
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned !
subsidiary of Lockheed Martin Corporation, for the United States Department of Energy’s National Nuclear !

Security Administration under contract DE-AC04-94AL85000.!

PySP: Modeling and Solving Stochastic Linear and
Mixed-Integer Programs in Python

Jean-Paul Watson
jwatson@sandia.gov

Discrete Math and Complex Systems Department
Sandia National Laboratories USA

David L. Woodruff

dlwoodruff@ucdavis.edu
Graduate School of Management

University of California, Davis USA

SAND2011-4958C

Motivation

• Numerous stochastic programming extensions to Algebraic Modeling
Languages (AMLs) have over been proposed over the last decade

–  Useful and necessary, especially for creating extensive forms

• Modeling is not our objective here, but rather a necessary pre-requisite

• Our goals

1.  Break down the barrier between modeling languages and solvers

2.  Provide model-agnostic stochastic (integer) programming algorithms

3.  Facilitate rapid prototyping, development, and extension of algorithms

Slide 2	

Slide 3	

Our Problem-Solving Objective

• Our “prime directive” is to solve large-scale stochastic programs

–  Multiple stages (>=2)

–  Integer decision variables in any stage

–  Lots of scenarios (thousands to millions)

• Optimality is nice, but not realistic given these constraints and the
scale of problem we are interested in tackling

–  Our goal is to design practical, scalable, and high-performance
heuristics for the class of general stochastic program

Why Python? Why Open-Source?
•  Python facilitates rapid prototyping and doesn’t require a CS degree

–  Important for modelers, OR grads, and general productivity

•  Python ships with a huge number of very useful libraries, including

–  Serialization, distributed computation, db/Excel interfaces, …
–  SciPy and NumPy

•  Python introspection facilitates the development of generic algorithms
–  If you don’t know what this means, I can’t tell you in 20 minutes
–  But trust me – it’s important!

• Why (noninfectious) open-source?
–  We want the community to contribute, and we have customers that are

license-phobic and don’t want to pay for third-party tools
Slide 4	

Why Not Python?

• Reasons do exist, but not really good ones
– If it’s good enough for quantum chemistry, it’s

good enough for operations research

• A great discussion topic for a break or the
conference banquet

Slide 5	

PYOMO: PYthon Optimization Modeling Objects

Slide 6	

Step #1: Formulate the Deterministic Model (1)

Slide 7	

 Birge and Louveaux’s (1997) Farmer Example
ReferenceModel.py

Step #1: Formulate the Deterministic Model (2)

Slide 8	

 ReferenceModel.py

Step #1: Formulate the Deterministic Model (3)

Slide 9	

ReferenceModel.py

Step #2: Specify the Deterministic Model Data

Slide 10	

•  Can initialize an instance from
1.  An AMPL .dat file
2.  Excel
3.  Raw Python

ReferenceModel.dat

Step #3: Specify the Scenario Tree

Slide 11	

 ScenarioStructure.dat

Step #4: Specify the Scenario Instance Data

•  Two methods are available to specify scenario-specific data
–  Scenario-based
–  Node-based

•  In the scenario-based approach, a single and complete .dat file is
specified for each individual scenario

–  Redundant, but straightforward if computer-generated

•  In the node-based approach, a single .dat file is specified for each
node in the scenario tree

–  Maximally compact, but requires some book-keeping

Slide 12	

Writing and Solving the Extensive Form (1)
• Now that you have a stochastic programming model in PySP…

•  Step #1: Write the extensive form and pray that CPLEX can solve it
–  Fantastic if it works
–  But often it doesn’t

•  In PySP, the runef script is provided to both write and solve the
extensive form of a stochastic programming model

•  The basic command-line:

Slide 13	

• After solution, you get (in addition to other information):

Slide 14	

Writing and Solving the Extensive Form (2)

What Happens if the Extensive Form is Too Difficult?

• We use decomposition!

Slide 15	

Slide 16	

Progressive Hedging: A Review and/or Introduction

Rockafellar and Wets (1991)

PySP: Generic Progressive Hedging (1)

•  If you don’t care about the value of the penalty parameter ρ, you are
willing to take chances, and/or you have time to kill:

•  If you think a global value of the penalty parameter will work:

–  Add the argument “--default-rho=your-favorite-value”
• More likely, you want to implement variable-specific strategies:

–  Add the argument “--rho-cfgfile=myrhostrategy.cfg”

Slide 17	

myrhostrategy.cfg:

PySP: Generic Progressive Hedging (2)

•  The quadratic penalty term in PH is computationally problematic
–  Quadratic MIP solvers can be 10x or slower than MIP solvers
–  Open-source quadratic solvers are (almost) non-existent

•  PySP provides automatic, generic linearization mechanisms
–  Requires specification of variable lower and upper bounds
–  Specify number of breakpoints, distribution strategy

•  PySP provides for various termination mechanisms
–  Scenario solution homogeneity (various metrics)
–  Number of converged variables
–  Hybrids

Slide 18	

PySP: Generic Progressive Hedging (3)

•  In the presence of integers, PH is no longer guaranteed to converge
–  Cycling behavior
–  Stagnation behavior

•  To facilitate PH convergence for mixed-integer stochastic programs,
PySP provides various configurable mechanisms

–  “Watson-Woodruff” Extensions
• Computational Management Science (To appear)

–  Implemented via a generic plug-in callback framework
•  Capabilities include:

–  Variable fixing
–  Cycle detection
–  Cycle breaking
–  Slamming

Slide 19	

Under the Hood: Facilitating Capabilities in Python

•  Cool Python Feature #1
–  Ability to add attributes to objects on-the-fly
–  E.g., my_var.my_personal_attribute = 1234
–  AMPL-ish in the ability to define on-the-fly suffixes
–  Important: The objects don’t need to “know” about these attributes

•  Facilitates augmentation of Pyomo models with algorithmic data

•  Cool Python Feature #2
–  By-name access to object attributes
–  E.g., a_var=getattr(my_model, “VariableOfInterest”)
–  E.g., setattr(my_model,”VariableOfInterest”,modified_variable)
–  Facilitates linkage of user-specified string data to Pyomo model objects

•  Also very cool: You can serialize any object in Python, including PH

Slide 20	

PySP: Benchmark Problems and R&D Models

•  Currently available (with corresponding and validated Pyomo models)

–  Birge and Louveaux’s farmer problem (continuous 2-stage)
–  SIZES (2-stage with integer variables)
–  Stochastic network design (2-stage with integer variables)
–  Forestry harvesting problem (4-stage with integer variables)

•  Available upon request

–  Wind farm network design
–  Stochastic unit commitment
–  Biofuel network design
–  Grid generation capacity expansion
–  Numerous others in the works…

Slide 21	

The Impact of PySP: Biofuel Infrastructure and Logistics Planning

Slide courtesy of Professor YueYue Fan (UC Davis)

Example of PH Impact:
•  Extensive form solve time: >20K seconds
•  PH solve time: 2K seconds

PySP, Distributed Computation, and Progressive Hedging

• Decomposition algorithms for solving multi-stage stochastic
mixed-integer programs are “naturally” parallelizable

– L-shaped method and Progressive Hedging are particularly
amenable

• PySP supports simple master-slave parallelism
– Python pickle module for serialization
– PYRO: Python Remote Objects

• Scalability to O(1000) scenarios and processors
– Academics don’t have commercial solver license issues!
– For non-academics, prototype EC2/Gurobi deployment

Slide 23	

Scenario Sampling: How Many is Enough?
•  Discretization of the scenario tree is “standard” in stochastic programming

–  With few exceptions, no mention of solution or objective stability
–  Don’t trust anyone who doesn’t show you a confidence interval

•  Two general approaches in the literature
–  Has the solution converged? (Sample Average Approximation)
–  Has the objective converged? (Multiple Replication Procedure)

•  Formal question we are concerned with
–  What is the probability that ’s objective function value is suboptimal by more

than α%?

•  Initial generic implementation of MRP available in PySP
–  Has already identified disturbing results, in both the “too few samples” and
“way too many samples” directions

Slide 24	

x

Mean versus Risk? A Matter of Taste!

Slide 25	

Conditional Value-at-Risk
(CVaR) is a linear
approximation of TCE

Cost

Progressive Hedging and Conditional Value-at-Risk
•  Scenario-based decomposition of Conditional Value-at-Risk models is

conceptually straightforward (Schultz and Tiedemann 2006)

•  But
–  Computational issues are largely unexplored

Slide 26	

Slide 27	

Selecting Scenarios to Ignore in Stochastic Optimization:
Advances in Probabilistic Integer Programming Solvers

Capacitated Storage
(US Army Future Combat Systems)

Ignoring the 100-year Flood
(Infrastructure Planning)

Force-on-Force “Anomalies”
(Mission Planning)

Central Theme: The Need to Ignore a Small Fraction α of Scenarios During Optimization

Impact: Excellent heuristic for solving probabilistic integer programs
Key demonstration on large-scale, real-world problems

Results for network design:
- 2-8% better solutions
than CPLEX, 1440m
versus ~10m

Scalable Heuristics for Stochastic Programming with Scenario Selection
Watson/Wets/Woodruff – INFORMS JOC (To appear)

PySP: Licensing, Availability, and Distribution

•  Open-Source, BSD licensing
–  Non-infectious, use-at-will

•  Dependencies
–  Subversion (not required, but rather useful)
–  Python! (2.5, 2.6, or 2.7)

•  To get started, visit:
–  https://software.sandia.gov/trac/coopr

•  Any questions?
–  Contact us:

•  jwatson@sandia.gov
•  dlwoodruff@ucdavis.edu
 Slide 28	

Conclusions

• We believe there are significant benefits to breaking down the
barrier between modeling languages and solvers

–  Facilitated by various Python language features

•  PySP provides a “case-study” illustrating that generic stochastic integer
programming solvers case be rapidly prototyped and modified

–  Works for continuous cases as well, but that isn’t as interesting

•  Software is open-source, freely available, use-how-you-want-to.
•  But:

–  We would like to work with people to integrate enhancements
–  And expand our suite of algorithms and test problems

Slide 29	

Slide 30	

Questions?

• We would like to formally acknowledge assistance from:
– Bill Hart (Sandia)
– Carl Laird and his research group (Texas A&M)
– Patrick Steele (William and Mary)
– Kevin Hunter (North Carolina State University)
– Andres Weintraub and his research group (University

of Chile)
– Yueyue Fan and her research group (University of

California Davis)
– Roger Wets (University of California Davis)

PySP: For More Information…!

Slide 31	

