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Batteries are BIG but the solution to the
problems are smail.

« 16 KWh Li-ion battery pack for the Chevy Volt
(175 kg)

* 90Wh/kg max capacity, 50 Wh/kg normal

« Comparison: WWII era electric torpedo
battery pack ~ 4 KWh, 550 kg (7.3 Wh/kg)
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Lots of Energy!: Chevy Volt battery pack = 9 kg of C4 explosive

How do we increase the capacity?
* New anode materials (e.g. Si) offer up to 10X Li storage capacity
at the anode (compared to graphite)
* New cathodes (e.g. LiNi, :Mn, :O,) offer ~ 25% higher cell voltage
- Problem: Materials have limited lifetime @ Sandia
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Scientific Challenges in Li-ion Batteries
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‘ Nanoscale Electrochemistry at CINT:
Three Approaches

Structural and mechanical
characterization by in situ TEM

e

 strain accommodation during lithiation a-Li,O + Sn-Li
« initiation of defects (e.g. dislocations/

cracks) , ‘ -
» kinetics of lithiation

Single nanoparticle and batch

electrochemical studies Subramanian, et

al., in submission to
« correlating electrochemical properties NanoLett (2011).
to structure

» size-dependent behavior

Electrode/electrolyte interface studies

Sullivan, et al.,
Proc. SPIE (2010).

« SEI formation (composition and
morphology) )

» SEl evolution, aging, and stability
during cycling

Silicon Wafer2
alignment

Silicon Wafer 1

etched hole



How do you do liquid
electrochemistry in a TEM? -- ILs
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VIPI TFSI
/I-3-propylimidazolium
(DMPI)

(trifluoromethylsulfonyl)imide
(TFSI) + LI-TFSI

lso

thylimidazolium

@afluorophosphate+ LiPF,

and

>thylpyrrolidinium-TFSI

I-TFSI
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action of ionic liguids on Si In
the TEM.
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Electrochemistry inside the TEM:
Lithiation of a SnO, NW anode.

Potentiostat

Jian Yu Huang, et al., “In situ observation of the electrochemical lithiation @ Sandia

National
of a single SnO, nanowire electrode,” Science 330, 1515 (2010). laboratore
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&/A/Lithiation creates amorphous Li,O + Sn-Li
and a lengthening of the NW.

J.Y. Huang, et al., 2010. Laboratories
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The reaction is diffusion-limited:
limited by Li* flux through Li,0.
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e diffusion-limited
kinetics (t1/2)

 diffusivities of 0.05 to
5 x 1014 m?/sec

IL, Low Li diffusion flux

High Li diffusion flux
Sn + Li,Sn + Amorphous Li,O
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J.Y. Huang, et al., 2010.



Imaging the strain accommodation
mechanism.

et al.. 2010 T o s Laboratories



A snapshot in time showing the rxn

front and the phases.
Single Crystal SnO, Dislocation Cloud | Amorphous
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o all nanowire anodes behave the same?
The story with Si.
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J.Y. Huang, et al., Nano Lett., 2011 (DOI:
10.1021/nl200412p)
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Lithiation of Si leads to a core-shell
structure.

Li lon Flux

 Core-shell structure; Conical shape of the core
» Reaction from surface to the interior
* No elongation, no dislocations

Jries




‘ Similar kinetics are observed between C-
coated and heavily phosporus-doped Si.
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&' How do we make in situ TEM of

battery materials an easy to use tool?

making an in situ TEM sample

~ 20 pm @ ﬁaa%gil?al.
Laboratories




} How do we easily assemble and measure

“lots” of different battery materials?

Dielectrophoresis
(DEP) assembly
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common
DEP contact

£y >
FW | det | mag |mode] tilt —1pym HV HFW WD | det | mag | mode| tilt
5.00kV |5.12ym|{ 5.2 mm |TLD|25000x| SE |52 5.00kV[1.28 mm|52mm |ETD[100x| SE |52

A. Subramanian, et al.,” Single nanowire structural, electrical, and electrochemical
characterization during lithium insertion,” (in submission to Nano Lett), 2011.
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Hybrid Nanofabrication Platform for in situ TEM

silicon nitride
membrane

| 800nm * 6um hole

EM window
(through hole in nitride)

| e WD | det | mag |[mode| filt | 4 um
“2[5.00 kV|12.8 pym|5.2mm | TLD|[10000x| SE |52°
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A. Subramanian, et al., 2011. Laboratories




Battery Materials Co-Assembly

Co-assembled, DEP-based integration of NW / NP Anodes & Cathodes
. Seutial co-assembly of anodic and ctho nanomaterials onto the same chip using DEP

*
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3 What are the structural and electrical
FMnO, _
changes that occur after the first cycle?

Test Case: B-MnO, NWs

P42/mnm
a=4.3983(3) A [ data from 260 ug of
c = 2.8730(3) A ﬂ'MnOZ nanowires] first cycle
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Ex-situ lithiation is performed, followed
by characterization.
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v 4 'First cycle lithiation disorders the lattice and
increases the resistivity — kinetic limitations.

~—

before lithiation after lithiation electrical changes
I ) (ratio of lithiated to

unlithiated resistance)
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 capacity fade is due to kinetic limitations Sandia

 can also see this by rate-dependent charging studies @ pr L, |
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% Our approach: develop in-situ

electrochemical platforms for TEM.

Sullivan, et al.,
“Understanding Li-ion
battery processes at the
atomic- to nano-scale,” SPIE
Proc. 7683, 76830B1 (2010).

alignment
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A
& More than three electrodes are provided:
enables field-driven assembly.

T I T T

assemble battery material
on to electrodes
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J. P. Sullivan, et al., 2010. Laboratories



Preliminary testing in the TEM ...

optical transmission
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movie courtesy of Dan
Gianola’s group, U. Penn
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J. P. Sullivan, CINT

Nanowire Discovery Platform C. T. Harris, CINT
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anging the reaction kinetics by changing
electrical conductivity: C-coated Si.
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There has been limited in-situ liquid-cell
TEM work.
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plating

Imaging window

20 pum — electrode

Ross, IBM J. Res. Develop. 44,
489 (2000).

Zheng et al., Science 324, 1309 (2009).

Williamson et al., Nature Mater. 2, 532 (2003).

also ...
Electron beam ]
Thiberge et al., Proc. Natl. Acad.
Flow @ Sci. 101, 3346 (2004).

Liu et al., Lab Chip 8, 1915
(2008).
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Assembly requires alignment, sealing,
filling, and capping.

Align top and bottom chips
Epoxy seal (Epotek 301 — used industrially for Si chips)

Fill with electrolyte
. Cap fill holes
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