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. One 1nspiration for semiconductor
= quantum computing

Petta, Science, 2005

» Energy

Elements:
* Two level system
- m=0 subspace of 2 electrons
» Electrically tunable (tunnel coupling)
» Charge sense




Motivation for Silicon Qubits
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Witzel et al, PRL 105, 187602 (2010)

GaAs has non-zero nuclear spin
isotopes shorten T,

Si isotope enrichment removes
nuclear spin, long T,

Nuclear spins can be useful for
rotations between S & TO but
off/on is better and it limits T,

Recent device progress in
electron spin manipulation (spin
read-out & evidence of
coherence)

— UNSW (donors)
— UCLA (MOS)
— HRL (SiGe mod. doped)

— U. Wisconsin (SiGe mod.
doped)
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Quantum Circuit (Logical

- ¢ Memory) Classical-Quantum
o —) S
o—o ~~._ Interface
O —
Does T, need to be really long? (p~10+4 ?)
EHEH—H-® N
Some conc!usions f'rom logical memgry [0°] [x] xX]—@
— Scheduling conflicts lead to more idles -~ .
(e.g., electronics & DD itself) Physical Qubit
— if T, error is non-negligible gates ' Pulse
requirements are more strict (Generators A0
T 1T 1 ww
— Circuit would shows benefit at
p~5x104assuming negligible idle
error Read-Out
— Marginal with present GaAs T, _____ 1T 1T T T oo~
S T CMOS Circuits: 1 Logical
Levy et al. SF;(AA_1(12009) ot e { : \'_ ]
Levy et al. arXiv:1105.0682 (2011) m Muxes (21 physical)
DQD qubit encodings might work for

adiabatic approach (both Si & GaAs) @

Chip Level Circuit (21 qubits 1) Santia Nationa Laboratorie




>~ PR Enhancement Mode Si Quantum Dots
T I R a w il dwl

N\

Sio,

250 A Nitride >

etch stop

« Many silicon approaches

 SNL looking at enhancement mode & Si foundry approach
* This talk: MOS & SiGe/sSi

GaAs design to Si?

b
Motivations .ﬂ
1. Platform is modular design for both donors and SiGe/sSi :‘é

2. Tunable parameters (density, valley splitting, g-factor?)
3. No dopants

4. Start with MOS:
* well understood material system Petta et al. [2005]
» overlapped interests for other Si approaches

5. CMOS compatible (MOS) 1111} Sandia National Laboratories




Enhancement mode quantum dot concept

Depletion Accumulation
Gates Gate
Accumulation :
(2DEG) Oxide
~
Insulator £
Si o
A \:/ A\ \:/ v '
>
80
S
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e S < -~ R Y - |- Fermi e
Ec -

Length ’ E % TE E

Structure provides 3D confinement
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Coulomb blockade

Periodic resonances understood by evenly

spaced chemical potential energy levels
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gate voltage Vg

Equally spaced energy levels related
to charging energy of capacitance

Periodic current resonances
produces — “Coulomb blockade”

Low temperatures required (T << 4K)

C,,. ~ 16 aF

AV ~1mV
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Early challenge to MOS QDs

Charge defects & effective mass
1. Uncertain confinement potential

Mobile lonic

o, © © ©® ‘:dgmpped 2. Unintentional dots
R Charge 3. Fluctuators (TLS)
Fixed Oxide
5—.25A + + + + + + + + + + Charge
SO, AT S S S e S S S S ?:;:;g; Magnetic defects
si o 1. Non-uniform magnetic field
2. Time varying magnetic field (if not
polarizable)
Disorder &
Ideal Barriers unintentional dot
$i0, ;

69?65?6?5

Si

qubit — ! Sb (or other donor)

C

Unintentional dot
117! Sandia National Laboratories
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- ¢ How 1s device made: “Front-end”

- P

Sio, SiO,

n+ =
250 A Nitride

Silicon Substrate with 100A or 350A Gate Oxide .

MOS Stack from Si fab

QDs possible with 0.18 Om litho
EDMR for external community
7,500 — 15,000 mobility, high
resistivity substrates

T. Pluym (1) Sandia National Laboratories




- P Back-end processing

250 A
Nitride etch
stop

GaAs design to Si

Micro-fab facility
E-beam lithography
Poly-silicon etch
Aluminum oxide
Top Al gate

aagd

Low parasitic RF die

N

yees
T. Pluym, B. Silva, J. Dominguez, N. Bishop
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~ Immediate Challenge: Charge Defects

Qo (Al,O5) <0
Qmobile =7?

Qinterface = ?

Q(Si0,) > 0
D;(SiO,) >0

Si Fab QD Fab
mobility: ~15,000 (cm?V-1s'1) => ~200
D, : ~10'% eV-'cm-2 => ~10"2
Qg - ~10™ cm™ => ~10"2
G. Ten Eyck 1) Sandia National Laboratories




G (107 &’/h)

Sandia quantum dot platform
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0.6 p=— =
0.4 = —
0.2

-1.30 -1.20 -1.10 -1.00

Nordberg et al., PRB (2009)
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Improved processes (test stack):
Mobility: 8,000 (cm?V-1s™1) [T~4K]
D, :2.9x 10" eV-1cm

Q,y i 1.1 x 10" cm™

~ 1 charges per QD (r =12 nm)
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Lithographic dot verification

eDensity [om?-3)

B 35E47

Source ' 28E+17

ZAE+17
1.4E+17

. 7OE+16
3.8E-62

A: 0.9V
: -0.5Vv
:-2.1V
: Ground
Top: 5V

Gate experiment | Model
[aF] [aF] _

A 6 6.2 Gates &

QD in Si
B 3.2 3.3
C 3.3 3.4

+ Measured capacitances are consistent with lithographically

D 7.2 7.3 formed dots
Top 14.6 14.4 « Signal is consistent with 3D capacitance estimates for coupling

Stalford et al., IEEE T. Nanotechnology 1) Sandia National Laboratories
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depletiomn
cyent e

Al bop gyate lr.f'-
[ Si subssirale 3 nan ‘

TG =5.0V

T=-0.3V

CP=-12V

R=-2.0V

L. Tracy, et al.
APL 2010

WP (V)

Reconfigurable Dot with Gates
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_0_1/ CP 1.2V
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Next step: reduce electron number

Smaller area design for fewer electrons
- Dot Current

Current

U

0.7
-0.65
0.6

O -0.55
0.5
-0.45
0.4

-3.5 -3 -2.5
RP

-2

-1.5 -1 -0.5

Charge sensor Current < 107

-0.7

Charge sensor detects many more
0,0 -0.65
transitions \

-0.6

Charge sensor susceptible to metastable S

behavior of QD (are we at N ~ 1?) 05

* tunneling rate characterization w/ sensor 0.45

« this device started to drift o B SRR
 semi-classical modeling => N~30-40 RP

M. Lilly & K. Tan

!

ITﬂ“i" (i

@J Sandia National Laboratories



- PG Challenges to achieving few electron

$486
Top Metal Gate = 8V Q(ox/si) = -4x10" cm?, Q(ox/ald)=0

0.4

C,op agree with simulation (+/-20%) at 32 electrons

-0.4V

Approach: open tunnel barrier

86 Barriers, Q=-4x10""em™2

=0K
& AN o

Ec-Efn (meV), T:

0 0.1 0.2 0.3 0.4 0.5 0.6

Distance (um)
Vth-barrier
R. Young (i) sandia National Laboratories




Top Gate [V]

L
el

oa 0a
| oo

t
[}

Wider tunnel barrier

Last “visible” transition

¢

Vertical Plunger [V]

« Edge of transport through dot observed
» Several possible reasons

- No additional

transitions over wide

- Viep Scan (tunnel

barrier opening).

-3.5 -3

Vertical plunger [V]

— tunnel barrier is gradually turning off (often the case)

— Last electron

« This case is not gradual and no additional transitions are observed ove

reasonably large V, scan

Sandia National Laboratories



Indicators of last electron

-2.5

Z -3
P
(D]
&
=
A -35
=
2
5
> 4

5 I
Drain Voltage [mV]

-9.5

1-10.5

1-11

-11.5

-12

No transitions observed at high V4, beyond -
4V on plunger

V¢4 €can be set that all levels in dot can empty

Edge of opening corresponds to line-up of
energy level with Fermi energy

Ideal case, well depth is no greater than
Fermi energy

Largest charging energy approximately equal
to Fermi energy (5-6 meV)
—  This sample examined up to ~2*Fermi energy

Three measurements suggestive of N=1
—  Other groups have used this as a test of N=1

117! Sandia National Laboratories




- ¢ Last electron modeling

Semiclassical CI modification to TCAD
Top Metal Gate Vag = 3.9V Q(ox/si) =-3.8x10" em2 Top Metal Gate Vag = 3.9V Q(ox/si) = -3.8x10" em?

eDensity contours
in 2x10" cm2 increments
from 2x10'% to 2x10" em2

eDensity contours
in 2x10' em? increments
from 2x10' to 2x10" cm?

1.6 electrons 0.9 electrons

Qitb = 8.3x107 cm? Qyp, = 9.0x107 cm?

Qdb = 8.1x107 em? Qg = 1.0x10% em?

gag = ;g _a:_ Q= 2.34x10" cm?

Cosar T

G =06 aF @k

G = 05 8 Co=02aF

o =20aF C\=03aF

Cp=10aF
Cp =39aF
e%/C,, = 41 meV

» Configuration interaction loop integrated with commercial TCAD package
— Rapid convergence with effective mass calculation after single charge reconfiguration step

— Clmodel predicts approximately 2x smaller

» Top gate and vertical plunger capacitances in good agreement with model
Ctop-meas ~ 2.6 aF (Ctop-sim-N=1 =22 aF) @ Sandia National Laboratories



Charge-Sensing to few electron (similar design)

LW and CP

Current in charge sensor Derivative & FFT noise filter
o i x 10
1.4
2.5
2 1.2
B 1.5 o i E
1 E e &
g O -
Hos 5 08§
- E
R’ ‘i’. 3 usg
-0.5 jr:’ﬁ 0. H =
-0. - - - = 04 &
-0.95[ i 0. NRSEY '
' ‘-_"‘1--;.._ - Ly Different slopes
4 o L 4 0.2
0 -2
-1.05 0
-4 3 -2 1 0
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- Last electron in MOS?

5 07
%2.5 a ’
= R’y
S Ve
E 11 " Y A/
= -35 115 '{Wﬁ
S 10N O
§ ) 7, pinchers
4.5 vigm av (K. Eng & L. Tracy)
Wg=-75V
30 20 10 u] 10 20 30 T=0.25K
VSd [mV] 12 ] G(@")
« Common in MOS for charging ° o
energy to rapidly increase as N => 1 :
 Charge sensing also detects outlier(s) [ 3 ;
. -6
» Large area devices produce small dot . _
-10
‘ g ‘7 -13.0 -125 -120 -115 -11.0 -105
charging energies" FARRY

111! Sandia National Laboratories
S




Last electron modeling

Top Metal Gate VVag = 3.9V Q(ox/si) = -3.

eDensity contours
in2x10'° em? increments
from 2x10'0 to 2x10" cm2

0.9 electrons

Qyp, = 9.0x107 cm?
Qg = 1.0x10% em?
Qg = 2.34x10" cm?
Co=22aF
Cop=0.2 aF

-Ck) =0.2aF
C,=03aF
C,=10aF

Ci =39 aF
e%/C,, = 41 meV

0] 20 40 60 80 100
x {(hm)

D, or Q,, (cm2eV1) or (cm3)
1x10° > 0.04 per QD
1x10' - 0.4 per QD
1x102 - 4 perQD

» Single positive charge at Si02 interface can strongly localize electron & large binding E
» Last transitions jump in charging energy? Operate in closed shell N>1?

» But electrostatic dot is also predicted to be very small in some cases

— Similar sizes predicted (~20 nm x 20 nm)

117! Sandia National Laboratories




.~ Enhancement Mode SiGe/sSi: High Mobility & Modular
Change to MOS Flow

dwlJw 2 V=0 Wil Jwl

SiO, Al SiO,
T OO O - 50 nm
: LPCVD
SiGe & relaxed buffer sl e 8i0,
Reduced
J: 2nm Cr/300nm Au 1 temperature
RTA
- 1500 cydes,ALD A129% B Undoped SiGe Heterostructure
| 1nm Si cap i
AuSb oo SiGe barrier | AUSP Lu et. al., APL 94, 182102 (2009)
[Foures dix) | Mobility ~1.6x106 cm?/V's

15nm Si quantum well

1pum SiGe barrier

graded SiGe buffer

Si substrate

111! Sandia National Laboratories
S




— K . Back to the fab: S1Ge/sS1

(a) 25 nm TiN /100 nmW /50 nm TiN /20 nm Ti

300 nm HDP oxide /
35 nm SisN, /
15 nm steam oxide

2 nm Si cap layer
95 nm Siy ;Geg 5 barrier layer
15 nm Si quantum well

Siy ;Ge 5 relaxed buffer layer

153 nm Si, ;,Ge, 5 barrier layer

rrrT———— —6nm-Si-quantum-welt———
* Modifications: v /"
100000 |- " -

I~ Substrate | 313 nm Si, ,Ge, 5 buffer layer

2. Gate dielectric 5 oo |

3. Implant & anneals % )
e Questions: = ' CMP interface

1. Ge/Si diffusion O 5 6 SlosGeos b, .ﬁ Lyl

2. Surface pinning n (10"/em’)

3. Mobilty

(1) Sandia National Laboratories




Transport through S1Ge/sS1 dot

25nm TiN /100 nm W/ 50 nm TiN / 20 nm Ti

@)

300 nm HDP oxide /
35 nm SizNy /

15 nm steam oxide
|Po|y Si

50 nm Si;N,
2 nm Si cap layer
95 nm Si, ;Gey 5 barrier layer
15 nm Si quantum well

Siy 7Geg 2 relaxed buffer layer

(c) .' 7
A\

Double top gated quantum dot w/ DUV lithography
Relatively regular CB observed w/ small charging

energy

-02

-025

LW

-03

-0.35

-04

-046 -044 -042 -04 -038 -036 -034 -032 -03
R (V)

Lu et al, (in preparation)
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Charge sensing: last transition

lldot(LL,LR)

LR (V)

-0.9 -0.8
LL (V)

Opposite channel used as charge sensor
Last transition in region of high sensitivity of sensor

- looks like the last electron

Problem: charge stability

Wiy o i
05" ind o 2ael o) A i
-05 -045 -04 -035 -03 -025 -0.2 -0.15
UL (V)



LR (V)

Summary

CP=1V
2gi tration, C -3 -0.17 )
17 18 I COHC?S e zoN fom )21 22 G (Q 1) Top Gate
10 10 10 10 10 10 \
R e e .
10 E H < 1/R? regime (dipolar) [ Theory, B 1 (100] E -0.18 6.080E-:
N «— Theory, B||[111]
10°E O Experiment, B || [100] E
F Experiment, B || [111] 3 <
10°F % Experiment, - ?, 0.19
E 1.2:10'%/cm® donors 3
B : SiO,
@ 10 -0.20 y
I ALD Al,O;
107 F
o -0.21 -2.000E-| SiHandle Poly-silicon Depletion Gate
107F
10"12
contact hyperfine regime -0.22
T T T -0.04 -0.02
107 10" 10 10° 10* 10° 10°
EP (V)

ppm
* Decoherence times can be long in Si
— Relationship to impurities and enrichment well understood
— Relationship to surfaces is still open

disensor/dUC
3 — DD, DCG and OC show promise to reach logical circuit requirements

» Lateral, S1 DQD platforms demonstrated

Low damage for MOS (Q;~ 10'! cm? , D, ~ 10'9 cm™ eV-!, mobility ~
8000)

— 150,000 mobility for SiGe/sSi
—  MOS because of infrastructure, donors and learning
—  SiGe/sSi because of more ideal system

* Double quantum dot & charge sensing of few (last) electron

Ly e Lots still to do:
—  Few electron charge sensed DQD (S/T)

117! Sandia National Laboratories
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