost_rule , \

sense=minimize )

ReferenceModel.
Slide 9 / 4

Sandia
@ National
Laboratories



e
Step #2: Specify the Deterministic Model Data

set CROPS := WHEAT CORN SUGAR_BEETS ;

param TOTAL ACREAGE := 500

param PriceQuota := WHEAT 100000 CORN 100000 SUGAR_BEETS 6000
param SubQuotaSellingPrice := WHEAT 170 CORN 150 SUGARBEETS 36
param SuperQuotaSellingPrice := WHEAT 0 CORN 0 SUGARBEETS 10 ;
param CattleFeedRequirement := WHEAT 200 CORN 240 SUGAR_BEETS 0
param PurchasePrice := WHEAT 238 CORN 210 SUGARBEETS 100000
param PlantingCostPerAcre := WHEAT 150 CORN 230 SUGAR.BEETS 260

param Yield := WHEAT 3.0 CORN 3.6 SUGAR_BEETS 24 ;

» Can initialize an instance from ReferenceModel.dat
1. An AMPL .dat file
2. Excel

3. Raw Python

: Sandi
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Step #3: Specify the Scenario Tree

set Stages = FirstStage SecondStage
set Nodes := RootNode
Below AverageNode
AverageNode
AboveAverageNode
param NodeStage ::=— RootNode FirstStage
Below AverageNode SecondStage
AverageNode SecondStage
AboveAverageNode SecondStage ;
set Children [ RootNode] := BelowAverageNode
AverageNode
AboveAverageNode
param ConditionalProbability := RootNode 1.0
Below AverageNode 0.33333333
AverageNode 0.33333334
AboveAverageNode D-2iEaEiEaEEEEy ¢
set Scenarios = Below AverageScenario
AverageScenario
AboveAverageScenario
param ScenariolLeafNode = BelowAverageScenario BelowAverageNode
AverageScenario AverageNode

AboveAverageScenario AboveAverageNode ;

set StageVariables|[FirstStage] := Devoted Acreage [*] :

set StageVariables |[SecondStage] = QuantitySubQuotaSold [=]
QuantitySuperQuotaSold [ =]
QuantityPurchased [*] :

param StageCostVariable = FirstStage FirstStageCost
SecondStage SecondStageCost

Slide 11 ScenarioStructure.dat @ Sandia
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Step #4: Specify the Scenario Instance Data

* Two methods are available to specify scenario-specific data

— Scenario-based
— Node-based

* In the scenario-based approach, a single and complete .dat file 1s
specified for each individual scenario

— Redundant, but straightforward if computer-generated

* In the node-based approach, a single .dat file i1s specified for each
node in the scenario tree

— Maximally compact, but requires some book-keeping

. Sani
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Writing and Solving the Extensive Form (1)

* Now that you have a stochastic programming model in PySP...
» Step #1: Write the extensive form and pray that CPLEX can solve it
— Fantastic if 1t works

— But often it doesn’ t

 In PySP, the runef script 1s provided to both write and solve the
extensive form of a stochastic programming model

* The basic command-line:

runef —model—-directory=models \\
—instance—directory=scenariodata \\
—solve

. Sani
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Writing and Solving the Extensive Form (2)

 After solution, you get (in addition to other information):
Tree Nodes:

Slide 14

Name=RootNode

Stage=FirstStage

Variables:
DevotedAcreage [CORN]=80.0
DevotedAcreage [SUGAR BEETS]|=250.0
DevotedAcreage [WHEAT]=170.0

Name=A boveAverageNode

Stage=SecondStage

Variables:
QuantitySubQuotaSold [CORN]=48.0
QuantitySubQuotaSold [SUGAR_BEETS]|=6000.0
QuantitySubQuotaSold [WHEAT]=310.0

Name=AverageNode

Stage=SecondStage

Variables:
QuantitySubQuotaSold [SUGAR_BEETS]|=5000.0
QuantitySubQuotaSold [WHEAT]=225.0

Name=BelowAverageNode
Stage=SecondStage
Variables:

QuantitySubQuotaSold [SUGAR_BEETS|=4000.0

Sandia
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* We use decomposition!

: Sandi
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/ Progressive Hedging: A Review and/or Introduction

1. £:=0

2. For all s € S, ;rff" = argmin_(c-x + fo-vys) : (x,ys) € Oy
— 44

3. 7F .= (D> ecs Ps ds;z?gk))/ D e s ds
4. For all s € S, -'z(.rgk’) — p(;z‘.g“) — z(k)

ki=k+1

o

6. Foralls ¢ S. X k) . — argmin,,(c - x + w Ve 4 p/2 H;p _ (k-1) H2 + fo-ys)

(k) .
(x,ys) € Qg
7. k) = (D cs Ps dsgrgk))/ Y ces Ps ds

8. For all s € S, wh(f) = urgk_l) + p (;z;(f) — ;T?("’))

. 1—a)|S 5 — (1

10. If ¢ < €, then go to step 5. Otherwise, terminate.

National
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/'?ysp; Generic Progressive Hedging (1)

e If you don’ t care about the value of the penalty parameter p, you are
willing to take chances, and/or you have time to kill:

runph —model—-directory=models —instance—directory=scenariodata

If you think a global value of the penalty parameter will work:
— Add the argument “--default-rho=your-favorite-value”
More likely, you want to implement variable-specific strategies:

— Add the argument “--rho-cfgfile=myrhostrategy.cfg”
myrhostrategy.cfg:

model_instance = self._model_instance # syntatic sugar

for i in model_instance.ProductSizes:
self.setRhoAllScenarios (model_instance. ProduceSizeFirstStage |
model_instance . SetupCosts[i] = 0.001)
[
]

1

s \\
self .setRhoAllScenarios (model_instance . NumProducedFirstStage[i], \\
model_instance. UnitProductionCosts [i
for j in model_instance.ProductSizes:
if j <= i:
self.setRhoAllScenarios (model_instance. NumUnitsCutFirstStage [i,]j].
model_instance. UnitReductionCost = 0.001)

: Sandi
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PySP: Generic Progressive Hedging (2)

» The quadratic penalty term in PH is computationally problematic
— Quadratic MIP solvers can be 10x or slower than MIP solvers

— Open-source quadratic solvers are (almost) non-existent

« PySP provides automatic, generic linearization mechanisms
— Requires specification of variable lower and upper bounds

— Specify number of breakpoints, distribution strategy

« PySP provides for various termination mechanisms

— Scenario solution homogeneity (various metrics)
— Number of converged variables
— Hybrids

. —
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PySP: Generic Progressive Hedging (3)

* In the presence of integers, PH 1s no longer guaranteed to converge

— Cycling behavior

— Stagnation behavior
 To facilitate PH convergence for mixed-integer stochastic programs,

PySP provides various configurable mechanisms
— “Watson-Woodruff” Extensions
» Computational Management Science (To appear)

— Implemented via a generic plug-in callback framework
 Capabilities include:

— Variable fixing

— Cycle detection

— Cycle breaking

— Slamming

Slide 19 @ ﬁg%gﬁal
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Under the Hood: Facilitating Capabilities in Python

* Cool Python Feature #1
— Ability to add attributes to objects on-the-fly
— E.g., my var.my personal attribute = 1234
— AMPL-ish 1n the ability to define on-the-fly suffixes
— Important: The objects don’ t need to “know” about these attributes

 Facilitates augmentation of Pyomo models with algorithmic data

* Cool Python Feature #2
— By-name access to object attributes
— E.g., a_var=getattr(my model, “VariableOfInterest” )
— E.g., setattr(my_model,” VariableOfInterest” ,modified variable)
— Facilitates linkage of user-specified string data to Pyomo model objects

 Also very cool: You can serialize any object in Python, including PH

. Sond
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PySP: Benchmark Problems and R&D Models

 Currently available (with corresponding and validated Pyomo models)

— Birge and Louveaux’ s farmer problem (continuous 2-stage)
— SIZES (2-stage with integer variables)
— Stochastic network design (2-stage with integer variables)

— Forestry harvesting problem (4-stage with integer variables)

 Available upon request

— Wind farm network design

— Stochastic unit commitment

— Biofuel network design

— @Grid generation capacity expansion

— Numerous others in the works...

. Soni
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he Impact of PySP: Biofuel Infrastructure and Logistics Planning

Biomass Harvest Conversion to Hydrogen Hydrogen Distribution Refueling Station
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Example of PH Impact:

Three modes of Hydrogen Delivery:
e Extensive form solve time: >20K seconds Pipeline

Compressed Gas Truck

* PH solve time: 2K seconds Liquid Truck

Slide courtesy of Professor YueYue Fan (UC Davis) lies
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PySP, Distributed Computation, and Progressive Hedging

* Decomposition algorithms for solving multi-stage stochastic
mixed-integer programs are “naturally” parallelizable

— L-shaped method and Progressive Hedging are particularly
amenable

* PySP supports simple master-slave parallelism
— Python pickle module for serialization
— PYRO: Python Remote Objects

* Scalability to O(1000) scenarios and processors
— Academics don’ t have commercial solver license issues!

— For non-academics, prototype EC2/Gurobi deployment

. —
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Scenario Sampling: How Many is Enough?

e Discretization of the scenario tree is “standard” in stochastic programming
— With few exceptions, no mention of solution or objective stability

— Don’t trust anyone who doesn’t show you a confidence interval

» Two general approaches in the literature

— Has the solution converged? (Sample Average Approximation)
— Has the objective converged? (Multiple Replication Procedure)

» Formal question we are concerned with

— What is the probability that ¥ s objective function value is suboptimal by more
than o%?

* Initial generic implementation of MRP available in PySP

— Has already identified disturbing results, in both the “too few samples” and
“way too many samples’ directions

: Sandi
Slide 24 @ L,
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| Mean versus Risk? A Matter of Taste!

Worst-Case
-
Al
(]
0
c
g (1 -01) Percentile
A
< A
\4
|
Mean Cost / T
Conditional Value-at-Risk Value at Risk Tail-Conditional
(CVaR) is a linear (VaR) Expectation (TCE)
approximation of TCE

. —
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/‘iogressive Hedging and Conditional Value-at-Risk
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» Scenario-based decomposition of Conditional Value-at-Risk models is
conceptually straightforward (Schultz and Tiedemann 2006)

Proposition 5.1. Assume that (v is discrete with finitely many scenarios hy, . . ., hy and
corresponding probabilities my, ... ,my. Let a € (0, 1). Then the stochastic program
min{Qcvar, (¥) : x € X} (11)

can be equivalently restated as

J
, I
min n+ Z?Tj vji @ Wy; + W'_\‘}- = h; —Tx,
X, v,y | —« P

vj = clx + (?IT.\‘j + (I’T.\‘} — 1, (12)

: . m
xeX, nelR, yjelZl,

N, m ¢ __
.\jeRjL. vj € Ry, j—l....../}.

 But

— Computational issues are largely unexplored

: Sandi
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electing Scenarios to Ignore in Stochastic Optimization:
Advances in Probabilistic Integer Programming Solvers

Ignoring the 100-year Flood Capacitated Storage Force-on-Force “Anomalies”
(Infrastructure Planning) (US Army Future Combat Systems) (Mission Planning)

Manned Systems Unmanned Air Vehicles

s et o &
L 5 - 4
Infantry Carrier Command and Class|  Classll Ci

Vehicle Control Vehicle

Central Theme: The Need to Ignore a Small Fraction a of Scenarios During Optimization

minimize c-x4) oPs(fs 'l/\) (E)  Results for network design:

subject to: (z, ) € Qs, Vse{S:ds=1} - 2-8% better solutions
deqpq ds > (1-a) than CPLEX, 1440m
d, € {0,1}, Vs S versus ~10m

Impact: Excellent heuristic for solving probabilistic integer programs
Key demonstration on large-scale, real-world problems

Slide 27 Watson/Wets/Woodruff — INFORMS JOC (To appear) National
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PySP: Licensing, Availability, and Distribution

* Open-Source, BSD licensing
— Non-infectious, use-at-will

* Dependencies
— Subversion (not required, but rather useful)
— Python! (2.5, 2.6, or 2.7)

* To get started, visit:

— https://software.sandia.gov/trac/coopr

* Any questions?
— Contact us:
 jwatson@sandia.gov

e dlwoodruff@ucdavis.edu

Slide 28
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Conclusions

« We believe there are significant benefits to breaking down the
barrier between modeling languages and solvers

— Facilitated by various Python language features

 PySP provides a “case-study’ illustrating that generic stochastic integer
programming solvers case be rapidly prototyped and modified

— Works for continuous cases as well, but that isn’ t as interesting

» Software 1s open-source, freely available, use-how-you-want-to.
* But:
— We would like to work with people to integrate enhancements

— And expand our suite of algorithms and test problems

Slide 29 @ ﬁg%gﬁal
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Questions?

* We would like to formally acknowledge assistance from:
— Bill Hart (Sandia)
— Carl Laird and his research group (Texas A&M)
— Patrick Steele (William and Mary)
— Kevin Hunter (North Carolina State University)

— Andres Weintraub and his research group (University
of Chile)

—Yueyue Fan and her research group (University of
California Davis)

—Roger Wets (University of California Davis)
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PySP: For More Information...!

Hedging Against Uncertainty:
A Modeling Language and Solver Library

You Plan i Stuff Happens You Adjust More Stuff Happens

.'l"ﬁ

jipYDMo PySP: Stochastic Programming in Python $YcooPR

Multi-Stage Planning for What We Do How We Do It:

Uncertain Environments - Mixed decisior variables
- « Continuous
- Explicitly capture recourse . Integer/Binary

- Uncertainty modeling framework - General multi-stage o T

- Integrated solver strategies - Stochastic programming - SMP and cluster parallelism
- Integrated high-level language support
« Multl-platform, unrestrictive license
- Open source, actively supported by Sandia
- Cost confidence intgervals - Co-Managed by Sandla and COIN-OR

UCDAVIS

Sandla
SMENAGCRIN™  TO LEARN MORKEESIT > https://software.sandia.gov/trac/coopr/wiki/PyS @ T —

Ideas into Action




