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Current Status in the Growth Simulation 

1. Stillinger-Weber (SW) potentials are most widely used 
(~2300 citations);

2. Tersoff/Brenner potentials are second-widely used (~1300 
citations);

3. Simulations of crystalline growth are limited to vapor 
deposition; convincing cases for melt-growth are yet to be 
demonstrated;

4. Most successful simulations of crystalline growth of vapor 
deposition were achieved using SW potentials;

5. Many Tersoff literature potentials were found to predict 
amorphous growth in vapor deposition simulations.
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BOP Origin

1. Derived from quantum mechanics theory through systematic coarse-graining;
2. Separate treatment of  and  bonding energies (products of bond order* and bond 

integral# ); 
3. The first two levels of the expanded Green function retained for the  and  bond 

orders;
4. Up to four electron hops are considered, naturally incorporating the 3-member ring 

term in the  bonding (R3) and the dihedral angle (kk’) effect in the p bonding;
5. Valence effect is addressed.
6. Accuracy comparable to quantum mechanics and scale comparable to conventional 

molecular dynamics.

* bond order: half the difference of electrons in the bond and anti-boding states.
# bond integral: hopping probability of electrons from one orbital to another.
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BOP Goals

Accuracy comparable to quantum mechanics and scale comparable to 
conventional molecular dynamics

• Bond order potential (BOP) is derived from quantum mechanics theories;
• We will develop a CdTe BOP and validate it against clusters (dimer, trimer, 

square, tetrahedron, and chain for elements and compounds; Cd2Te and CdTe2

trimers for compounds), lattices (diamond-cubic, simple-cubic, body-centered-
cubic, face-centered-cubic, hexagonal-close-packed, graphite, graphene, and A8 
for elements; zinc-blende, wurtzite, NaCl, CsCl, binary-graphite, AuCu, CuPt, 
NiAs, CrB, AlSb, binary-graphene, and face-centered-square for the 
stoichiometric compound CdTe; Ag2O, CaF2 for the non-stoichiometric 
compounds CdTe2 or Cd2Te), and defects (vacancies, Cd@Te and Te@Cd 
antisites, Cd and Te interstitials at different locations);

• We will also validate the BOP using melt- and vapor- phase growth 
simulations (ensure the lowest energy for the equilibrium phases by testing a 
variety of configurations that are not possible to study directly );
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BOP Captures Many Cd, Te, and CdTe Phases

Have validated against clusters (dimer, trimer, square, tetrahedron, and chain for elements and compounds; Cd2Te and CdTe2

trimers for compounds), lattices (diamond-cubic, simple-cubic, body-centered-cubic, face-centered-cubic, hexagonal-close-
packed, graphite, planer-graphite, and A8 for elements; zinc-blende, wurtzite, NaCl, CsCl, binary-graphite, AuCu, CuPt, NiAs, 
CrB, AlSb, planar-binary-graphite, and face-centered-square for the stoichiometric compound CdTe; Ag2O, CaF2 for the non-
stoichiometric compounds CdTe2 or Cd2Te), and defects (vacancies, Cd@Te and Te@Cd antisites, Cd and Te interstitials at 
different locations)
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An Example Vapor Deposition Simulation

Substrate temperature 1200K; adatom energy 0.1 eV; 
vapor species Cd + Te2; deposition rate 2.7 nm/ns 
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MD Simulations of Misfit Dislocation Formation

Similar misfit dislocation structures observed 
from HRTEM experiment in GaAs/ZnTe/CdTe 
samples. S. Kret, P. Dluzewski, P. Dluzewski, 
and J.-Y. Laval, Phil. Mag., 83, 231 (2003).
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MD Simulation of Melt-Growth of CdTe
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An Example at Tlow=1000K, Thigh=2200K, R = 0.2 Å/ps
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Growth Observation
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Quality of the Grown Crystals
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Discovery of Stacking Fault Defects
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Conclusions
•BOP enables an empirical MD scale and a 
quantum-mechanical fidelity;

•New BOP-based MD method simulates 
accurately CdTe melt-growth;

•Amorphous regions can be trapped and 
stacking faults can be nucleated on {111} 
planes during melt-growth.
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Ideal Atomistic Model for Growth

1. Transferrable to a variety of configurations: clusters (dimer, trimer, 
square, tetrahedron, and chain for elements and compounds; Cd2Te and 
CdTe2 trimers for compounds), lattices (diamond-cubic, simple-cubic, 
body-centered-cubic, face-centered-cubic, hexagonal-close-packed, 
graphite, graphene, and A8 for elements; zinc-blende, wurtzite, NaCl, 
CsCl, binary-graphite, AuCu, CuPt, NiAs, CrB, AlSb, binary-graphene, 
and face-centered-square for the stoichiometric compound CdTe; Ag2O, 
CaF2 for the non-stoichiometric compounds CdTe2 or Cd2Te), and 
defects (vacancies, Cd@Te and Te@Cd antisites, Cd and Te interstitials 
at different locations);

2. Lowest energy for the equilibrium structure;
3. Validatable in vapor- and melt- growth simulations: testing a variety 

of configurations that are not possible to study directly.
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Stillinger-Weber (SW) Potential
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ij, ij,, ij, Aij, Bij, ij, aij, are parameters, and ijaij is cutoff distance.

F. H. Stillinger, and T. A. Weber, Phys. Rev. B, 31, 5262 (1985).
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=25 original

SW Potentials 
“Easily” Simulate 
Crystalline  Growth

CdTe potential from Z. Q. Wang, D. Stroud, and A. J. Markworth, Phys. Rev. B, 40, 3129 (1989).
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Other Properties
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Cd and Te Vapor Growth Simulations

Crystalline growth was obtained for Cd and Te elemental 
growth as well as CdTe compound growth. 

Cd Te 


