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;I “)ng -Timescale Processes in Sandia

Materials Applications

e Synthesis and aging of materials driven by diffusion
processes over long timescales

— Neutron tubes, Semi-conductor electronics
— Thermoelectrics, Fusion power systems
— Radiation detectors

— Gas and energy storage materials
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Unheated particles

ong-Timescale Processes in Sandia

Materials Applications

Aging of
nanoporous Pd
particles
Courtesy of llke
Arslan (UC Davis),
Markus Ong
(Whitworth U) (both
formerly SNL-CA)
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e Current continuum models
Inadequate to describe many
of these processes

— Complex interactions, poorly
understood physics, unknown
parameters

e Timescales are too long to be
reached by most atomistic
simulation techniques

— Molecular dynamics limited by

atomic vibration timescale
(picoseconds)

— Diffusion processes may be
taking place over hours, or
even years
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'
'Extending to Longer Timescales:

quation-Free Projective Integration Method

"

» Approach:

— Use fine-scale simulations as “computational experiments” to get approximate
coarse-scale time derivatives

— Project coarse scales in time over longer timestep, and reinitialize fine scales

— |. Kevrekidis et al., Comm. Math Sci. 1 (2003) and related papers

MICRO-
SIMULATOR

Focus of this
presentation

i N L (h(t+at)-h(t =
Approximate: o = 3 (N(t+At)=h()) | T
T W
Project: h(t+AT)=h(t)+ATa—t ..... A
AT AT

| | | Sandia
—ipt l— —>i At l— At [ National .
Laboratories



est Application: Solid-on-Solid Model

* The Solid-on-Solid (SOS) model is a
simple surface representation that
mimics the physics of a real crystal
surface T e

-‘#&%—ﬁ*ﬂl

— Surface represented as array of colunmr s w-
with integer heights

— Energy based on nearest neighbor b
interactions: 0

1 & neigh(i) 20
E(h):EJ; ,Z; h—h; D

 Flat surface has minimum energy

» Kinetic Monte Carlo simulations used to obtain fine-scale
dynamics
— Each “move” is a height exchange between neighboring sites

— Implemented in SPPARKS KMC code
(www.cs.sandia.gov/~sjplimp/spparks.html)
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'
4 ' Early Results: 2D Test Problem

 Demonstrated acceleration factor of 20x on 2D problem
— Goal is to predict height decay of ensemble average over many realizations
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A single realization of thé SOS surface model Evolution of ensemble-averaged height profile

i Findings:
| | EFPI ATo2000 « Very important to choose correct coarse scale
EFPI, AT=4000 ----=--- _| . .
EFPI AT-6000 .~ parameterization

Full Integration . o ]
f . * Need to preserve higher order statistics (2-point

spatial correlations), not just average heights, to
get correct dynamics
» Fast variables must be identified and slaved to
slow variables to preserve stability

» Lift operators used here are difficult to extend to
the full 3D case

15 ¢ 5;00 —— 5300 — e Wagner et al., Int. J. for Multiscale Computational Eng.
‘ 8:423 (2010)

t
Accelerated integration using Eqn-Free method @ Sandia

Amplitude

National
Laboratories



'
4 ' Simulated Annealing

 Simulated Annealing: a stochastic method (similar to Metropolis
Monte Carlo) to drive a prescribed error function to zero

— Our S.A. procedure for solid surfaces:

» Choose a set of coarse scale functions whose ensemble-averaged values are
known

— Averages are smooth, spatially varying fields defined at nodal positions

» For a given fine-scale configuration (surface heights at all sites), project onto
smooth field spanned by cubic splines at nodes

Fine Scale Heights Projected Heights Projected Energy

* Run simulated annealing to minimize error defined by:

2 2

+...
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height error energy error variance error
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'Difficulties with Simulated Annealing

Imulated Annealing has some problems for our application:

1. Penalty parameters must be chosen carefully to simultaneously fit all goal
functions (not always possible)

Iileight Profile
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Coarse Variables: Goal vs. Actual

Energy Profile

Variance
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Variance Profile

2. SA enforces goals on every realization, while really we want to enforce
only the ensemble average

3. Most important: SA leads to realizations that do not preserve the dynamics

of the original sys
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Comparison of “full” KMC (no restrict/lift
operation) vs. run with simulated annealing
restrict/lift applied every 200K timesteps
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'
il ‘ Maximum Entropy Method

» Q: Instead of trying to specify higher order statistics (like correlation
functions), can we find a way to constrain only the coarse scale values
we care about, and allow other modes to come into equilibrium with
them?

— To run to equilbrium (e.g. in a Monte Carlo simulation), we need to know the
probability distribution function (PDF) for the system

— The theory of maximum entropy states that the relevant PDF is the one
that maximizes the entropy of the system while still satisfying the known
statistics (E.T. Jaynes, Phys Rev. 106:620, 1957)

» Entropy is given by:

H(P(h,),P(h,) )——kZP )InP(h,)

where sum is over all p033|ble height conflguratlons h

— For example, if only the average energy of the system is known, the
maximum entropy theory leads to the standard canonical ensemble

distribution:
P(h)=Cexp{-BE(h)}
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Maximum Entropy for Solid Surfaces

» Goal: constrain the ensemble averages of some set of profile
parameters A, (e.g. Fourier modes), along with their variances &7,
to prescribed values

— Maximum entropy theory leads to PDF of the form:

P(h)=Cexp{-p }exp{ Z,BA }exp{ Za( Ag"""')}

where o and £ are Lagrange multipliers that must be determined by
enforcing desired ensemble averages:

A" =X A ()P (N)=(A)

o =[Z(A —<A>)2jm

— Lagrange multipliers can be approximated or solved iteratively

— Note that unlike Simulated Annealing, the maximum entropy method
enforces averages over the ensemble of realizations, not individual

realizations @ Sandia
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Ift Operator using Maximum Entropy

4‘  Algorithm for lifting with Maximum Entropy method:

— Given: set of coarse scale profile shape parameters with known
ensemble average and std. dev.

» E.g. set of leading order Fourier coefficients A,
— Initialize a set of heights based on the mean values, <A>

— Sample, using a Metropolis Monte Carlo sampling method, a set of
realizations with the probability distribution:

P(h):Cexp{—E(h)/kBT}exp{—ZﬂiA (h) }exp{ Za (A (h)-A*) }
« Compute the resulting mean ar;d standard deV|at|on for each Ai

— Iterate, if necessary, to adjust the Lagrange multipliers ¢ and £ until the
desired statistics are obtained

» The resulting set of realizations obeys the desired statistics, but is
otherwise in equilibrium according to the maximum entropy principle
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» Test our lift operator by
reapplying the restrict/lift at
fixed intervals during a KMC
simulation

— Operator should disturb the

profile and dynamics as little
as possible

— Constrain first and third Fourier
sine coefficients, A; and A,
and their std. devs.

— Use system size L=40, apply
lift every 400 time units
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P 4 ' Maximum Entropy Results: 3D

» Test: Begin with an ensemble-averaged profile from a “real”
surface simulation (full single-scale KMC) and try to reproduce it's
shape and dynamics using Maximum Entropy method

— Constrain first 2 odd-numbered Fourier sine coefficients (A; and Ay)

Ensemble Averaged Height, Original
Ensemble Averaged Height, Lifted

» Shape and dynamics are not well preserved for this case
— Better solution may be needed for Lagrange multipliers

— But the technique succeeded in generating a low-energy average
configuration!

» Constraining more coefficients (higher order modes) may help
— Computational expense in 3D becomes a limitation (large systems, slow

equilibration times)
Sandia
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2 Conclusions
wo methods have been explored for a “lift” operation in the context of a
multiple timescale, equation-free projection method
— Both methods attempt to take given coarse-scale descriptions and use them
to initialize an ensemble of fine scale system realizations
— Simulated Annealing:
+ Reasonable efficiency
+ Very flexible in choice of constraint variables
v’ Constraint of multiple variables must be balanced through penalty parameters
v Constrains each realization individually rather than the entire ensemble
v System dynamics is not well reproduced
— Maximum entropy method:
+ Constrains ensemble, not individual realizations

+ Requires smallest amount of coarse scale information compared with similar
methods

+ Guarantees equilibrium in the max-entropy sense

+ Reproduces dynamics well (when initialization to constraint is successful)
v’ Computationally expensive

v'Requires specification of Lagrange multipliers in PDF — a difficult problem in general
v Can lead to undesired, lower-energy configurations if under-constrained

 The Maximum Entropy method can be successful if:
— Computational time to iteratively solve for Lagrange multipliers can be

reduced
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— A sufficient set of coarse variables can be identified (e.g. through
dimensionality reduction techniques)



