

A Multiple-Timescale Simulation Method for the Morphological Evolution of Metal Interfaces

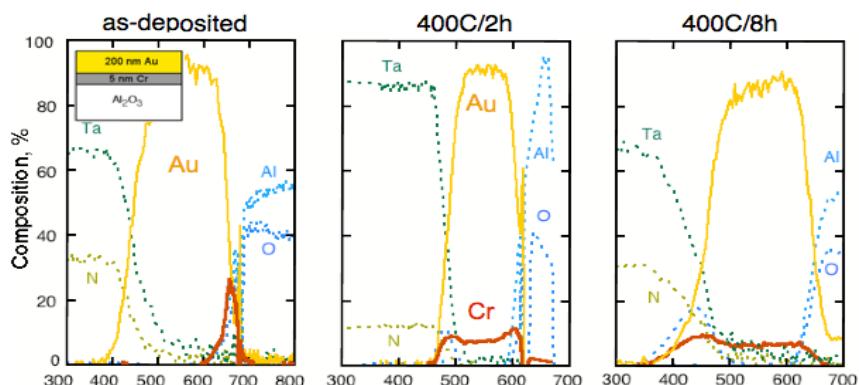
USNCCM 11, Minneapolis MN

July 27, 2011

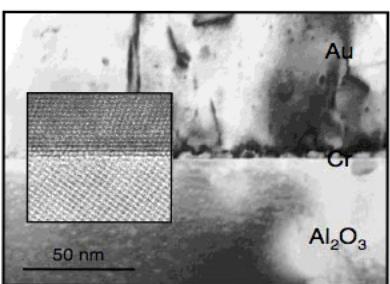
Gregory J. Wagner, Jie Deng, Jonathan A. Zimmerman
Sandia National Laboratories, Livermore, CA

Long-Timescale Processes in Sandia Materials Applications

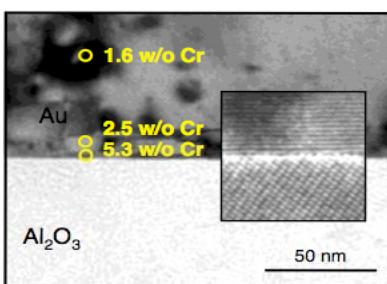
- **Synthesis and aging of materials driven by diffusion processes over long timescales**
 - Neutron tubes, Semi-conductor electronics
 - Thermoelectrics, Fusion power systems
 - Radiation detectors
 - Gas and energy storage materials



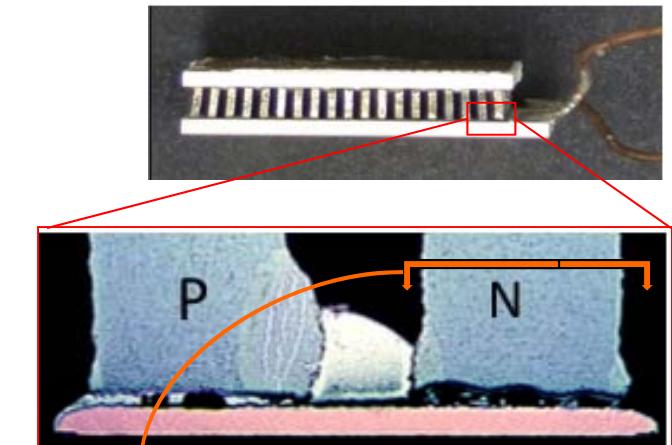
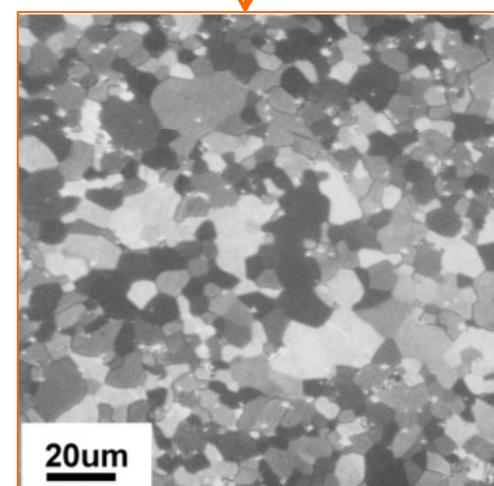
Aging of material interface in semi-conductor electronics
Courtesy of Neville Moody (SNL-CA)



$$\Gamma_I = 1.1 \text{ J/m}^2$$



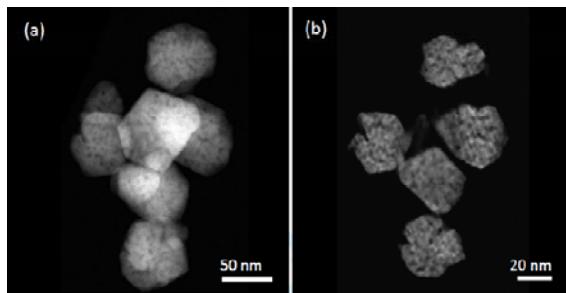
$$\Gamma_I = 1.3 \text{ J/m}^2$$



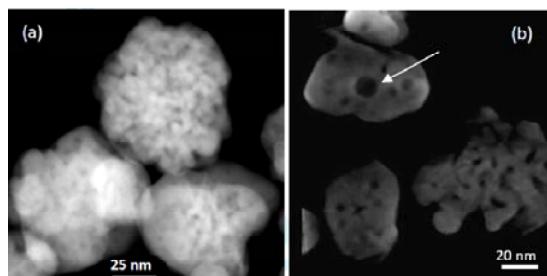
Porosity-filled microstructure of thermoelectric devices
Courtesy of Nancy Yang (SNL-CA)

Long-Timescale Processes in Sandia Materials Applications

Unheated particles

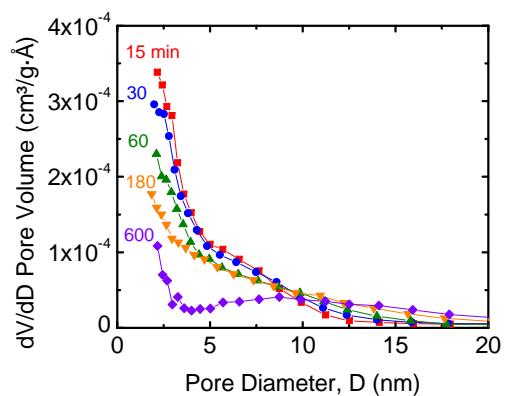


After heating to 600 ° C

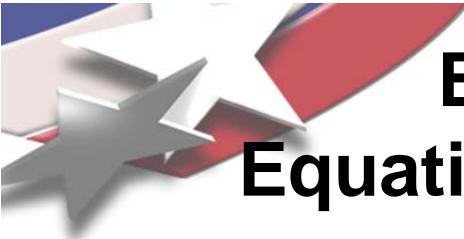


Aging of nanoporous Pd particles

Courtesy of Ilke Arslan (UC Davis), Markus Ong (Whitworth U) (both formerly SNL-CA)



- Current continuum models inadequate to describe many of these processes
 - Complex interactions, poorly understood physics, unknown parameters
- Timescales are too long to be reached by most atomistic simulation techniques
 - Molecular dynamics limited by atomic vibration timescale (picoseconds)
 - Diffusion processes may be taking place over hours, or even years

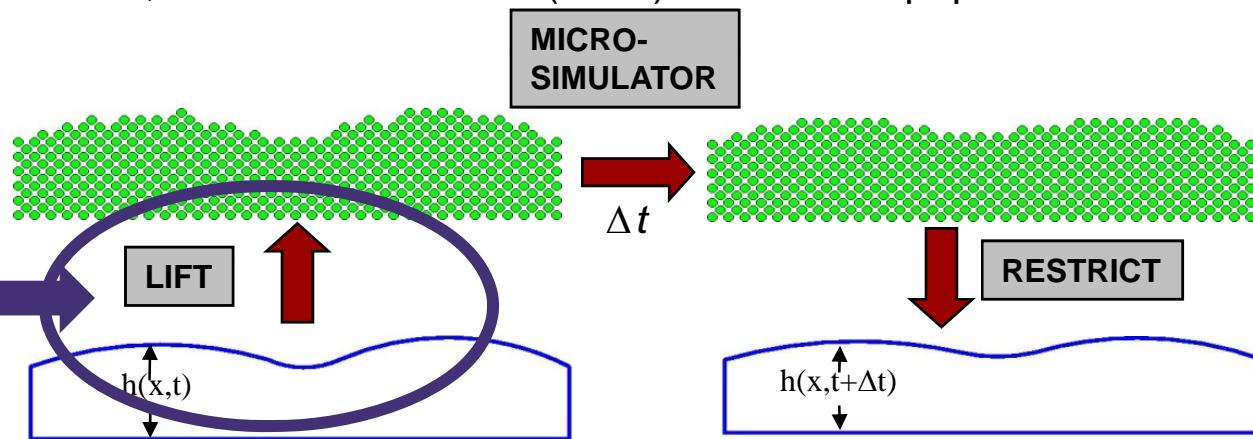


Extending to Longer Timescales: Equation-Free Projective Integration Method

- Approach:

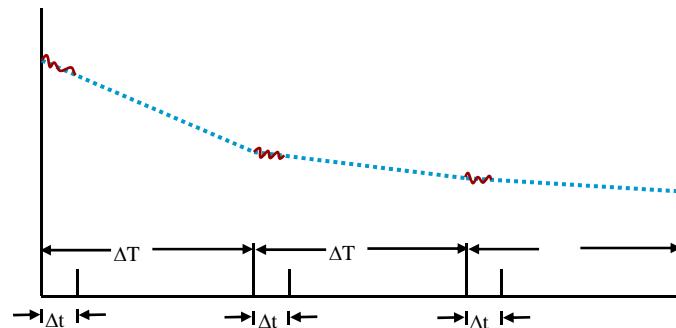
- Use fine-scale simulations as “computational experiments” to get approximate coarse-scale time derivatives
- Project coarse scales in time over longer timestep, and reinitialize fine scales
- I. Kevrekidis et al., *Comm. Math Sci.* 1 (2003) and related papers

Focus of this presentation



$$\text{Approximate: } \frac{\partial h}{\partial t} \approx \frac{1}{\Delta t} (h(t + \Delta t) - h(t))$$

$$\text{Project: } h(t + \Delta T) = h(t) + \Delta T \frac{\partial h}{\partial t}$$

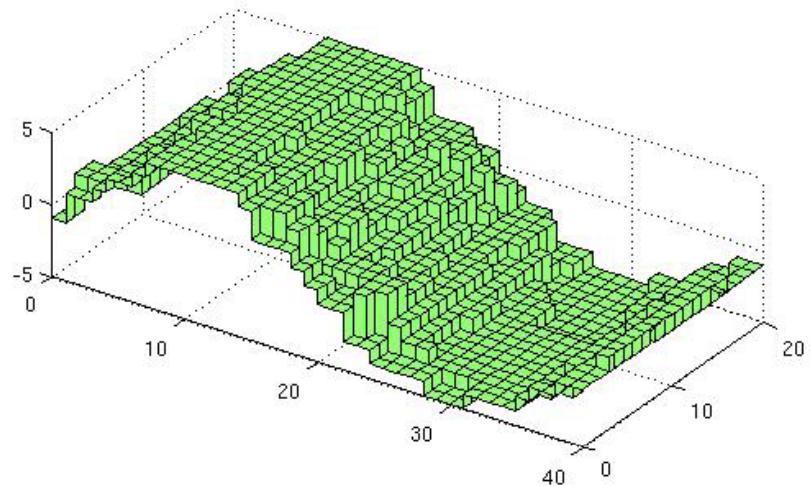


Test Application: Solid-on-Solid Model

- The Solid-on-Solid (SOS) model is a simple surface representation that mimics the physics of a real crystal surface
 - Surface represented as array of columns with integer heights
 - Energy based on nearest neighbor interactions:

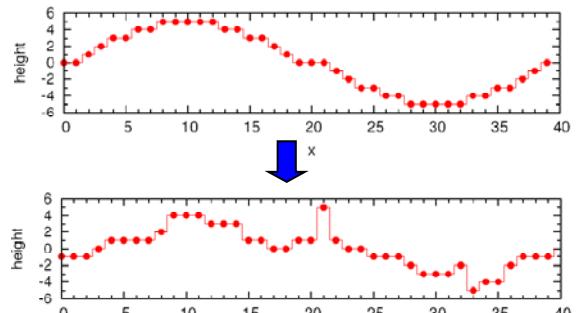
$$E(\mathbf{h}) = \frac{1}{2} J \sum_{i=1}^N \sum_{j=1}^{\text{neigh}(i)} |h_i - h_j|$$

- Flat surface has minimum energy
- Kinetic Monte Carlo simulations used to obtain fine-scale dynamics
 - Each “move” is a height exchange between neighboring sites
 - Implemented in SPPARKS KMC code
(www.cs.sandia.gov/~sjplimp/spparks.html)

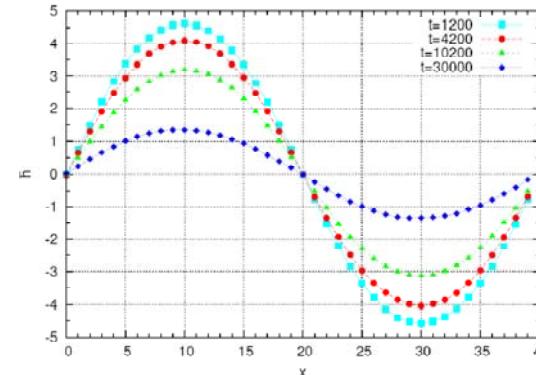


Early Results: 2D Test Problem

- Demonstrated acceleration factor of 20x on 2D problem
 - Goal is to predict height decay of ensemble average over many realizations (order 10^3)



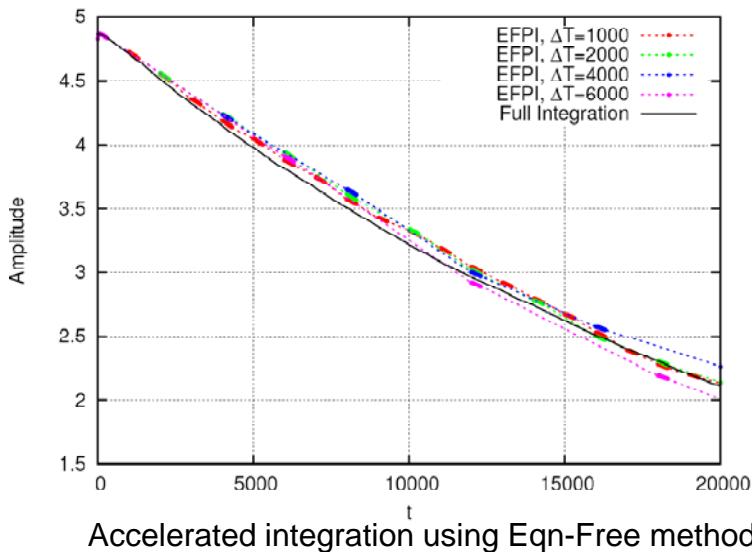
A single realization of the SOS surface model



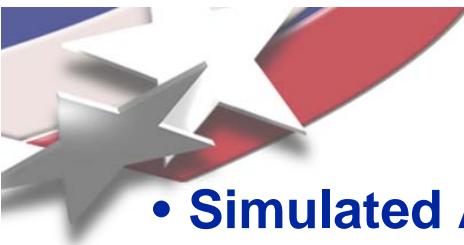
Evolution of ensemble-averaged height profile

Findings:

- Very important to choose correct coarse scale parameterization
 - Need to preserve higher order statistics (2-point spatial correlations), not just average heights, to get correct dynamics
- Fast variables must be identified and slaved to slow variables to preserve stability
- Lift operators used here are difficult to extend to the full 3D case
- Wagner et al., *Int. J. for Multiscale Computational Eng.* 8:423 (2010)

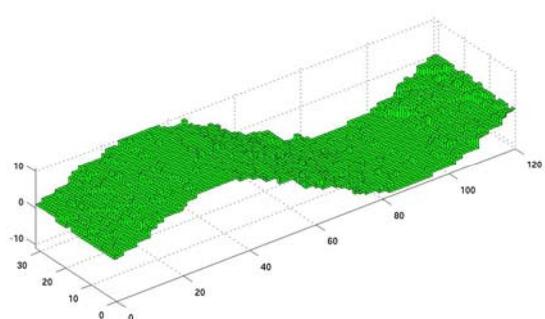


Accelerated integration using Eqn-Free method

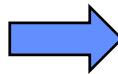
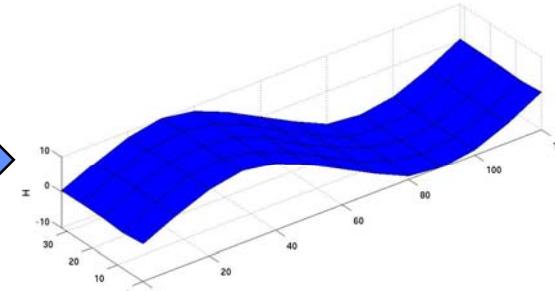


Simulated Annealing

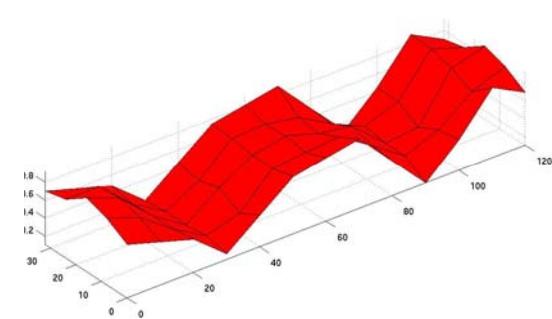
- **Simulated Annealing:** a stochastic method (similar to Metropolis Monte Carlo) to drive a prescribed error function to zero
 - Our S.A. procedure for solid surfaces:
 - Choose a set of coarse scale functions whose ensemble-averaged values are known
 - Averages are smooth, spatially varying fields defined at nodal positions
 - For a given fine-scale configuration (surface heights at all sites), project onto smooth field spanned by cubic splines at nodes



Fine Scale Heights



Projected Heights



Projected Energy

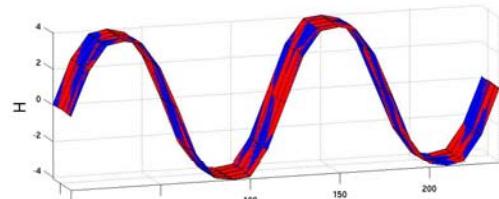
- Run simulated annealing to minimize error defined by:

$$\text{Error} = \alpha_H \underbrace{\left[H_{actual} - H_{goal} \right]^2}_{\text{height error}} + \alpha_E \underbrace{\left[E_{actual} - E_{goal} \right]^2}_{\text{energy error}} + \alpha_G \underbrace{\left[G_{actual} - G_{goal} \right]^2}_{\text{variance error}} + \dots$$

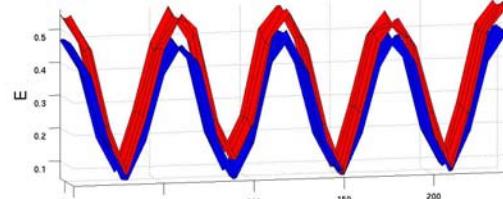
Difficulties with Simulated Annealing

- Simulated Annealing has some problems for our application:
 1. Penalty parameters must be chosen carefully to simultaneously fit all goal functions (not always possible)

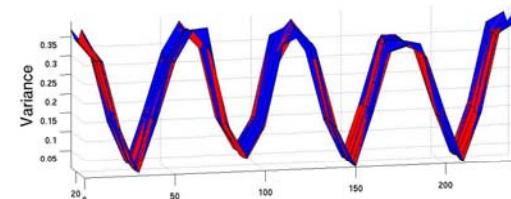
Coarse Variables: Goal vs. Actual



Height Profile

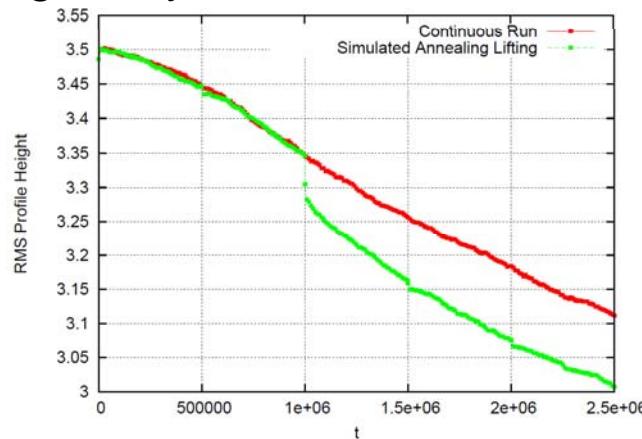


Energy Profile



Variance Profile

2. SA enforces goals on **every** realization, while really we want to enforce only the ensemble average
3. Most important: SA leads to realizations that do not preserve the dynamics of the original system



Comparison of “full” KMC (no restrict/lift operation) vs. run with simulated annealing restrict/lift applied every 200K timesteps

Maximum Entropy Method

- Q: Instead of trying to specify higher order statistics (like correlation functions), can we find a way to constrain only the coarse scale values we care about, and allow other modes to come into equilibrium with them?
 - To run to equilibrium (e.g. in a Monte Carlo simulation), we need to know the probability distribution function (PDF) for the system
 - The theory of **maximum entropy** states that the relevant PDF is the one that maximizes the entropy of the system while still satisfying the known statistics (E.T. Jaynes, *Phys Rev.* **106**:620, 1957)
 - Entropy is given by:

$$H(P(\mathbf{h}_1), P(\mathbf{h}_2), \dots) = -k \sum P(\mathbf{h}_i) \ln P(\mathbf{h}_i)$$

where sum is over all possible height configurations \mathbf{h}

- For example, if only the average energy of the system is known, the maximum entropy theory leads to the standard canonical ensemble distribution:

$$P(\mathbf{h}) = C \exp \{-\beta E(\mathbf{h})\}$$

Maximum Entropy for Solid Surfaces

- Goal: constrain the ensemble averages of some set of profile parameters A_i (e.g. Fourier modes), along with their variances $\sigma^2_{A_i}$, to prescribed values
 - Maximum entropy theory leads to PDF of the form:

$$P(\mathbf{h}) = C \exp\left\{-\beta E(\mathbf{h})\right\} \exp\left\{-\sum_i \beta_i A_i(\mathbf{h})\right\} \exp\left\{-\sum_i \alpha_i (A_i(\mathbf{h}) - A_i^{goal})^2\right\}$$

where α_i and β_i are Lagrange multipliers that must be determined by enforcing desired ensemble averages:

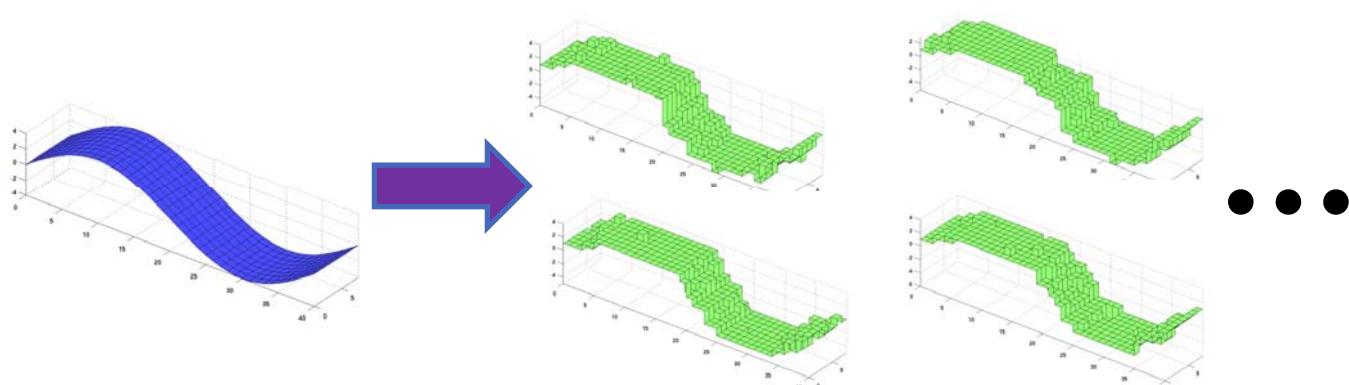
$$A_i^{goal} = \sum_{\mathbf{h}} A_i(\mathbf{h}) P(\mathbf{h}) = \langle A_i \rangle$$

$$\sigma_i^{goal} = \left(\sum_{\mathbf{h}} (A_i - \langle A_i \rangle)^2 \right)^{1/2}$$

- Lagrange multipliers can be approximated or solved iteratively
- Note that unlike Simulated Annealing, the maximum entropy method enforces averages over the ensemble of realizations, not individual realizations

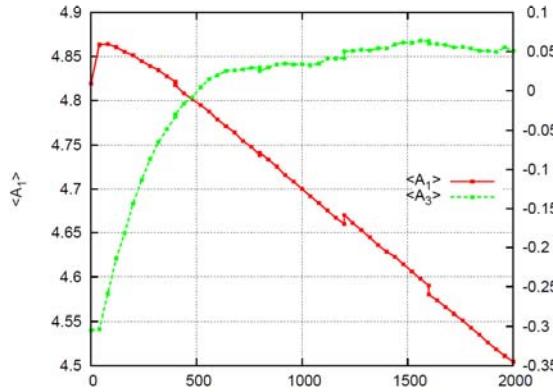
Lift Operator using Maximum Entropy

- Algorithm for lifting with Maximum Entropy method:
 - **Given:** set of coarse scale profile shape parameters with known ensemble average and std. dev.
 - E.g. set of leading order Fourier coefficients A_i
 - **Initialize** a set of heights based on the mean values, $\langle A_i \rangle$
 - **Sample**, using a Metropolis Monte Carlo sampling method, a set of realizations with the probability distribution:
$$P(\mathbf{h}) = C \exp\left\{-E(\mathbf{h})/k_B T\right\} \exp\left\{-\sum_i \beta_i A_i(\mathbf{h})\right\} \exp\left\{-\sum_i \alpha_i (A_i(\mathbf{h}) - A_i^{goal})^2\right\}$$
 - Compute the resulting mean and standard deviation for each A_i
 - **Iterate**, if necessary, to adjust the Lagrange multipliers α_i and β_i until the desired statistics are obtained
- The resulting set of realizations obeys the desired statistics, but is otherwise in equilibrium according to the maximum entropy principle

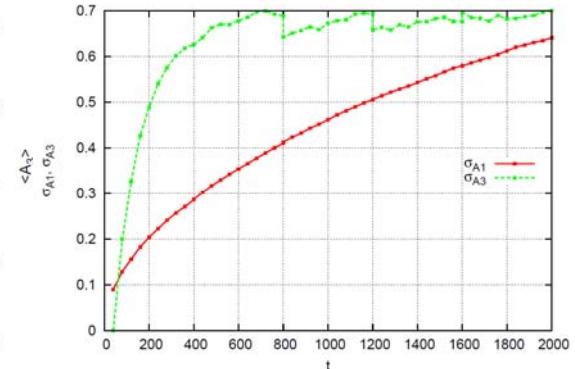


Maximum Entropy Results: 2D

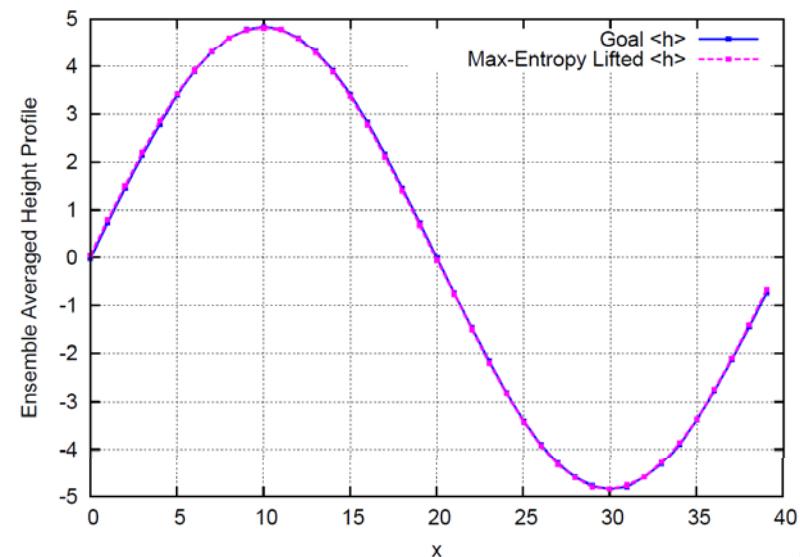
- Test our lift operator by reapplying the restrict/lift at fixed intervals during a KMC simulation
 - Operator should disturb the profile and dynamics as little as possible
 - Constrain first and third Fourier sine coefficients, A_1 and A_3 , and their std. devs.
 - Use system size $L=40$, apply lift every 400 time units



Ensemble-averaged A_1 , A_3
vs. time



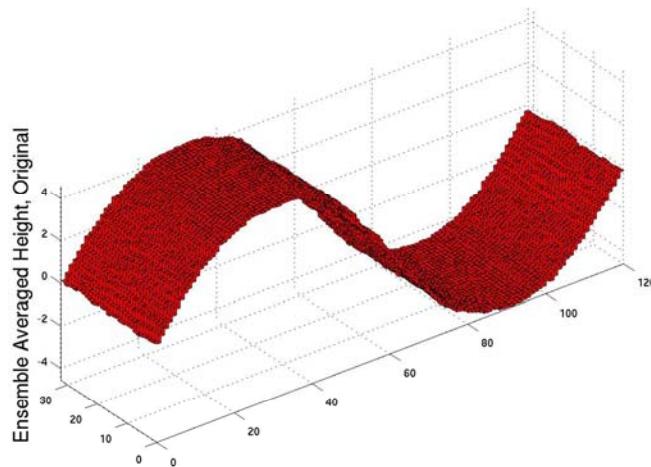
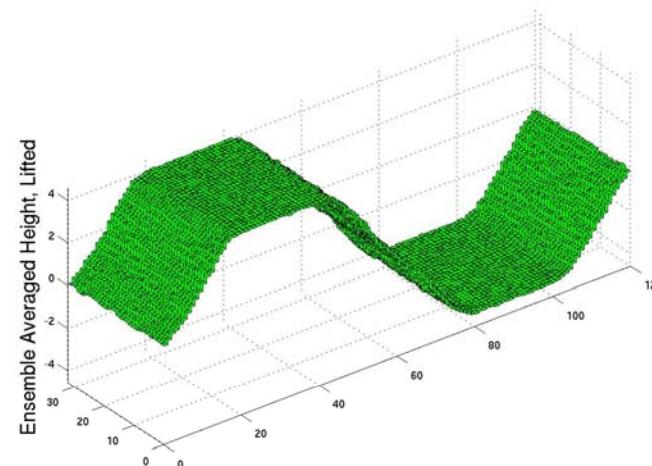
Std. dev.'s of A_1 , A_3 vs. time



Average height profile, before and
after lift, at $t=400$

Maximum Entropy Results: 3D

- **Test:** Begin with an ensemble-averaged profile from a “real” surface simulation (full single-scale KMC) and try to reproduce its shape and dynamics using Maximum Entropy method
 - Constrain first 2 odd-numbered Fourier sine coefficients (A_1 and A_3)



- Shape and dynamics are not well preserved for this case
 - Better solution may be needed for Lagrange multipliers
 - But the technique succeeded in generating a low-energy average configuration!
 - Constraining more coefficients (higher order modes) may help
 - Computational expense in 3D becomes a limitation (large systems, slow equilibration times)

Conclusions

- Two methods have been explored for a “lift” operation in the context of a **multiple timescale, equation-free projection method**
 - Both methods attempt to take given coarse-scale descriptions and use them to initialize an ensemble of fine scale system realizations
 - **Simulated Annealing:**
 - + Reasonable efficiency
 - + Very flexible in choice of constraint variables
 - ✓ Constraint of multiple variables must be balanced through penalty parameters
 - ✓ Constrains each realization individually rather than the entire ensemble
 - ✓ System dynamics is not well reproduced
 - **Maximum entropy method:**
 - + Constrains ensemble, not individual realizations
 - + Requires smallest amount of coarse scale information compared with similar methods
 - + Guarantees equilibrium in the max-entropy sense
 - + Reproduces dynamics well (when initialization to constraint is successful)
 - ✓ Computationally expensive
 - ✓ Requires specification of Lagrange multipliers in PDF – a difficult problem in general
 - ✓ Can lead to undesired, lower-energy configurations if under-constrained
- The Maximum Entropy method can be successful if:
 - Computational time to iteratively solve for Lagrange multipliers can be reduced
 - A sufficient set of coarse variables can be identified (e.g. through dimensionality reduction techniques)