

Overview of the Interagency Biological Restoration Demonstration (IBRD) Project

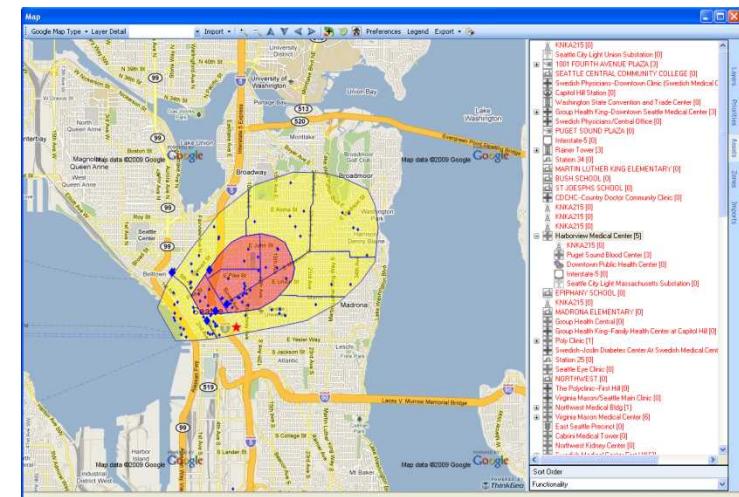
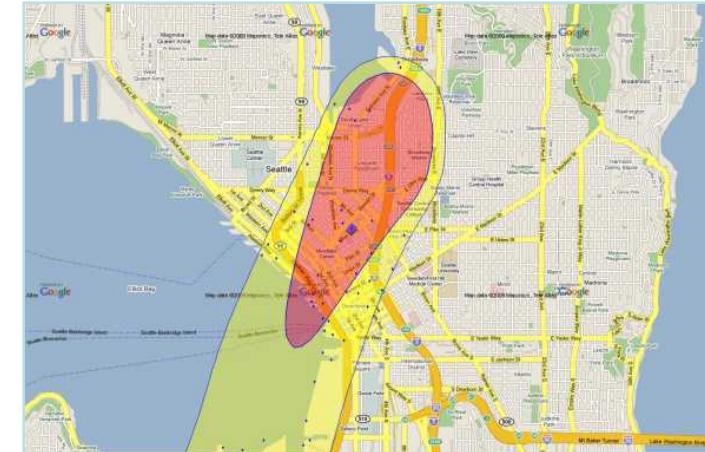
**J. Bruce Kelley
Mark D. Tucker, Ph.D.
Sandia National Laboratories**

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

National response to the 2001 anthrax incidents was costly and time consuming

- Postal facilities, Senate buildings, and news organizations were contaminated
- Very little experience decontaminating large indoor facilities
- CDC reports that over **125,000** samples were tested at LRN laboratories costing **\$25-30M**
- Many facilities were closed for years and restored at great cost
 - Capitol Hill (4 mo, **\$42M**)
 - Brentwood (26 mo, **\$130M**)
 - US Postal Facilities (3+ yr, **\$800M**)

Sandia has worked to improve the facility remediation process since 2002

Recovery from a wide area biothreat agent release will be orders of magnitude more complex

National Planning Scenario 2 deals with one or more aerosol releases of anthrax in one or more large metropolitan areas. There may be 10's of thousands of people affected, thousands of buildings impacted, 10's of square kilometers contaminated, and billions of dollars in economic consequences.

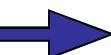
Remediation and recovery will be a significant challenge.

The IBRD project was initiated to address this scenario

IBRD Objectives/Performers

IBRD project objectives:

- Develop comprehensive guidance for restoration and recovery following a National Planning Scenario 2 attack, considering civilian/military cooperation
- Evaluate the technology gaps that exist today
- Develop technology, where appropriate, to fill these gaps, with an emphasis on saving time and money in the restoration process
- Exercise/demonstrate the remediation process

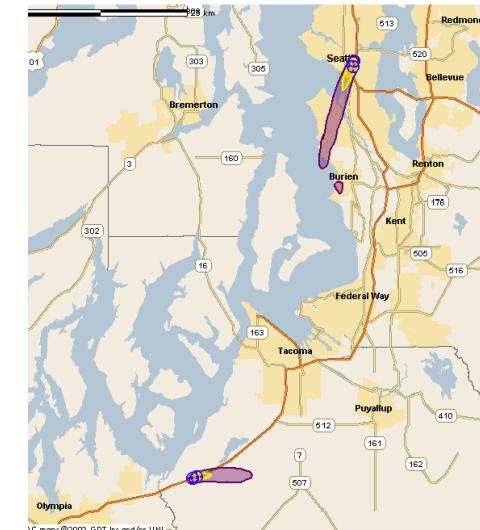

Project funded by the Department of Homeland Security - Science & Technology Directorate and the Department of Defense - Defense Threat Reduction Agency

IBRD Program Managers:

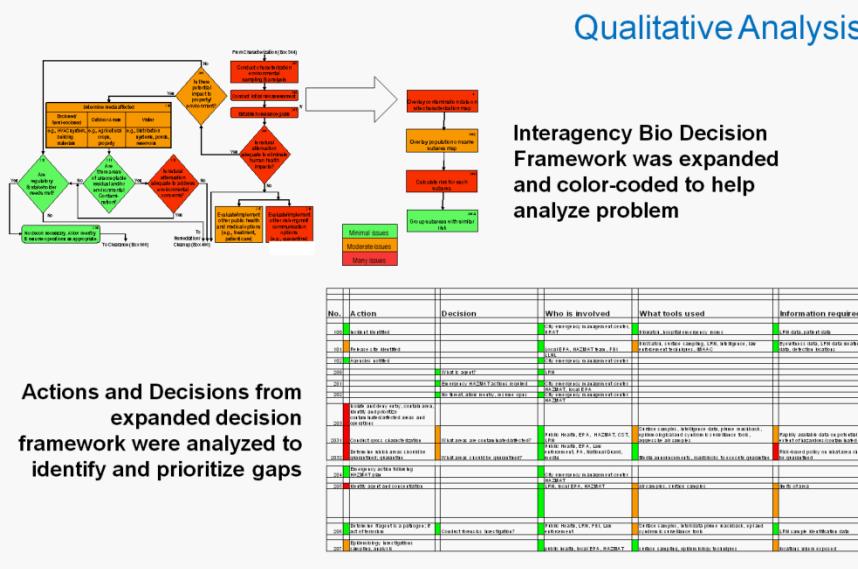
- Chris Russell, DHS-S&T
- Ryan Madden, DoD-DTRA

National Laboratory Participants:

- Sandia National Laboratories
- Lawrence Livermore National Laboratory
- Pacific Northwest National Laboratory
- Los Alamos National Laboratory

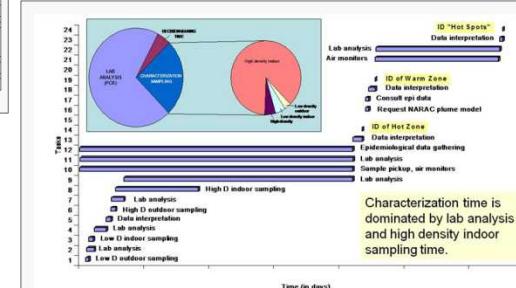
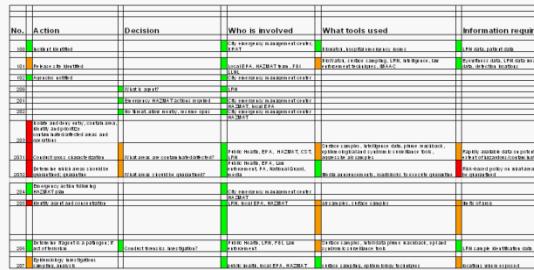


Sandia contributed to the four focus areas of IBRD



- **Systems Study**
 - Comprehensive systems study to identify policy, data, technology, and capability gaps
 - Prioritization of gaps to guide IBRD investment
- **Consequence Management Planning**
 - Comprehensive guidance document (in collaboration with locals)
 - Analysis and simulation tools for detailed planning and analysis
- **Technology Development**
 - Decision support tool development
 - Agent fate studies
 - Owner performed decon protocol development
 - Sample collection efficiency studies
- **Workshops/Exercises**
 - Participation in numerous workshops/exercises
 - SIMEX

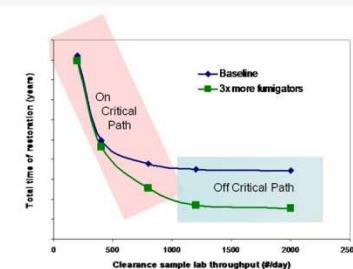
Systems study methodology

Actions and Decisions from expanded decision framework were analyzed to identify and prioritize gaps

Policy, data, technology and capability gaps were identified through a qualitative and quantitative analysis process

Qualitative Analysis


Interagency Bio Decision Framework was expanded and color-coded to help analyze problem

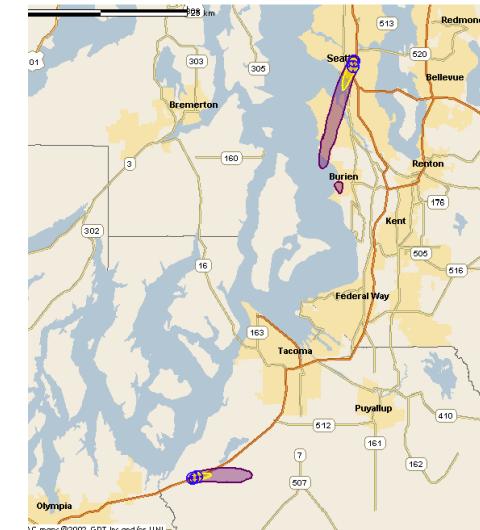
Example results from the gap prioritization quantitative analysis: (calculated using Analyzer for Wide Area Restoration Effectiveness (AWARE) Tool):

Quantitative Analysis

The AWARE tool was run to quantify and prioritize gaps

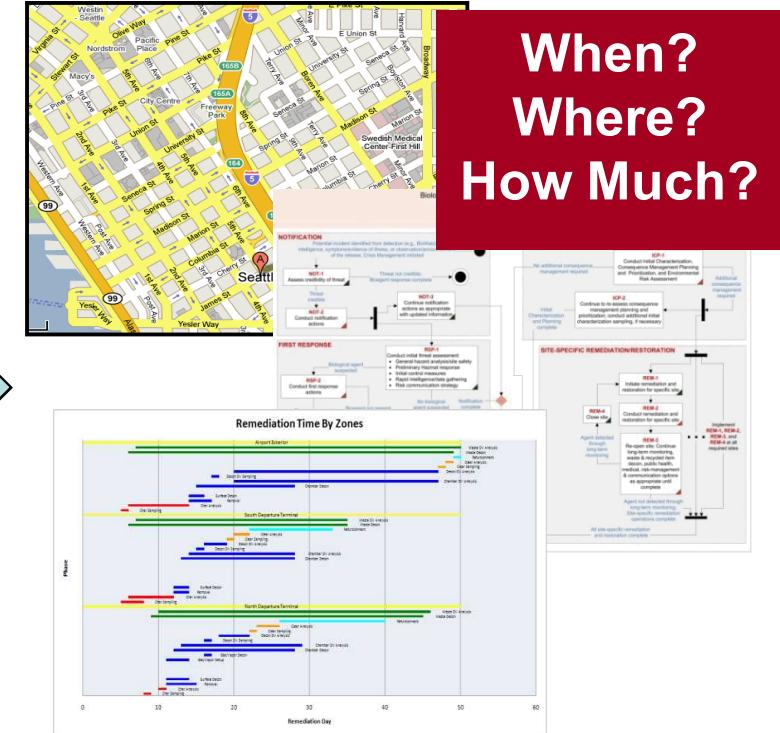
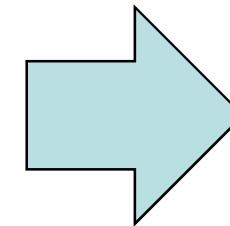
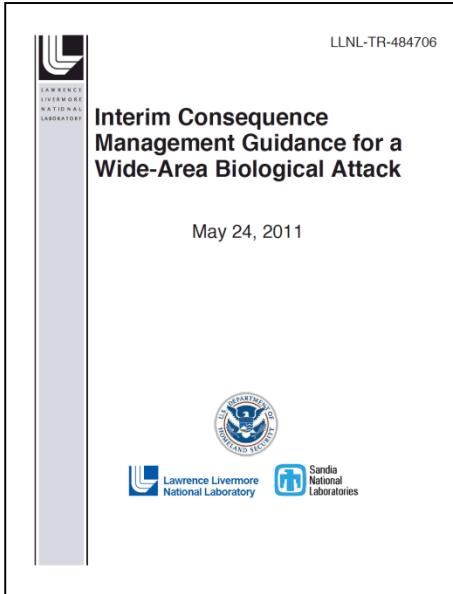
High priority technical gaps were identified through the systems study

(not in order of priority; represents a subset of a longer list of gaps)


Area	Technical gap
Health risk	1. Data to inform acceptable risk levels
Agent fate and transport	2. Understanding of natural attenuation of spores 3. Understanding of spore re-aerosolization and tracking
Characterization	4. Strategy for setting hot zone boundaries 5. Throughput for sample analysis
Indoor decontamination	6. Throughput for indoor decon 7. Guidance and policy on self-decon
Outdoor decontamination	8. Validated methods for outdoor decon
Clearance	9. Risk-based clearance policies suitable for wide area 10. Clearance strategies suitable for wide area
Prioritization	11. Methodology for prioritizing critical infrastructure for restoration
Solid waste disposal	12. Methods and policy for treating, transporting and disposing of contaminated solid waste
Planning	13. Planning tools for wide area restoration 14. Community resiliency planning

Sandia contributed to the four focus areas of IBRD

- **Systems Study**
 - Comprehensive systems study to identify policy, data, technology, and capability gaps
 - Prioritization of gaps to guide IBRD investment
- **Consequence Management Planning**
 - Comprehensive guidance document (in collaboration with locals)
 - Analysis and simulation tools for detailed planning and analysis
- **Technology Development**
 - Decision support tool development
 - Agent fate studies
 - Owner performed decon protocol development
 - Sample collection efficiency studies
- **Workshops/Exercises**
 - Participation in numerous workshops/exercises
 - SIMEX

A method is needed to effectively plan for remediation incidents in facilities

What?

When?
Where?
How Much?

Guidance documents provide general information to plan remediation incidents

Decision support systems and/or simulation tools can be used for detailed planning for remediation incidents

Recovery planning will involve complex technical issues as well as traditional project management issues

A suite of decision support tools were developed to aid in restoration/recovery planning and analysis

Bio release detected or suspected

IMAAC, HPAC, BioWatch Phase 2, or Early Screening for initial estimates of contaminated area

GIS Engine collects & organizes all relevant facility/area information

ADVISER is an overarching response and restoration decision framework

Incident timeline

PATH prioritizes assets, facilities and areas for remediation

BROOM is used for data collection, management and analysis during all phases of remediation

AWARE and **RESTORe** define and allocate remediation resources, tactics; time and cost estimates

Decon Technology Selection Tool guides decon strategy

PATH and AWARE enable detailed planning and analysis of the complex wide area recovery process

PATH / AWARE

File View Window Help

AWARE

General Scenario **Zones** Building Infiltration Resources Sampling Lab Screening Outdoor Indoor Characterization Outdoor Indoor Summary Decon Outdoor Thresholds Indoor Surface Treatment Indoor Fumigation Indoor Self Clearance Outdoor Indoor Surface Treatment Indoor Fumigation

Deposition Zone Summary

Zone Size
Red zones: 3.020 square km are highly contaminated
Yellow zones: 2.886 square km are moderately contaminated
Green zones: 0.000 square km are insignificantly contaminated

Indoor Area

Usage	# Red Bldgs	Red Area (ft ²)	% of Red Area	# Yellow Bldgs	Yellow Area (ft ²)	% of Yellow Area
Residential	628	12,573,474	41%	454	9,572,464	49%
Commercial	228	11,101,639	36%	190	7,348,758	37%
Mixed	28	1,793,472	6%	26	535,589	3%
Industrial	71	2,947,094	10%	59	1,436,541	7%
Public	35	2,493,471	8%	30	836,959	4%
Total	990	30,909,150		759	19,730,711	

Indoor Contamination Potential

Level	# Red Bldgs	Red Area (ft ²)	% of Red Area
Very High	9	93,302	0%
High	198	6,479,562	21%
Moderate	578	16,892,257	55%
Low	198	6,453,998	21%
Very Low	7	990,032	3%

Utilizes Google Maps Imagery

AWARE can import plume maps (e.g., IMAAC) or the user can describe an area of interest. Then a built-in building database is mined to determine the extent of possible damage/contamination (e.g., area, number of buildings, square footage of indoor contamination, critical infrastructure assets).

PATH/AWARE output enables better decision-making

PATH / AWARE - [PATH (Beta-Release -- Not for public distribution)]

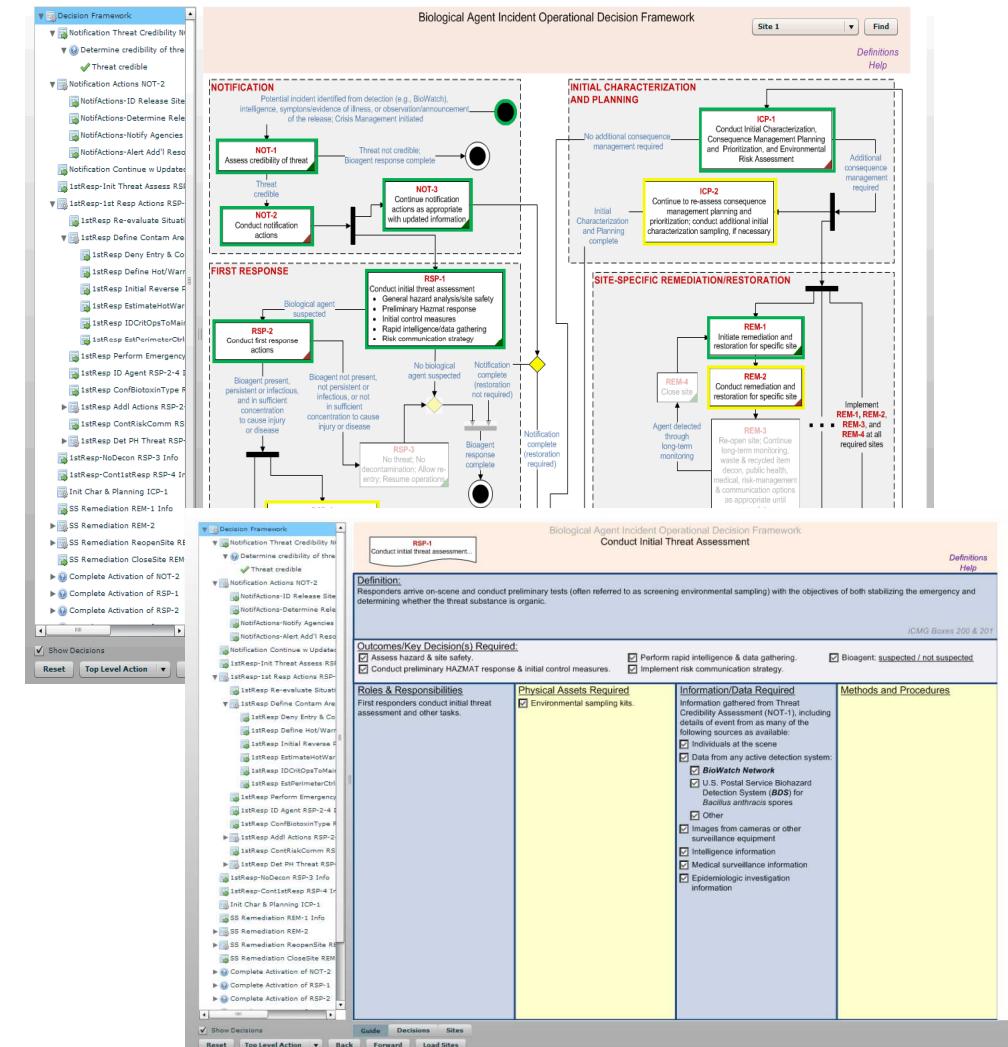

File View Window Help

Prioritization Objectives Critical Infrastructure Asset List Prioritization Objective Asset Contribution Asset Prioritization Asset Dependency Viewer

Pri Name Category Special... Overall... Maintain Economy Mini... Maintain Public Safety Maintain Public Health

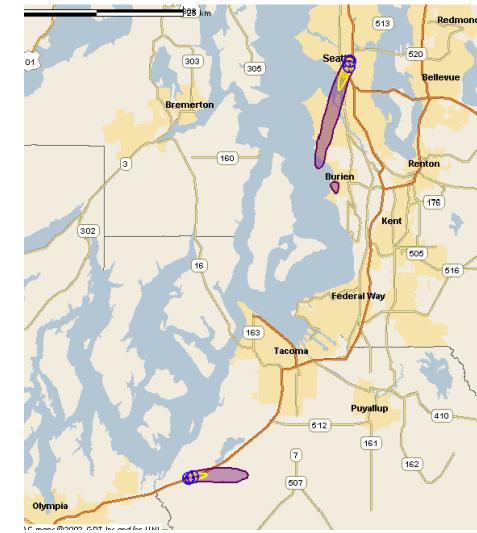
Pri	Name	Category	Special...	Overall...	Maintain Economy	Mini...	Maintain Public Safety	Maintain Public Health
1	Interstate B	Highways	EA	0.13	0.97	0.00	0.00	0.00
2	Blood Bank A	Hospital	EA	0.13	0.86	0.00	0.00	0.00
3	Hospital D	Hospital		0.13	0.00	0.00	0.00	0.99
4	Military asset	CellularTowers		0.14	0.96	0.00	0.97	0.00
5	Hospital B	Hospital		0.08	0.92	0.00	0.00	0.98
6	Fire Station 12 (EOC)	Fire		0.07	0.00	0.00	0.99	0.00
7	Police HQ	Police	EA	0.07	0.00	0.00	0.93	0.00
8	Police Station A	Police		0.07	0.00	0.00	0.98	0.00
9	Hospital C	Hospital		0.06	0.84	0.00	0.00	0.97
10	Port Railyards	Railyards	EA	0.04	0.00	0.00	0.00	0.00
11	Port Terminal A	Ports		0.04	0.99	0.00	0.00	0.00
12	Army Medical Center	Hospital		0.04	0.91	0.00	0.00	0.96

A logical, transparent, priority list provides a starting point for prioritization negotiation and decision making

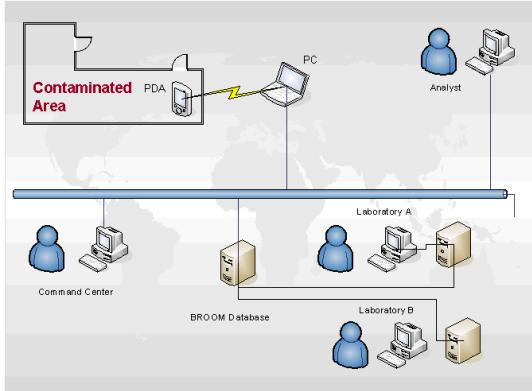

Characterization
Waste
Decon
Clearance

ADVISER: Automated Decision Visualization and Information System for Emergency Response/Recovery

- Codifies complex process documentation into an easy to follow, interactive diagram
- Tracks and shares the decision making process between multiple users
- Users can quickly see how their task fits into the overall process
- Allows for the linking of tools and information sources needed to complete the process steps
- Allows for different “views” of the process (i.e., an EPA view, a sampling team view, etc.)



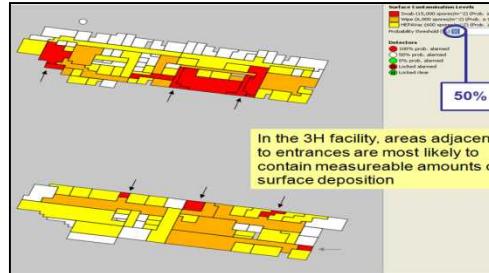
Sandia contributed to the four focus areas of IBRD


- **Systems Study**
 - Comprehensive systems study to identify policy, data, technology, and capability gaps
 - Prioritization of gaps to guide IBRD investment
- **Consequence Management Planning**
 - Comprehensive guidance document (in collaboration with locals)
 - Analysis and simulation tools for detailed planning and analysis
- **Technology Development**
 - Decision support tool development
 - Agent fate studies
 - Owner performed decon protocol development
 - Sample collection efficiency studies
- **Workshops/Exercises**
 - Participation in numerous workshops/exercises
 - SIMEX

Sandia conducted several technology development efforts to improve restoration/recovery operations

BROOM

- Continued development
- Improved GIS
- Lab interface
- Deployments in exercises & demonstrations


Owner-performed decon protocol development

- Identify & develop decontaminants for owner-performed decon
- Tested protocols
- Worked closely with US EPA
- Used peroxide-based decontaminants

Agent Fate/Building Infiltration Studies

- Study infiltration of buildings
- Determine most likely infiltration pathways
- Develop sampling methods to determine if buildings have been contaminated
- Reduce restoration timelines by reducing number of required samples

Sample Collection Efficiency Studies

Collection Method	Surface	Mean Recovery Efficiency (n=24)	Median Recovery Efficiency (n=24)
Swab	Stainless Steel	0.461 ± 0.154	0.455
	Painted Wallboard	0.483 ± 0.224	0.442
Wipe	Stainless Steel	0.590 ± 0.173	0.573
	Painted Wallboard	0.460 ± 0.291	0.377
Vacuum	Stainless Steel	0.174 ± 0.138	0.118
	Painted Wallboard	0.268 ± 0.030	0.022
	Carpet	0.253 ± 0.068	0.248
	Bare Concrete	0.181 ± 0.072	0.173

- Identify best sampling methods
- Help determine number of required samples
- Led to new project with the VSP Working Group

The Sandia contributions to IBRD have had a significant impact

- **Impact on national policy**
 - Improved understanding of time, cost, resources required for wide area restoration
 - Emphasis on owner-performed decon by EPA
 - Greater understanding of sampling/agent fate issues
- **Impact at the local level**
 - Local emergency planners are using Sandia-developed tools for planning of real events
 - Local stakeholders have much improved understanding of wide area recovery
- **New work at Sandia**
 - WARRP (Wide Area Recovery & Resiliency Program – IBRD follow-on in Denver, CO)
 - TaCBRD (Trans-Atlantic Collaborative Biological Resiliency Program - International IBRD follow-on in Western Europe)
 - IBRD Tools Transition project (transition of Sandia-developed tools to web-based and use at the local level for planning)
 - Additional sample collection efficiency work (VSP)

