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Objectives: The objectives are (1) to use peridynamic 
theory (PD) to identify key parameters and determine 
their relative importance for tunnel wall stability and (2) 
to develop advanced numerical models that relate 
ground motion parameters, rock strength properties, 
and tunnel geometry and reinforcement. 

Relevance: The proposed research will provide (1) a  
greater knowledge and understanding of physical 
phenomena and observable facts pertinent to tunnel 
wall stability under shock loading and (2) a scientific 
basis to enhance our capabilities to defeat WMD.

Approach: Our approach is based on the peridynamic 
theory of continuum mechanics with its non-local, 
pairwise interactions and failure determined at the 
bond level. The research investigates (1) the 
representation of rock as a random, peridynamic 
material, (2) the fundamental physics of shock 
propagation through complex, fractured media, and (3) 
the failure of such media at boundaries. 

Personnel Support: The project will partially support 
Dr. Paul N. Demmie at Sandia National Laboratories 
and Dr. Martin Ostoja-Starzewski at the University of 
Illinois.  An objective of the project is to train university 
students.  Therefore, the project will support one 
graduate student full time and partially support another 
graduate student at the University of Illinois.

A New Approach to Understanding the Fundamental A New Approach to Understanding the Fundamental 
Physical Phenomena Governing Tunnel Wall Stability under Physical Phenomena Governing Tunnel Wall Stability under 

Shock Loading using Peridynamic Theory,Shock Loading using Peridynamic Theory,
Dr. Paul N. Demmie, Sandia National Laboratories, Dr. Paul N. Demmie, Sandia National Laboratories, 

Award Number HDTRA1Award Number HDTRA1--0808--1010--BRCWMDBRCWMD
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Peridynamic theoryPeridynamic theory (PD) is a theory of continuum mechanics that uses (PD) is a theory of continuum mechanics that uses differodiffero--
integral equations without spatial derivatives rather than partiintegral equations without spatial derivatives rather than partial differential al differential 
equations.equations.
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Tasks:
• FY10: Represent rock as a random PD material.

Study shock propagation in PD.
• FY11: Represent rock as a random-fractal-PD 

material.
Study shock propagation in such PD materials

FY12:  Investigate boundary effects and tunnel wall
stability. 
Validate numerical models and identify key
parameters and their relative importance.

Funding Profile:
FY10: $180K; FY11: $189K ; FY12: $199K 

Principal Investigator (PI) Contact Information:
Dr. Paul N. Demmie, 505-844-7400, pndemmi@sandia.gov

mailto:pndemmi@sandia.gov
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1. To obtain a better understanding of the fundamental physical 
phenomena governing tunnel wall stability under shock loading 
including identification of key parameters and their relative 
importance for tunnel wall stability during shock loading.

2. To develop advanced numerical models that relate ground motion 
parameters, rock strength properties, tunnel geometry, features, and 
reinforcement such as rock bolts.

Project ObjectivesProject Objectives
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• The stability of tunnels in hard rock geologies under ground shock loading is of direct 
consequence to studies of vulnerability or survivability of deeply-buried hard targets. 

Background and SignificanceBackground and Significance

• Host media is characterized by highly jointed, 
faulted, and irregular 3D geology.

• The physical processes and parameters that 
determine stability include tunnel depth, geometry 
and dimensions, rock strength, character of joints 
and faults, wall reinforcement, and the magnitude 
and duration of ground shock.

• To meet these challenges, peridynamic theory, the mechanics of 
random media, and the mechanics of fractal media will be combined. 

• Relationships between ground motion parameters, rock properties, tunnel characteristic 
and reinforcement, need to be understood, and advanced numerical models 
incorporating such relationships need to be developed. 

• Ground shock propagation in hard rock geologies, 
and the basic interaction and response of tunnels 
to ground shock loading has been the subject of 
considerable research.  However, there is 
insufficient understanding of the interactions of the 
dynamic loading near tunnels and at tunnel walls 
and the degree of such loading required to 
destabilize the walls and produce rock ejection, 
spallation, or collapse. 
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Computational Method: Peridynamic TheoryComputational Method: Peridynamic Theory

• Peridynamic theory is a theory of continuum mechanics that uses 
integro-differential equations without spatial derivatives rather than 
partial differential equations.

– Bond-Based Peridynamics1

– State-Based Peridynamics2

• Peridynamic means “near force”.

1Silling,  “Reformulation of elasticity theory for discontinuities and long-range forces”, in Journal of the Mechanics 
and Physics of Solids, 48 (2000) , pp. 175-209.  (Silling 2000)
2 S.A. Silling et al. “Peridynamic States and Constitutive Modeling”, in J Elasticity, 88 (2007), pp. 151–184. (Silling 
2007)

Why do we use peridynamic theory?

• The fundamental partial differential 
equations used in conventional 
finite element or particle codes do 
not apply at discontinuities.
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• The proposed research falls naturally into five top-level, basic-research 
tasks:

– Task 1: Represent rock as a stochastic peridynamic material.

– Task 2: Represent rock as a stochastic-fractal peridynamic material.

– Task 3: Investigate shock propagation in peridynamic materials.

– Task 4: Investigate boundary effects from shock loading and tunnel 
wall stability.

– Task 5: Validate numerical models and identify key parameters.

• It is the goal of this research to complete these tasks and achieve the 
objectives of this technical proposal in three-five years. 

– To attain this goal, we plan to acquire and utilize existing data for material 
characterization and failure processes and for validation of the numerical 
models.

• More details of tasks and subtasks are found in the technical project 
plan.

Summary of Technical Project PlanSummary of Technical Project Plan
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• Results and discussion from team members are given in the following 
slides:
– “Towards Stochastic Peridynamics” (Dr. Ostoja-Starzewski)

– “Fractal Mechanics” (Mr. Joumaa)

– “Wave Propagation in Peridynamic Materials” (Dr. Demmie)

• How did the results modify or confirm your approach?

– The results thus far confirm our confidence that a stochastic peridynamic 
theory combining peridynamic theory with random-fractal material 
characterization is a viable approach to enhance the understanding of the 
fundamental physical phenomena governing tunnel wall stability in hard 
rock under dynamic shock loading conditions.

• Residual Risk/Milestone Status

– There is technical risk in using any new approach like peridynamics.  But, 
the biggest risk in meeting milestones is implementing and testing our 
numerical models since the codes available are export controlled and 
students are usually not citizens of the United States.  We may need help 
from DTRA to mitigate this risk.

– No milestones exist through August 2011.  The milestone for Task 1 is at 
the end of December 2011.

ResultsResults



9

three scales:

microscale: average grain size d
(microstructure)

mesoscale: L
if not RVE, then 

inhomogeneous 
continuum

macroscale: Lmacro

      /L d 

Towards Stochastic PeridynamicsTowards Stochastic Peridynamics

separation of scales separation of scales dd << << LL << << LLmacromacro
does not hold on does not hold on wavefrontswavefronts!!
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Basic question of stochastic mechanicsBasic question of stochastic mechanics::

How different is the average response         of the random How different is the average response         of the random 

medium governed by medium governed by 

from the response of a directly averaged medium                     ?from the response of a directly averaged medium                     ?

Field operator acting on     :

Randomness enters through random field of material 

properties, e.g. stiffness tensor field

random medium

set of deterministic realizations
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Formulating stochastic peridynamicsFormulating stochastic peridynamics
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field equation:

randomness enters through random fields

random medium
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Formulating stochastic peridynamicsFormulating stochastic peridynamics
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Adopt a scalar-valued function as a random field.

To specify that random field, use 1st and 2nd order statistics, 

(It is not simply a white-noise random field.)

work with wide-sense stationary (WSS) random fields

use correlation function
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Formulating stochastic peridynamicsFormulating stochastic peridynamics



13

Given our interest in multiscale, stochastic field phenomena,

employ correlation function with decoupling of the fractal 

geometric effect from the Hurst effect

Fractality is typically present on smaller length scales, while 

Hurst effect arises on large scales (persistence).

- Cauchy correlation function:

- Dagum correlation function: 
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Formulating stochastic peridynamicsFormulating stochastic peridynamics
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- Cauchy correlation function:

one realization B()

- Dagum correlation function: 

one realization B()

Formulating stochastic peridynamicsFormulating stochastic peridynamics
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Wavefront in a homogeneous anisotropic 
medium, propagating in direction p, 
locally along a ray of direction y. 

Wavefront in a realization B(ω) of 
a randomly inhomogeneous 
anisotropic medium.

Formulating stochastic peridynamicsFormulating stochastic peridynamics
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Fractal Mechanics: Approach & MethodsFractal Mechanics: Approach & Methods

• Development of governing formulation of 
mechanical behavior of fractal materials 
applying basic fractional calculus

• Application of homogenization techniques 
to “regularize” the fractional integrals

• Understand the wave motion in two 
different models, analytically and 
computationally

– Isotropic: fluid

– Anisotropic: solid
Pine tree leaves & 
human brain are 
examples of 
random (natural) 
fractals
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Fractal Fluid ModelFractal Fluid Model

• Formulation of wave propagation equation by 
application of dimensional regularization

• Derived in [V. Tarasov, Ann. Phys. (2005), 
Fractional hydrodynamic equations for fractal 
media]

• Solved analytically and numerically in [H. 
Joumaa & M. Ostoja-Starzewski, ZAMP (2011), 
On the wave propagation in isotropic fractal 
media]
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Analytical SolutionAnalytical Solution

• Modal decomposition

• Decoupled solution
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Numerical SolutionNumerical Solution

• Finite element formulation

• Elastodynamic approach
– Elemental mass matrix

– Elemental elastic matrices

– Final assembly
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Simulation ResultsSimulation Results

spherical shell meshed with 
tetrahedral elements

• Modal excitations on a 
spherical shell problem 

• Newmark method (trapezoidal) 
for time march transient 
solution
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• Formulation of general wave equation by 
[Li and Starzewski, Proc. R. Soc. (2009), 
Fractal solids, product measures and 
fractional wave equations]

• Analytical solution
– Limited to special problems 

– Modal decomposition in Cartesian system

– Two independent homogeneous solutions (fractal 
harmonic functions)

Solid ModelSolid Model

3 , 3 ,

3 3, ,

j i i j

i

i j j jj j

g u g u
u

g g g g g g

  


   
       

   


            
2 22 21 0

D
L x f x D L x f x k D L x f x       

 ,i i iu u x t

   1 cos
D

f x k L x  
     2 sin

D
f x k L x  

 



22

Numerical SolutionNumerical Solution

• Finite element formulation

• Resulting equation
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Simulation ResultsSimulation Results

• Modal excitation

• Transient response
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• Modal shapes
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• We performed impact simulations to study wave propagation and 
spall in Cu from impacts.  The following are some examples:

Wave Propagation in Peridynamic MaterialsWave Propagation in Peridynamic Materials

10 m/s 0 m/s 200 m/s 0 m/s

1000 m/s

0 m/s

Velocity Magnitude Materials
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• Publications
– P.N. Demmie and M. Ostoja-Starzewski, “Waves in fractal media,” Journal of 

Elasticity, D.E. Carlson special issue, online, 2011. DOI 10.1007/s10659-011-9333-6

– H. Joumaa and M. Ostoja-Starzewski, “On the wave propagation in isotropic fractal 
media,” ZAMP, in press, 2011. DOI: 10.1007/s00033-011-0135-2

– J. Li and M. Ostoja-Starzewski, “Micropolar continuum mechanics of fractal 
media,” Int. J. Eng. Sci. (A.C. Eringen special issue) online, 2011. doi: 
10.1016/jijengsci.2011.03.010

– H. Joumaa and M. Ostoja-Starzewski, “Stress and couple-stress invariance in non-
centrosymmetric micropolar planar elasticity,” online, Proceedings of Royal 
Society A, 2011. doi: 101098/rspa2010.0660

• Presentations
– Demmie, “Peridynamic Theory: An Approach to Computational Mechanics without 

Spatial Derivatives”, Engineering Mechanics Institute Conference, Northeastern 
University, Boston, MA, June 2-4, 2011 

• Graduate students
– Jun Li, PhD expected in 2012.

– Hady Joumaa, PhD expected in 2012.

Accomplishments Accomplishments 
(since August 2010)(since August 2010)
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• Coordination/Collaboration

– Numerical models will be implemented and verified in the Kraken 
computer code whose development was funded by the Joint DoD/DOE 
Munitions Program (JMP).

– Work on shocks and spall are of interest to JMP and are partially funded 
by JMP.

• Transition Plan

– We plan to publish and present our work so that it is available to 
incorporate our numerical models in advanced computer codes.

– Our students will be in a position to apply the methodology developed, 
continue to advance the state of the art, or train students.

• Other Funding Sources at University of Illinois

– “Mechanics of Fractal Materials,” NSF, $200,000, 2010-2013 

– “Shock Waves in Random Heterogeneous Materials,” SAIC - Army -
ARDEC, $70,000, 2011-2012

– “Development of Fracture Model for High Explosive PBX9502,” Los 
Alamos Natl. Lab, $100,000, 2011-2013

Coordination/Collaboration and TransitionCoordination/Collaboration and Transition
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• We are confident that a stochastic peridynamic theory combining 
peridynamic theory with random-fractal material characterization has 
the ability to enhance understand the fundamental physical 
phenomena governing tunnel wall stability in hard rock under 
dynamic shock loading conditions.

• We made progress in developing stochastic peridynamics.

• We made progress in developing fractal mechanics and are in a 
position to apply it to peridynamics. 

• We are publishing our work and training students.

• We continue to be excited about the opportunity to perform the 
research for this project.

ConclusionsConclusions
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• Continue developing stochastic peridynamic theory.  (Task 1)

– Implement and verify numerical models.

• Develop peridynamic theory of fractal media.  (Task 2)

– Implement and verify numerical models.

• Continue studies of  wave and shock propagation in isotropic and 
random peridynamic media.  (Task 3)

• Investigate boundary effects from shock loading and tunnel-wall 
stability.  (Task 4)

• Validate numerical models and identify key parameters.  (Task 5)

Future DirectionsFuture Directions


