
GPU Accelerated Microarray Data Analysis Using
Random Matrix Theory

Joey Ingram
Information Engineering Department

Sandia National Laboratories*

Albuquerque, NM 87111, USA
Email: jbingra@sandia.gov

Mengxia Zhu
Department of Computer Science

Southern Illinois University
Carbondale, IL 62901, USA

Email: mzhu@cs.siu.edu

Frackson Mumba
Department of Curriculum & Instruction

Southern Illinois University
Carbondale, IL 62901, USA

Email: frankson@siu.edu

Abstract—Recent advances in high-throughput genomic tech-
nology, such as microarrays, usually produce vast amounts
of gene expression data under many experimental conditions.
Analyzing such data is often difficult due to the colossal data
size and the intensive computing involved. In addition, many
existing analysis tools often require the inference of experienced
analysts and subjective judgments. In this paper, we developed
a parallel approach based on Random Matrix Theory (RMT)
to generate transcription networks using Graphical Processing
Units (GPUs). Recently, GPUs have been redesigned into a more
unified architecture, which has allowed them to be used more
readily in general purpose computing. This architectural ad-
vancement has resulted in GPUs becoming easily programmable
parallel processors with performance that is vastly superior to
CPUs. Our GPU-based approach makes automated microarray
data analysis faster, more accurate and noise resistant without
engaging remote high performance computing facilities, such as
a cluster or supercomputer. The implementation moves some
computationally intensive tasks, such as the calculations of
Pearson correlation coefficients, tridiagonal reduction, backtrans-
formation of eigenvectors, and orthogonal rotation, to the GPU.
Experimental results on real microarray datasets show that our
GPU implementation runs faster than a CPU version using highly
optimized LAPACK routines. The runtime speedup gets higher as
the number of genes and sample points in a microarray dataset
increases.

I. INTRODUCTION

Over the past three decades, there has been a significant
increase in genomic research. This increase has led to vari-
ous developments in high-throughput genomic technologies,
including microarrays. A microarray is simply a dataset that
contains several hundred sample points for thousands or tens of
thousands of genes, which are subject to a noisy environment.
These microarrays, along with sequence similarity and chro-
mosomal proximity, can be used to cluster these genes, with
genes in the same cluster generally being used for a certain
physiological function or being a part of a particular molecular
complex. The clustering of such genes can then help guide
researchers in such areas as protein-protein interactions and
subcellular localizations, which can lead to faster and more
accurate genomic research.

* Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

However, generating meaningful functional models from
genomic data is very challenging due to the nature of bi-
ological datasets and algorithmic difficulties for optimality.
Researchers have proposed many techniques implementing
various methods, which include Boolean networks, Bayesian
networks, differential equation-based networks, k-means clus-
tering, hierarchical clustering, self-organizing maps (SOM),
and many others. Unfortunately, most of these techniques
require researchers to make various decisions during the imple-
mentation or construction process that introduces subjectivity
(e.g. parameter selection). Some of these techniques are also
very sensitive to noise or may not find an optimal global
solution. Furthermore, many of these implementations cannot
handle large-scale datasets efficiently due to limited available
memory and sequential implementation [16].

Nowadays, the GPU is a highly programmable parallel
processor with arithmetic and memory performance that is
vastly superior to multi-core CPUs [12]. The performance
achieved by GPUs is not accomplished using different hard-
ware components as in multi-core CPUs; instead, it is accom-
plished by taking the inherent design of the GPU to massive
scales. A multi-core CPU replicates ALUs, control logic, and
execution contexts into independent cores in order to increase
throughput. Instruction streams are executed on each core
in parallel. Currently, most multi-core CPUs generally have
between two and eight cores. In contrast, GPU designs can
have upward of thirty cores and increase performance even
further by using floating-point ALUs and single instruction
multiple data (SIMD) processing. The efficiency of SIMD
processing allows the ALUs to be densely packed with many
cores. GPUs also use hardware multithreading to hide memory
access and instruction fetching latencies. This design allows
GPUs to perform hundreds of gigaflops faster than multi-core
CPUs [4].

Meanwhile, since the release of high-level programming
languages for GPUs, such as CUDA, many researchers have
begun using GPUs for general purpose computing (GPGPU).
Many higher-level algorithms and applications that have taken
advantage of the computational power of the GPU have
involved a vast amount of subject areas, such as sorting,
searching, database queries, solving differential equations,
linear algebra [12], matrix-vector multiplication [5], seismic

SAND2011-4882C

modeling, neural networks, magnetohydrodynamics, signal
processing, astrophysics [11], and many others.

This paper proposes the design and implementation to con-
struct and analyze various aspects of transcriptional networks
based on RMT [16] using GPUs. No human inference or
subjectivity is involved, and a relatively high level of noise,
which is inherent to most biological datasets, is removed
before clustering is conducted. In our previously published
article, our RMT-based approach was applied to two datasets:
(i) a yeast cycle microarray dataset [15] with about 2,500 genes
and 79 samples, and (ii) a human liver cancer microarray
dataset [7] with about 20,000 genes and 207 samples, with
good clustering results conforming to previous literature [16].
Thus, the effectiveness of this approach was verified.

However, since our previous parallel RMT program contains
some packages that need to be run on a Linux cluster or
supercomputer to handle large datasets, it is not convenient and
straightforward for ordinary users to deal with the remote HPC
facilities. In addition, the computing cycles of a supercomputer
are a limited resource and may not be immediately allocated
when requested. We believe that GPU-based bioinformatics
tools will be a promising and convenient computing paradigm
for computational biologists to explore in the future due to its
performance, convenience, and cost-effectiveness.

II. GPU ARCHITECTURE

Historically, GPUs only excelled at three-dimensional
graphics processing, and trying to program a GPU for general
purpose computing was difficult and time-consuming. This
difficulty was a result of the GPU being a fixed-function
processor built around a graphics pipeline [12]. This pipeline
contained fixed-function stages that performed API-specific
operations and programmable stages whose behavior was
defined by application code.

Traditionally, these stages were separated due to the vastly
different instruction sets, and some aspects were only con-
figurable, not programmable. Another downside was that the
programmer did not have direct access to the programmable
units, but could only access them at an intermediate step along
the graphics pipeline.

Eventually, the stages started to increase in functionality,
and their instruction sets started to converge. Therefore, GPU
architects decided to change the strict task-parallel pipeline
to a more unified architecture, in which all programmable
units in the pipeline share a single programmable hardware
unit, which allowed the GPU to exploit both task and data
parallelism. Since this architecture allowed the programmer
direct access to the programmable units, there was a demand
for a new programming model. With the old architecture,
programmers had to use the graphics APIs even if they were
trying to create a program for general purpose computing.
With the unified architecture, programmers wanted a higher-
level C-like programming language that would abstract the
graphics portions of the GPU. This led to languages such as
Brook, Microsoft’s Accelerator, AMD’s HAL and CAL, and

NVIDIA’s CUDA. The design of the GPU is typically well-
suited for applications with the following characteristics [12]:

1) Computational requirements are large. Numerous
computations must be performed as fast as possible.

2) Parallelism is substantial. The application has to be
well-suited for parallelism; otherwise, it cannot fully
take advantage of the design of the GPU.

3) Throughput is more important than latency. The
delay of an individual operation is less important than
the amount of calculations that can be performed in a
given time.

Our random matrix theory approach for clustering genes
using microarray data fits these characteristics. Also, since
the same operations are performed on hundreds of samples for
thousands of genes, the approach also fits the SIMD processing
model very well.

A. Compute Unified Device Architecture (CUDA)

Recently, NVIDIA introduced the Compute Unified Device
Architecture (CUDA), which contains a new parallel program-
ming model and instruction set architecture for NVIDIA’s
GPUs. CUDA allows programmers to use various high-level
programming languages with CUDA extensions, as an inter-
face to application programming. This interface presents a
low learning curve to programmers who already know these
programming languages. At its core, CUDA consists of a
thread group hierarchy, shared memory access, and barrier
synchronization, which are exposed to the programmer using a
minimal set of language extensions [10]. This provides a level
of abstraction that means a compiled CUDA program can run
on any number of cores and does not need to know the exact
processor count.

CUDA introduces a few new programming concepts with
its programming model and instruction set. A kernel is a
portion of a CUDA application that is executed N times in
parallel by N different CUDA threads. Each thread contains a
thread identification number that is accessible through a built-
in variable. This variable is a three component vector that can
identify a thread in one, two, or three dimensions and allows
threads to be grouped into thread blocks [10]. Threads in the
same block share the same memory and can communicate
and synchronize with one another, while threads in different
blocks cannot [5]. Each block is executed independently and
can consist of a maximum of 512 threads [10]. However, each
block is transparently split into groups of 32 threads called
warps. Each of these blocks is assigned to a multiprocessor,
which can execute a maximum of eight blocks concurrently
[5]. A kernel can be executed by multiple equally-shaped
blocks, which can be organized into one or two-dimensional
grids [10].

CUDA also adds a few new function and variable qualifiers
as part of the instruction extension to the existing high-level
programming language. The added function qualifiers are:
global, host, and device [8]. The global qualifier
declares a function as being a kernel, is executed on the device,
and is callable from the host only. The device qualifier

declares that a function is executed on the device and is
callable from the device only. The host qualifier declares
that a function is executed on the host and is callable from
the host only. The added variable qualifiers are [10]: device,
constant, and shared. The device qualifier declares a
variable that resides on the device in global memory and can
be accessed by all threads. The constant qualifier declares
a variable that resides in constant memory space and can
be accessed by all threads. The shared qualifier declares
a variable that resides in the memory space of a thread block
and is only accessible by threads in that block. There are also
various built-in vector primitive types and variables that are
available to the programmer [10].

Many libraries are implemented on top of CUDA. One such
library is an implementation of the Basic Linear Algebra Sub-
routines (BLAS), which is known as the CUBLAS library [3].
This library provides various generic linear algebra functions
to perform basic matrix-vector and matrix-matrix operations
[9].

B. Limitations of GPUs and the CUDA Architecture

However, there are a few limitations of GPUs for program-
ming purposes. GPUs have a limited amount of memory. If
a very large dataset cannot fit into GPU memory at once,
the computation would have to be split up over the dataset
and each section of the dataset would have to be swapped
into memory. Significant communication overhead would be
introduced by such memory swapping, which will degrade the
performance of the GPU [8].

A disadvantage of CUDA is that threads in different blocks
cannot communicate. Although this improves performance
by allowing blocks to execute in any order, the lack of
communication means that these threads cannot synchronize,
which must be considered by the programmer during algorithm
development. Also, in the CUDA architecture, if two addresses
of a memory request by threads in the same half-warp fall into
the same shared memory bank, there is a bank conflict and the
access must be serialized. However, no bank conflict occurs
when threads of a half-warp read from the same 32-bit word
[5]. Therefore, it is beneficial to ensure that the data is aligned
in such a way to reduce these bank conflicts.

III. TECHNICAL APPROACHES

A. Random Matrix Theory Approach

We proposed an approach that uses RMT to construct
and analyze transcription networks from microarray data.
The RMT algorithm lends itself well to parallelization. The
approach can be summarized in the following steps [16]:

1) Normalize the data. The expression signal of gene i =
1, . . . , N for sample s = 1, . . . ,K is defined as:

Wi(s) ≡ ln

(
Esi(s)

Eci(s)

)
, (1)

where Esi(s) is the expression signal of samples for
gene i and Eci(s) is the corresponding control signal.

The data is then normalized as:

wi(s) ≡
Wi(s) − 〈Wi〉

σi
, (2)

where σi represents the standard deviation of Wi and
〈Wi〉 stands for the average over different samples for
gene i. This normalization of the data will account for
the various differences that may exist in the levels of the
expression signal exhibited by different genes.

2) Calculate the correlation between each of the genes.
From the N×K normalized data, an N×N correlation
matrix is constructed using the Pearson correlation coef-
ficient. The Pearson correlation coefficient Cxy between
genes x and y is defined as:

Cxy =

K∑
i=1

(xi − x̄)(yi − ȳ)

(K − 1)sxsy
, (3)

where sx and sy are the standard deviations of gene
x and gene y, respectively. A negative correlation co-
efficient denotes anti-correlation, a positive correlation
coefficient denotes correlation, and a correlation coeffi-
cient of zero denotes that no correlation exists.

3) Remove measurement noise using deviating eigen-
values. Certain properties of microarrays can introduce
noise into the correlation matrix. The correlation be-
tween certain genes can fluctuate over time or under
different sampling conditions. Also, noise can be intro-
duced due to the limited number of sample points. In
order to remove this noise and determine more accurate
correlation, the eigenstates of the correlation matrix are
compared to those of a truly random correlation matrix.
Statistical properties that are similar to both matrices
can be interpreted as noise, while differences can be
interpreted as true correlation. First, the eigenvalues
are calculated for both matrices. Then, the eigenvalues
are arranged in ascending order and the probability
distributions are compared. The K eigenvalues of the
correlation matrix that deviate from the eigenvalue range
of the random matrix are kept and considered as genuine
correlation.

4) Transform the components of the corresponding de-
viating eigenvectors. After locating the deviating eigen-
values, their corresponding eigenvectors are evaluated.
There are N eigenvectors, each with N components
corresponding to the N gene variables. The eigenvectors
are perpendicular to each other and are normalized
to one. The probability distribution of the eigenvector
components are compared to that of the random matrix,
which follows a Gaussian distribution with zero mean
and unit variance. The deviating eigenvector components
should therefore have a significant deviation from the
Gaussian distribution. After normalizing the eigenvec-
tors, their components are multiplied by the square root
of the corresponding eigenvalue to obtain a loading
factor.

5) Cluster using the loading factors and orthogonal
(perpendicular) rotation. Using the computed loading
factors, the genes can be clustered. Each eigenvector
represents one factor that leads to a gene cluster. A
large loading factor indicates that the gene is more
expression-dominating for that cluster. In order to make
the interpretation of gene clusters easier and more
reliable, orthogonal rotation is applied to the retained
eigenvectors. A method known as Varimax is used for
the orthogonal rotation. A rotation matrix R is defined
as:

R =

[
cos θi,i cos θi,j
cos θj,i cos θj,j

]
, (4)

where θi,j is the rotation angle from old axis i to new
axis j. After rotation, each eigenvector will contain a
small number of large loadings and a large number
of small loadings, which means that the gene clusters
will consist of a reduced number of dominant genes
compared to those without rotation. This ensures that
each gene will only load heavily on a very small number
of gene clusters.

This approach does not require human involvement and can
remove a high level of noise that is common for biological
data. It also allows gene clusters to overlap in terms of
gene membership. This overlapping of clusters agree with the
biological perspective that a single gene may be involved in
multiple pathways. Additional calculations can be performed
to evaluate the stability and quality of cluster membership,
if desired [16]. It should be noted that these steps are just a
summary of the overall process, and if the dataset contains
time-series gene expression data, then a different similarity
metric and correlation calculation must be used.

B. Computation of Eigenstates for Symmetric Matrices

Computing the eigenvalues and corresponding eigenvectors
of a full symmetric matrix can be quite computationally
expensive. Therefore, algorithms that find the eigenstates of
symmetric matrices generally all consist of three phases:
reduction of the original dense matrix to a condensed form by
orthogonal transformations, solution of the condensed form,
and backtransformation of the solution of the condensed form
to the solution of the original symmetric matrix. Finding the
solution of the condensed form is generally substantially faster
than finding the solution to the original matrix. Also, the
backtransformation phase is only necessary if the eigenvectors
are needed, as the eigenvalues of both the original matrix and
the condensed matrix are the same [1].

A popular reduction method used by many algorithms is to
reduce the original matrix to tridiagonal form. A tridiagonal
matrix is a matrix that only has nonzero elements in the
main diagonal, the diagonal below the main diagonal (the
subdiagonal), and the diagonal above the main diagonal (the

superdiagonal). An example may have the form:
x1,1 x1,2 0 0 0
x2,1 x2,2 x2,3 0 0

0 x3,2 x3,3 x3,4 0
0 0 x4,3 x4,4 x4,5
0 0 0 x5,4 x5,5


The reduction of a dense, symmetric matrix A to such a

form can be accomplished by applying a series of Householder
transformations to A. This method can reduce an n × n
symmetric matrix to tridiagonal form by using n−2 orthogonal
transformations. For each of the first n − 2 columns of the
matrix A, a vector is constructed that reduces the required
portion of a whole column and whole corresponding row to
zero.

If the eigenvectors of the tridiagonal matrix are found,
they can be backtransformed to those of the original matrix
by applying the transformations on the eigenvector matrix in
the reverse order [14]. This reduction requires a theoretical
complexity of O(4

3n
3 +n2), but the resulting eigenvalue com-

putation is generally much faster when compared to finding
the eigenvalues of the original matrix [1].

Currently, there are no functions provided by either CUDA
or CUBLAS for computing the eigenvalues and eigenvectors
of symmetric matrices [9], [10], which is the most com-
putationally intensive portion of RMT. However, there is a
commercially-available library (CULA) that implements a few
of the LAPACK functions for symmetric eigendecomposition
using the CUDA architecture [6].

IV. IMPLEMENTATION DETAILS

The sequential implementation and CPU portions of the
GPU implementation were written in C++ and both were run
on an Intel Pentium 4 3.00 GHz machine with 2 GB of RAM
running Linux. The GPU used was an NVIDIA Quadro FX
5600, which has 1.5 GB of memory, 16 multiprocessors, 128
cores, and a clock rate of 1.35 GHz.

A. CPU Implementation

For the sequential version, after loading the dataset, a
random data matrix is constructed, where each element of
the random matrix is contained in the range of the minimum
and maximum element of the raw data matrix. After the
Pearson correlation matrix is constructed for both the raw
data and random matrices, both Pearson matrices are reduced
to tridiagonal form using the LAPACK subroutine SSYTRD,
which utilizes the Householder reduction method. Then, the
eigenvalues of both matrices are computed using SSTEBZ,
which uses the bisection method. This subroutine outputs the
eigenvalues in ascending order, which means no sorting is
necessary [1].

After computing the eigenvalues for both matrices, the
eigenvalues of the raw data Pearson correlation matrix is
compared to the largest eigenvalue of the random data Pearson
correlation matrix to determine the K meaningful eigenvalues.
Then, the corresponding eigenvectors of the K meaningful

eigenvalues of the raw data Pearson matrix are computed using
the SSTEIN subroutine, which utilizes inverse iteration [1].
Since K is generally relatively small (usually less than 30)
and only these eigenvectors are necessary for analysis, this
method is much faster than computing all of the eigenvectors.
However, the eigenvectors obtained from SSTEIN are those of
the tridiagonal matrix and not the original symmetric matrix.
Therefore, the eigenvectors must be transformed to those of
the original matrix by using the elementary reflectors and
scalar factors obtained from running SSYTRD, which can be
accomplished by the SORMTR subroutine [1]. After the K
eigenvalues and their corresponding eigenvectors are obtained,
the eigenvectors are transformed to component loadings by
multiplying each eigenvector by the square root of its corre-
sponding eigenvalue. Then, these loadings are rotated using the
Varimax rotation method. After rotation, the resulting matrix
is used to cluster the genes into groups (a threshold of 0.55
was used).

As noted in Section III-B, the tridiagonal reduction phase
requires O(4

3n
3+n2), but the resulting eigenvalue computation

is generally quite fast [1]. Therefore, the tridiagonal reduction
phase and subsequent backtransformation are the main bottle-
necks of the CPU implementation.

B. GPU Implementation

For the GPU implementation, after loading the dataset
and generating the random data matrix, both matrices are
transferred to device memory. The Pearson correlation matrix
of the random data matrix is then computed. The random
Pearson matrix is then reduced to tridiagonal form using
custom kernels and functions provided by CUBLAS. Block
updates are performed using the cublasSsyr2k method [9].
The diagonal and off-diagonal elements of the resulting matrix
are then transferred back to host memory. After that, the raw
data Pearson correlation matrix is computed and reduced to
tridiagonal form. The reduction vectors used are stored so that
the tridiagonal eigenvectors can be backtransformed to those
of the original symmetric matrix. By performing the steps in
this order, the amount of memory used is reduced, because
the only elements needed to compute the eigenvalues of the
random data Pearson matrix using bisection are the diagonal
and off-diagonal elements of the tridiagonal matrix. After
both Pearson matrices are reduced to tridiagonal form and
the diagonal and off-diagonal elements are transferred back to
host memory, the eigenvalues of these matrices are computed
using SSTEBZ. Again, the K meaningful eigenvalues are
found, and the corresponding eigenvectors are computed using
SSTEIN. The K meaningful eigenvalues and corresponding
eigenvectors are then transferred back to device memory,
where the eigenvectors are backtransformed using the stored
transformation vectors and a few basic CUBLAS functions
(cublasSgemv and cublasSger). The transformation of the
eigenvectors to component loadings and Varimax rotation are
also done on the GPU. The results are then transferred back
to host memory, so that the genes can be clustered.

The main speedup obtained by the current GPU implemen-
tation results from the reduction of the symmetric matrices to
tridiagonal form and the backtransformation of the eigenvec-
tors, which seem to be the main bottlenecks of the sequential
version. As a matter of fact, the current GPU implementa-
tion requires many device-to-host and host-to-device memory
copies, which would be eliminated if a mature linear algebra
library were available for the CUDA architecture.

V. EXPERIMENTAL RESULTS

Table I shows the results obtained from running both the
pure CPU and GPU implementations on seven different mi-
croarray datasets with a varying number of genes and sample
points. Five of the datasets were obtained from ArrayExpress,
a database of gene expression and other microarray data
maintained by the European Bioinformatics Institute [2]. The
ArrayExpress identification number is given for datasets that
were obtained from this database, for future reference. The
clustering results conform to those in previously published
articles. Figure 1 illustrates a visual transcription network
generated by the GPU implementation for the human gastric
cancer cells dataset (created using Pajek [13]). The vertices
denote genes and the edges represent expression correlation
between genes. Genes belonging to the same cluster are
similarly colored and placed close to each other. Both the CPU
and GPU implementation analyzed each dataset ten times. The
elapsed time for each run was then averaged to obtain a more
accurate running time. For smaller matrices, the GPU imple-
mentation performs similarly to the sequential implementation
or slightly worse. In this case, the memory latency of the
GPU and performing the various host-to-device and device-to-
host memory copies outweighs the benefit obtained from the
efficiency of the GPU. In general, the GPU implementation
only provides a total average speedup of approximately 1.16.
However, the average speedup for larger matrices (with more
than 2000 genes) is approximately 1.44. Therefore, the benefits
of using the GPU are only seen when the number of genes is
fairly large.

VI. CONCLUSION AND FUTURE WORK

The Pearson correlation matrix calculated from the mi-
croarray data typically contains both genuine and random
components. The random component is removed by testing the
statistics of the eigenvalues of the correlation matrix against
the eigenvalues of a truly random correlation matrix obtained
from a mutually uncorrelated expression data series. The
investigation into the components of deviating eigenvectors
reveals distinct functional modules.

Our RMT method has many advantages over existing
clustering methods. For example, the number of functional
modules can be automatically inferred and a single gene can
be grouped into multiple clusters; it is essentially a global
clustering method as opposed to some local clustering method
used by greedy algorithms. The utilization of GPUs reduces
the amount of computation time that is otherwise needed on
a pure sequential program.

TABLE I
RESULTS OBTAINED FROM VARIOUS DATASETS.

Dataset Number Sample ArrayExpress CPU Time GPU Time
of genes points ID (in seconds) (in seconds)

Test 9 – – 0.1 0.1
Human gastric cancer cells 315 353 E-TABM-341 0.8 1.3
Mouse epididymal adipocytes 574 4 E-MEXP-1932 2.4 2.5
Chorioamniotic membranes 1491 30 E-TABM-469 23.1 17.5
Human cancer samples 1866 22 E-TABM-184 39.8 29.3
Drosophila abdomen samples 2340 16 E-MEXP-2080 70.5 49.1
E. coli samples 4345 445 – 396.8 274.9

Fig. 1. Transcription Network of Human Gastric Cancer Cells Dataset (E-TABM-341) generated by Pajek.

There is still much work to be done. Optimized functions
for computing eigenvalues and eigenvectors of a symmetric
matrix using CUDA or CUBLAS needs to be developed. This
would reduce the amount of device-to-host and host-to-device
transfers in the current implementation, which in turn would
hopefully increase the speed of the GPU implementation.

VII. ACKNOWLEDGEMENTS

The authors would like to thank the Illinois State Board
of Education for support under the title of ”Partnership for
Improved Science Achievement through Computational Sci-
ence (PIASCS)” funded in 2010. We plan to use work from
this project as part of the teaching materials in our PIASCS
project workshops.

REFERENCES

[1] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra,
J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and
Sorensen, D.: LAPACK Users Guide, 3rd ed., SIAM, Philadelphia
(1999)

[2] ArrayExpress, http://www.ebi.ac.uk/microarray-as/ae/
[3] Barrachina, S., Castillo, M., Igual, F.D., Mayo, R., Quintana-Orti, E.S.:

Evaluation and Tuning of the Level 3 CUBLAS for Graphics Proces-
sors. In: 9th IEEE International Workshop on Parallel and Distributed
Scientific and Engineering Computing, pp. 1-8. (2008)

[4] Fatahalian, K. and Houston, M. A Closer Look at GPUs. Comm. of the
ACM, vol. 51, no. 10., pp. 50-57, (2008)

[5] Fujimoto, N.: Faster Matrix-Vector Multiplication on GeForce
8800GTX. In: 22nd IEEE International Parallel and Distributed Pro-
cessing Symposium, IEEE Press, (2008)

[6] Humphrey, J.R., Price, D. K., Spagnoli, K. E., Paolini, A. L., Kelmelis
E. J., ”CULA: Hybrid GPU Accelerated Linear Algebra Routines,” SPIE
Defense and Security Symposium (DSS), April, 2010.

[7] Liver Microarray Dataset, http://smd.stanford.edu/cgi-bin/publication/
viewPublication.pl?pub no=107

[8] Muller, C., Frey, S., Strengert, N., Dachsbacher, C., Ertl, T.: A Compute
Unified System Architecture for Graphics Clusters Incorporating Data
Locality. IEEE Transactions on Visualizations and Computer Graphics,
vol. 15, no. 4, (2009)

[9] NVIDIA, CUDA CUBLAS Library 2.0. http://developer.download.
nvidia.com/compute/cuda/2 0/docs/CUBLAS Library 2.0.pdf, (2008)

[10] NVIDIA, NVIDIA CUDA Programming Guide 2.3.1.
http://developer.download.nvidia.com/compute/cuda/2 3/toolkit/docs/
NVIDIA CUDA Programming Guide 2.3.pdf, (2009)

[11] NVIDIA CUDA Zone, http://www.nvidia.com/object/cuda home.html
[12] Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips,

J.C.: GPU Computing. In: Proceedings of the IEEE, vol. 96, no. 5, pp.
879-899. (2008)

[13] Pajek. http://vlado.fmf.uni-lj.si/pub/networks/pajek/
[14] Press, W.H., Flannery, B.P., Teukolsky S.A., Vetterling, W.T.: Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University
Press, (1992)

[15] Yeast Microarray Dataset, http://genome-www.stanford.edu/cellcycle
[16] Zhu, M., Wu, Q.: Transcription Network Construction for Large-scale

Microarray Datasets using a High-performance Computing Approach.
BMC Genomics, vol. 9 suppl. 1, (2008)

