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: i Current Status 1n the Growth Simulation

. Stillinger-Weber (SW) potentials are most widely used
(~2300 citations);

. Tersoff/Brenner potentials are second-widely used (~1300
citations);

. Simulations of crystalline growth are limited to vapor
deposition; convincing cases for melt-growth are yet to be
demonstrated;

. Most successful simulations of crystalline growth of vapor
deposition were achieved using SW potentials;

. Many Tersoff literature potentials were found to predict
amorphous growth in vapor deposition simulations.
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, ' ° ° * bond order: half the difference of electrons in the bond and anti-boding states.
! ; B OP O rlgln # bond integral: hopping probability of electrons from one orbital to another.
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1. Derived from quantum mechanics theory through systematic coarse-graining;

2. Separate treatment of ¢ and © bonding energies (products of bond order™ and bond
integral®);

3. The first two levels of the expanded Green function retained for the ¢ and 7 bond
orders;

4. Up to four electron hops are considered, naturally incorporating the 3-member ring
term in the ¢ bonding (R;,) and the dihedral angle (Ad,,.) effectin the p bonding;

5. Valence effect is addressed.

6. Accuracy comparable to quantum mechanics and scale comparable to conventional
molecular dynamics.
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BOP Goals

Accuracy comparable to quantum mechanics and scale comparable to
conventional molecular dynamics

Bond order potential (BOP) is derived from quantum mechanics theories;
We will develop a CdTe BOP and validate it against clusters (dimer, trimer,
square, tetrahedron, and chain for elements and compounds; Cd,Te and CdTe,
trimers for compounds), lattices (diamond-cubic, simple-cubic, body-centered-
cubic, face-centered-cubic, hexagonal-close-packed, graphite, graphene, and A8
for elements; zinc-blende, wurtzite, NaCl, CsCl, binary-graphite, AuCu, CuPt,
NiAs, CrB, AISb, binary-graphene, and face-centered-square for the
stoichiometric compound CdTe; Ag,0O, CaF, for the non-stoichiometric
compounds CdTe, or Cd,Te), and defects (vacancies, Cd@Te and Te@Cd
antisites, Cd and Te interstitials at different locations);

We will also validate the BOP using melt- and vapor- phase growth
simulations (ensure the lowest energy for the equilibrium phases by testing a
variety of configurations that are not possible to study directly );
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Have validated against clusters (dimer, trimer, square, tetrahedron, and chain for elements and compounds; Cd,Te and CdTe,
trimers for compounds), lattices (diamond-cubic, simple-cubic, body-centered-cubic, face-centered-cubic, hexagonal-close-
packed, graphite, planer-graphite, and A8 for elements; zinc-blende, wurtzite, NaCl, CsCl, binary-graphite, AuCu, CuPt, NiAs,
CrB, AlSb, planar-binary-graphite, and face-centered-square for the stoichiometric compound CdTe; Ag,O, CaF, for the non-
stoichiometric compounds CdTe, or Cd,Te), and defects (vacancies, Cd@Te and Te@Cd antisites, Cd and Te interstitials at

different locations)
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Substrate temperature 1200K; adatom energy 0.1 eV;
vapor species Cd + Te,; deposition rate 2.7 nm/ns
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MD Simulations of Misfit D
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from HRTEM experiment in GaAs/ZnTe/CdTe
samples. S. Kret, P. Dluzewski, P. Dluzewski,
and J.-Y. Laval, Phil. Mag., 83, 231 (2003).
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MD Simulation of Melt-Growth of CdTe
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Growth Observation

(a) t=0.0ns
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Quality of the Grown Crystals
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*‘Discovery of Stacking Fault Defects

(a) framed region in Fig. 4(b) (b) defect nucleation at local facets
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Conclusions

BOP enables an empirical MD scale and a
quantum-mechanical fidelity;

‘New BOP-based MD method simulates
accurately CdTe melt-growth;
Amorphous regions can be trapped and
stacking faults can be nucleated on {111}
planes during melt-growth.
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ot
Ideal Atomistic Model for Growth

1. Transferrable to a variety of configurations: clusters (dimer, trimer,
square, tetrahedron, and chain for elements and compounds; Cd,Te and
CdTe, trimers for compounds), lattices (diamond-cubic, simple-cubic,
body-centered-cubic, face-centered-cubic, hexagonal-close-packed,
graphite, graphene, and A8 for elements; zinc-blende, wurtzite, NaCl,
CsCl, binary-graphite, AuCu, CuPt, NiAs, CrB, AlISb, binary-graphene,
and face-centered-square for the stoichiometric compound CdTe; Ag,0,
CaF, for the non-stoichiometric compounds CdTe, or Cd,Te), and
defects (vacancies, Cd@Te and Te@Cd antisites, Cd and Te interstitials
at different locations);

2. Lowest energy for the equilibrium structure;

3. Validatable in vapor- and melt- growth simulations: testing a variety
of configurations that are not possible to study directly.

@ Sandia
National
15 Laboratories



1»'
Stillinger-Weber (SW) Potential

LSS0 S S eosl )|

i J#i i J#i k#j#i

\O , 1, >a,0,

£ Mij»» Vi Aij» Byj» Oy, @, are parameters, and o+a;; 1S cutoff distance.

F. H. Stillinger, and T. A. Weber, Phys. Rev. B, 31, 5262 (1985).
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CdTe potential from Z. Q. Wang, D. Stroud, and A. J. Markworth, Phys. Rev. B, 40, 3129 (1989).
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Other Properties

Elastic Constants of zinc-blende CdTe (GPa)

GC; experiment DFT* | BOP Tersoff- Stillinger-
(300K)' Rockett® Weber®
Ci 533 532 | 49.5 50.7 44.3
Ci 36.5 36.0 | 31.3 37.5 19.6
Cy4 (relaxed) 20.4 --- - 15.2 18.0
Cua - 31.8 | 40.6 46.8 30.7
(unrelaxed)
Defect energies of zinc-blende CdTe (eV)
defect type DFT | BOP | Tersoff-Rockett’ | Stillinger-Weber"
Cd vacancy 2.20 | 2.66 2.43 2.60
Te vacancy 2.72 | 1.64 0.93 153
Cd antisite 3.01 | 3.24 0.18 0.80
Te antisite 3.16 | 2.04 1.19 0.74
Cd in Cd interstitial | 1.98 | 1.21 1.36 4.27
Te in Cd interstitial | 3.52 | 2.92 0.55 2.60
Cd in Te interstitial | 2.14 | 2.12 0.61 3.76
Te in Te interstitial | 3.91 | 2.92 1.28 3.57
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Cd and Te Vapor Growth Simulations
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Crystalline growth was obtained for Cd and Te elemental
growth as well as CdTe compound growth.
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