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Long-Timescale Processes in Sandia
Materials Applicationspp

• Synthesis and aging of materials driven by diffusion 
processes over long timescales   

– Neutron tubes Semi-conductor electronicsNeutron tubes, Semi conductor electronics
– Thermoelectrics, Fusion power systems
– Radiation detectors
– Gas and energy storage materials

Aging ofAging of 
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Long-Timescale Processes in Sandia 
Materials ApplicationsMaterials Applications

• Current continuum models 
inadequate to describe many

Unheated particles

inadequate to describe many 
of these processes
– Complex interactions, poorly 

understood physics, unknown 
parametersparameters

• Timescales are too long to be 
reached by most atomistic 
simulation techniques

Aging of 
nanoporous Pd 
particles
Courtesy of Ilke 

After heating to 600 °C

– Molecular dynamics limited by 
atomic vibration timescale 
(picoseconds)

– Diffusion processes may be4x10-4
 

Arslan (UC Davis), 
Markus Ong 
(Whitworth U) (both 
formerly SNL-CA)

Diffusion processes may be 
taking place over hours, or 
even years
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Extending to Longer Timescales: 
Equation-Free Projective Integration Methodq j g

• Approach: 
– Use fine-scale simulations as “computational experiments” to get approximate 

coarse scale time derivativescoarse-scale time derivatives
– Project coarse scales in time over longer timestep, and reinitialize fine scales
– I. Kevrekidis et al., Comm. Math Sci. 1 (2003) and related papers
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Test Application: Solid-on-Solid Model
• The Solid-on-Solid (SOS) model is a 

simple surface representation that 
mimics the physics of a real crystal 

fsurface
– Surface represented as array of columns 

with integer heights
Energ based on nearest neighbor– Energy based on nearest neighbor 
interactions:
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• Flat surface has minimum energy

• Kinetic Monte Carlo simulations used to obtain fine-scale

 
1 12 j

i j 
 

Kinetic Monte Carlo simulations used to obtain fine scale 
dynamics
– Each “move” is a height exchange between neighboring sites
– Implemented in SPPARKS KMC codeImplemented in SPPARKS KMC code 

(www.cs.sandia.gov/~sjplimp/spparks.html)



Early Results: 2D Test Problem
• Demonstrated acceleration factor of 20x on 2D problem

– Goal is to predict height decay of ensemble average over many realizations 
(order 103)

Evolution of ensemble-averaged height profileA single realization of the SOS surface model

Findings:
• Very important to choose correct coarse scale 

parameterization
• Need to preserve higher order statistics (2-point 

spatial correlations), not just average heights, to 
get correct dynamics

• Fast variables must be identified and slaved to 
slow variables to preserve stability

• Lift operators used here are difficult to extend to 
the full 3D case

Accelerated integration using Eqn-Free method

• Wagner et al., Int. J. for Multiscale Computational Eng.
8:423 (2010)



Simulated Annealing
• Simulated Annealing: a stochastic method (similar to Metropolis• Simulated Annealing: a stochastic method (similar to Metropolis 

Monte Carlo) to drive a prescribed error function to zero
– Our S.A. procedure for solid surfaces: 

• Choose a set of coarse scale functions whose ensemble-averaged values areChoose a set of coarse scale functions whose ensemble averaged values are 
known

– Averages are smooth, spatially varying fields defined at nodal positions
• For a given fine-scale configuration (surface heights at all sites), project onto 

smooth field spanned by cubic splines at nodessmooth field spanned by cubic splines at nodes

S Projected Energy

• Run simulated annealing to minimize error defined by:
2 2 2

E H H E E G G

Fine Scale Heights Projected Heights Projected Energy

height error energy error variance error

Error H actual goal E actual goal G actual goalH H E E G G           
  



Difficulties with Simulated Annealing
• Simulated Annealing has some problems for our application:S u a ed ea g as so e p ob e s o ou app ca o

1. Penalty parameters must be chosen carefully to simultaneously fit all goal 
functions (not always possible)

C V i bl G l A t lCoarse Variables: Goal vs. Actual

2. SA enforces goals on every realization, while really we want to enforce 

Height Profile Energy Profile Variance Profile

only the ensemble average
3. Most important: SA leads to realizations that do not preserve the dynamics 

of the original system

Comparison of “full” KMC (no restrict/lift 
operation) vs. run with simulated annealing 
restrict/lift applied every 200K timesteps



Maximum Entropy Method
• Q: Instead of trying to specify higher order statistics (like correlation 

functions), can we find a way to constrain only the coarse scale values 
we care about, and allow other modes to come into equilibrium with 
th ?them?
– To run to equilbrium (e.g. in a Monte Carlo simulation), we need to know the 

probability distribution function (PDF) for the system
The theor of ma im m entrop states that the rele ant PDF is the one– The theory of maximum entropy states that the relevant PDF is the one 
that maximizes the entropy of the system while still satisfying the known 
statistics (E.T. Jaynes, Phys Rev. 106:620, 1957)

• Entropy is given by:py g y

where sum is over all possible height configurations h

        1 2, ,... lni i
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– For example, if only the average energy of the system is known, the 
maximum entropy theory leads to the standard canonical ensemble 
distribution:

    P C Eh h    expP C E h h



Maximum Entropy for Solid Surfaces
• Goal: constrain the ensemble averages of some set of profile 

parameters Ai (e.g. Fourier modes), along with their variances 
Ai, 

to prescribed values
– Maximum entropy theory leads to PDF of the form:
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where i and i are Lagrange multipliers that must be determined by 
enforcing desired ensemble averages:
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– Lagrange multipliers can be approximated or solved iteratively
– Note that unlike Simulated Annealing, the maximum entropy method 

 h

enforces averages over the ensemble of realizations, not individual 
realizations



Lift Operator using Maximum Entropy
• Algorithm for lifting with Maximum Entropy method:Algorithm for lifting with Maximum Entropy method:

– Given: set of coarse scale profile shape parameters with known 
ensemble average and std. dev.

• E.g. set of leading order Fourier coefficients Ai

– Initialize a set of heights based on the mean values, <Ai> 
– Sample, using a Metropolis Monte Carlo sampling method, a set of 

realizations with the probability distribution:

         2
/ goalP C E k T A A A   
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• Compute the resulting mean and standard deviation for each Ai

– Iterate, if necessary, to adjust the Lagrange multipliers i and i until the 
desired statistics are obtained
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desired statistics are obtained
• The resulting set of realizations obeys the desired statistics, but is 

otherwise in equilibrium according to the maximum entropy principle  



Maximum Entropy Results: 2D

• Test our lift operator by• Test our lift operator by 
reapplying the restrict/lift at 
fixed intervals during a KMC 
simulation E bl d A Asimulation
– Operator should disturb the 

profile and dynamics as little 
as possible

Ensemble-averaged A1, A3
vs. time

Std. dev.’s of A1, A3 vs. time

– Constrain first and third Fourier 
sine coefficients, A1 and A3, 
and their std. devs.
U t i L 40 l– Use system size L=40, apply 
lift every 400 time units

Average height profile, before and 
after lift, at t=400 



Maximum Entropy Results: 3D
• Test: Begin with an ensemble-averaged profile from a “real”Test: Begin with an ensemble averaged profile from a real  

surface simulation (full single-scale KMC) and try to reproduce it’s 
shape and dynamics using Maximum Entropy method
– Constrain first 2 odd-numbered Fourier sine coefficients (A1 and A3)

• Shape and dynamics are not well preserved for this case
Better solution may be needed for Lagrange multipliers– Better solution may be needed for Lagrange multipliers

– But the technique succeeded in generating a low-energy average 
configuration!

• Constraining more coefficients (higher order modes) may help
– Computational expense in 3D becomes a limitation (large systems, slow 

equilibration times)



Conclusions
• Two methods have been explored for a “lift” operation in the context of aTwo methods have been explored for a lift  operation in the context of a 

multiple timescale, equation-free projection method
– Both methods attempt to take given coarse-scale descriptions and use them 

to initialize an ensemble of fine scale system realizations
– Simulated Annealing:g

+ Reasonable efficiency
+ Very flexible in choice of constraint variables
Constraint of multiple variables must be balanced through penalty parameters
Constrains each realization individually rather than the entire ensemble
System dynamics is not well reproduced

– Maximum entropy method:
+ Constrains ensemble, not individual realizations
+ Requires smallest amount of coarse scale information compared with similar 

methodsmethods
+ Guarantees equilibrium in the max-entropy sense
+ Reproduces dynamics well (when initialization to constraint is successful)
Computationally expensive
Requires specification of Lagrange multipliers in PDF – a difficult problem in generalRequires specification of Lagrange multipliers in PDF a difficult problem in general
Can lead to undesired, lower-energy configurations if under-constrained

• The Maximum Entropy method can be successful if:
– Computational time to iteratively solve for Lagrange multipliers can be 

reducedreduced
– A sufficient set of coarse variables can be identified (e.g. through 

dimensionality reduction techniques)


