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Motivation 

• Numerous stochastic programming extensions to Algebraic Modeling 
Languages (AMLs) have  over been proposed over the last decade 

–  Useful and necessary, especially for creating extensive forms 

• Modeling is not our objective here, but rather a necessary pre-requisite 

• Our goals 

1.  Break down the barrier between modeling languages and solvers 

2.  Provide model-agnostic stochastic (integer) programming algorithms 

3.  Facilitate rapid prototyping, development, and extension of algorithms 
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Our Problem-Solving Objective 

• Our “prime directive” is to solve large-scale stochastic programs 

–  Multiple stages (>=2) 

–  Integer decision variables in any stage 

–  Lots of scenarios (thousands to millions) 

• Optimality is nice, but not realistic given these constraints and the 
scale of problem we are interested in tackling 

–  Our goal is to design practical, scalable, and high-performance 
heuristics for the class of general stochastic program 



Why Python? Why Open-Source? 
•  Python facilitates rapid prototyping and doesn’t require a CS degree 

–  Important for modelers, OR grads, and general productivity 
 
•  Python ships with a huge number of very useful libraries, including 

–  Serialization, distributed computation, db/Excel interfaces, … 
–  SciPy and NumPy 

•  Python introspection facilitates the development of generic algorithms 
–  If you don’t know what this means, I can’t tell you in 20 minutes 
–  But trust me – it’s important!  

• Why (noninfectious) open-source? 
–  We want the community to contribute, and we have customers that are 

license-phobic and don’t want to pay for third-party tools 
Slide 4	





Why Not Python? 

• Reasons do exist, but not really good ones 
– If it’s good enough for quantum chemistry, it’s 

good enough for operations research 

• A great discussion topic for a break or the     
conference banquet 
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PYOMO: PYthon Optimization Modeling Objects 
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Step #1: Formulate the Deterministic Model (1) 
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 Birge and Louveaux’s (1997) Farmer Example 
ReferenceModel.py 



Step #1: Formulate the Deterministic Model (2) 
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 ReferenceModel.py 



Step #1: Formulate the Deterministic Model (3) 
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ReferenceModel.py 



Step #2: Specify the Deterministic Model Data  
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•  Can initialize an instance from 
1.  An AMPL .dat file 
2.  Excel 
3.  Raw Python 

ReferenceModel.dat 



Step #3: Specify the Scenario Tree 
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 ScenarioStructure.dat 



Step #4: Specify the Scenario Instance Data 

•  Two methods are available to specify scenario-specific data 
–  Scenario-based 
–  Node-based 

•  In the scenario-based approach, a single and complete .dat file is 
specified for each individual scenario 

–  Redundant, but straightforward if computer-generated 

•  In the node-based approach, a single .dat file is specified for each 
node in the scenario tree 

–  Maximally compact, but requires some book-keeping 
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Writing and Solving the Extensive Form (1) 
• Now that you have a stochastic programming model in PySP… 

•  Step #1: Write the extensive form and pray that CPLEX can solve it 
–  Fantastic if it works 
–  But often it doesn’t 

•  In PySP, the runef script is provided to both write and solve the 
extensive form of a stochastic programming model 

•  The basic command-line: 
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• After solution, you get (in addition to other information): 
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Writing and Solving the Extensive Form (2) 



What Happens if the Extensive Form is Too Difficult? 

• We use decomposition! 

Slide 15	





Slide 16	



Progressive Hedging: A Review and/or Introduction 

Rockafellar and Wets (1991) 



PySP: Generic Progressive Hedging (1) 

•  If you don’t care about the value of the penalty parameter ρ, you are 
willing to take chances, and/or you have time to kill: 

 
•  If you think a global value of the penalty parameter will work: 

–  Add the argument  “--default-rho=your-favorite-value” 
• More likely, you want to implement variable-specific strategies: 

–  Add the argument “--rho-cfgfile=myrhostrategy.cfg” 
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myrhostrategy.cfg: 



PySP: Generic Progressive Hedging (2) 

•  The quadratic penalty term in PH is computationally problematic 
–  Quadratic MIP solvers can be 10x or slower than MIP solvers 
–  Open-source quadratic solvers are (almost) non-existent 

•  PySP provides automatic, generic linearization mechanisms  
–  Requires specification of variable lower and upper bounds 
–  Specify number of breakpoints, distribution strategy 

•  PySP provides for various termination mechanisms 
–  Scenario solution homogeneity (various metrics) 
–  Number of converged variables 
–  Hybrids 
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PySP: Generic Progressive Hedging (3) 

•  In the presence of integers, PH is no longer guaranteed to converge 
–  Cycling behavior 
–  Stagnation behavior 

•  To facilitate PH convergence for mixed-integer stochastic programs, 
PySP provides various configurable mechanisms 

–  “Watson-Woodruff” Extensions 
• Computational Management Science (To appear) 

–  Implemented via a generic plug-in callback framework 
•  Capabilities include: 

–  Variable fixing 
–  Cycle detection 
–  Cycle breaking 
–  Slamming  
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Under the Hood: Facilitating Capabilities in Python 

•  Cool Python Feature #1 
–  Ability to add attributes to objects on-the-fly 
–  E.g., my_var.my_personal_attribute = 1234 
–  AMPL-ish in the ability to define on-the-fly suffixes 
–  Important: The objects don’t need to “know” about these attributes 

•  Facilitates augmentation of Pyomo models with algorithmic data 

•  Cool Python Feature #2 
–  By-name access to object attributes 
–  E.g., a_var=getattr(my_model, “VariableOfInterest”) 
–  E.g., setattr(my_model,”VariableOfInterest”,modified_variable) 
–  Facilitates linkage of user-specified string data to Pyomo model objects 

•  Also very cool: You can serialize any object in Python, including PH 
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PySP: Benchmark Problems and R&D Models 

•  Currently available (with corresponding and validated Pyomo models) 

–  Birge and Louveaux’s farmer problem (continuous 2-stage) 
–  SIZES (2-stage with integer variables) 
–  Stochastic network design (2-stage with integer variables) 
–  Forestry harvesting problem (4-stage with integer variables) 

•  Available upon request 

–  Wind farm network design 
–  Stochastic unit commitment 
–  Biofuel network design 
–  Grid generation capacity expansion 
–  Numerous others in the works… 
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The Impact of PySP: Biofuel Infrastructure and Logistics Planning 

Slide courtesy of Professor YueYue Fan (UC Davis) 

Example of PH Impact: 
•  Extensive form solve time: >20K seconds 
•  PH solve time: 2K seconds 



PySP, Distributed Computation, and Progressive Hedging 

• Decomposition algorithms for solving multi-stage stochastic 
mixed-integer programs are “naturally” parallelizable 

– L-shaped method and Progressive Hedging are particularly 
amenable 

• PySP supports simple master-slave parallelism 
– Python pickle module for serialization 
– PYRO: Python Remote Objects 

• Scalability to O(1000) scenarios and processors 
– Academics don’t have commercial solver license issues! 
– For non-academics, prototype EC2/Gurobi deployment  
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Scenario Sampling: How Many is Enough? 
•  Discretization of the scenario tree is “standard” in stochastic programming 

–  With few exceptions, no mention of solution or objective stability 
–  Don’t trust anyone who doesn’t show you a confidence interval 

•  Two general approaches in the literature 
–  Has the solution converged? (Sample Average Approximation) 
–  Has the objective converged? (Multiple Replication Procedure) 

•  Formal question we are concerned with 
–  What is the probability that   ’s objective function value is suboptimal by more 

than α%? 

•  Initial generic implementation of MRP available in PySP 
–  Has already identified disturbing results, in both the “too few samples” and 
“way too many samples” directions 
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Mean versus Risk? A Matter of Taste! 
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Conditional Value-at-Risk 
(CVaR) is a linear 
approximation of TCE 

Cost 



Progressive Hedging and Conditional Value-at-Risk 
•  Scenario-based decomposition of Conditional Value-at-Risk models is 

conceptually straightforward (Schultz and Tiedemann 2006) 

•  But 
–  Computational issues are largely unexplored 
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Selecting Scenarios to Ignore in Stochastic Optimization: 
Advances in Probabilistic Integer Programming Solvers 

Capacitated Storage 
(US Army Future Combat Systems) 

Ignoring the 100-year Flood 
(Infrastructure Planning) 

Force-on-Force “Anomalies” 
(Mission Planning) 

Central Theme: The Need to Ignore a Small Fraction α of Scenarios During Optimization 

Impact: Excellent heuristic for solving probabilistic integer programs 
Key demonstration on large-scale, real-world problems 

Results for network design:  
- 2-8% better solutions 
than CPLEX, 1440m 
versus ~10m 

Scalable Heuristics for Stochastic Programming with Scenario Selection  
Watson/Wets/Woodruff – INFORMS JOC (To appear) 



PySP: Licensing, Availability, and Distribution 

•  Open-Source, BSD licensing 
–  Non-infectious, use-at-will 

•  Dependencies 
–  Subversion (not required, but rather useful) 
–  Python! (2.5, 2.6, or 2.7) 

•  To get started, visit: 
–  https://software.sandia.gov/trac/coopr 

•  Any questions? 
–  Contact us: 

•  jwatson@sandia.gov 
•  dlwoodruff@ucdavis.edu 
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Conclusions 

• We believe there are significant benefits to breaking down the               
barrier between modeling languages and solvers 

–  Facilitated by various Python language features 

•  PySP provides a “case-study” illustrating that generic stochastic integer 
programming solvers case be rapidly prototyped and modified 

–  Works for continuous cases as well, but that isn’t as interesting 

•  Software is open-source, freely available, use-how-you-want-to.  
•  But: 

–  We would like to work with people to integrate enhancements 
–  And expand our suite of algorithms and test problems 
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Questions? 

• We would like to formally acknowledge assistance from: 
– Bill Hart (Sandia) 
– Carl Laird and his research group (Texas A&M) 
– Patrick Steele (William and Mary) 
– Kevin Hunter (North Carolina State University) 
– Andres Weintraub and his research group (University 

of Chile) 
– Yueyue Fan and her research group (University of 

California Davis) 
– Roger Wets (University of California Davis) 



PySP: For More Information…! 
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