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ol
Ideal Atomistic Model for Defects

1. Transferrable to a variety of configurations: clusters (dimer, trimer,
square, tetrahedron, and chain for elements and compounds; Cd,Te and
CdTe, trimers for compounds), lattices (diamond-cubic, simple-cubic,
body-centered-cubic, face-centered-cubic, hexagonal-close-packed,
graphite, graphene, and A8 for elements; zinc-blende, wurtzite, NaCl,
CsCl, binary-graphite, AuCu, CuPt, NiAs, CrB, AlISb, binary-graphene,
and face-centered-square for the stoichiometric compound CdTe; Ag,0,
CaF, for the non-stoichiometric compounds CdTe, or Cd,Te), and
defects (vacancies, Cd@Te and Te@Cd antisites, Cd and Te interstitials
at different locations);

2. Lowest energy for the equilibrium structure;

3. Validatable in vapor- and melt- growth simulations: testing a variety
of configurations that are not possible to study directly.
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1 i Current Status 1n the Field

. Stillinger-Weber (SW) potentials are most widely used
(~2300 citations);

. Tersoff/Brenner potentials are second-widely used (~1300
citations);

. Simulations of crystalline growth are limited to vapor
deposition; convincing cases for melt-growth are yet to be
demonstrated;

. Most successful simulations of crystalline growth of vapor
deposition were achieved using SW potentials;

. Many Tersoff literature potentials were found to predict
amorphous growth in vapor deposition simulations.
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Stillinger-Weber (SW) Potential
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\O , 1, >a,0,

£ Mij»» Vi Aij» Byj» Oy, @, are parameters, and o+a;; 1S cutoff distance.

F. H. Stillinger, and T. A. Weber, Phys. Rev. B, 31, 5262 (1985).
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Stillinger-Weber Potential Observations
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1. The angular term is essentially a parabolic energy penalty for deviation of
bond angle from the tetrahedral angle.

2. The angular term modifies a repulsive interaction. From quantum
mechanics theories, the repulsive interaction is well approximated by a pair
interaction, and it 1s the attractive interaction that depends more on electron
orbital and bond angles.

3. Any non-tetrahedral structures would have longer bond lengths than that of
the tetrahedral structures.

4. SW potentials work well for tetrahedral structures, but are not transferrable

to defects and other metastable phases.
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4 i Relative Hardness

In pair potential model, the system energy E 1s expressed as

E=2 3 3[R ()-0, ()

11]1
J#i

Where R(r) and U(r) represent repulsive and attractive
interactions. The relative hardness i1s defined as

Sl
Uij\ l])/U (ey)

The potential behaves well when H approximately equals 2
(otherwise double energy minimums might occur when the
system 1s hydrostatically strained).
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tillinger-Weber Potential Parameterization
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1.  When a ground state tetrahedral structure (dc or zb) is subject to a hydrostatic
strain, the SW potential reduces to a pair potential.

2. The four parameters of the pair part of the SW potential can be completely
determined from four properties of the ground state phase: lattice constant,
cohesive energy, bulk modulus, and relative hardness.

3. Aslong as the angular prefactor A is above a critical value, the ground state
tetrahedral structure is guaranteed to have the lowest energy. Only when this is
satisfied, other shear moduli of the ground state structure can be fitted. Most

literature do not even bother to fit angular parameters: they just use A = 32.5
andy=1.2!

1. F. H. Stillinger, and T. A. Weber, Phys. Rev. B, 31, 5262 (1985).
2. A. Béré and A. Serra, Phys. Rev. B, 65, 205323 (2002).
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1. G. H. Grein, J. P. Faurie, V. Bousquet, E. Tournie, R. Benedek, and T. de la Rubia, J. Cryst. Growth, 178, 258(1997).
2. G. H. Gilmer, and C. Roland, Appl. Phys. Lett., 65, 824(1994).
3. B. Strickland, and C. Roland, Phys. Rev. B, 51, 5061(1995).
4. H. W. Lu, and J. Y. Feng, Modelling Simul. Mater. Sci. Eng., 8, 621(2000).
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4 h Tersoff Potential
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1 i Tersoftt Potential Observations

k= %ZZ[‘:[)U(’?])_‘//U(’?])BU

[ J#i

1. The angular term modifies an attractive interaction. It is consistent with the
concepts of quantum mechanics theories that the repulsive interaction is well
approximated by a pair interaction, and it is the attractive interaction that
depends more on electron orbital and bond angles.

2. In particular, Tersoff potential can be viewed as a simple bond order potential
that can be derived directly from quantum mechanics theories. Here B; can
be viewed as bond order which is defined as half of the difference of the
number of electrons in the bonding and the anti-bonding states, and y;(r;) 1s
the bond integral which describes the probability for electrons to hop from
one orbital to another.

3. Tersoff potential is fundamentally more transferrable than SW potential, but
there is no obvious approach to stabilize the tetrahedral structure. Explicit
considerations of a variety of phases and defects are mandatory!
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Failed Tersoft Potential Growth Simulations
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. o None of the potentials listed here correctly

predicts the crystalline growth.

. M. Nakamura, H. Fujioka, K. Ono, M. Takeuchi, T. Mitsui, and M. Oshima, J. Cryst. Growth, 209, 232(2000).

. J. Tersoff, Phys. Rev. B, 39, 5566(1989). — for Si (amorphous growth, but can re-crystallize at 2200 K through bulk transformation).
. P.A. Ashu, J. H. Jefferson, A. G. Cullis, W. E. Hagston, and C. R. Whitehouse, J. Cryst. Growth, 150, 176(1995). — for GaAs.

. R. Smith, Nucl. Instru. Meth. B, 67, 335(1992). — for GaAs.

. J. Oh, C.H. Grein, J. Crys. Growth, 193, 241 (1998).

. D. K. Ward, X. W. Zhou, B. M. Wong, F. P. Doty, and J. A. Zimmerman, to be submitted.
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Successful Tersoft Potential Growth Simulations
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Tersoff-Brenner types of potentials have also been successfully applied for carbon nanotube? and SiC*5,

X. W. Zhou, D. A. Murdick, B. Gillespie, and H. N. G. Wadley, Phys. Rev. B, 73, 45337 (2006).
J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys., 15, 5649 (2003).

E. H. Feng, and R. E. Jones, Phys. Rev. B, 81, 125436 (2010).

H. Yang, X. Hu, and H. Jénsson, Surf. Sci., 316, 181(1994).

A.J. Dyson, and P. V. Smith, Surf. Sci., 396, 24 (1998).

F. Gao, W. J. Weber, Nuc. Inst. Meth. Phys. Res. B, 191, 504 (2002).
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Bond Order Potential (BOP)
£ = %ZZ% (rzy)—zzﬁa,zy (rzj)'@)a,y‘ —ZZ% (rzj)‘@)n,ij
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d;i(1;): core-core repulsion; B (1) and P, ;(r;;): o and 7 bond
integrals describing electron hopping probabilities among
different orbital's; ® ;; and O, ;;: o and © bond orders
describing half of difference in number of electrons in the
bonding and anti-bonding states. O ; and O, ;; are complicated

functions of bond length and bond angles.

. D. G. Pettifor, M. W. Finnis, D. Nguyen-Manh, D. A. Murdick, X. W. Zhou, and H. N. G. Wadley, Mater. Sci. Eng. A, 365, 2 (2004).
. D. G. Pettifor, and L. I. Oleinik, Phys. Rev. B, 59, 8487 (1999).

. D. G. Pettifor, and L. I. Oleinik, Phys. Rev. Lett., 84, 4124 (2000).

. D. G. Pettifor, and L. I. Oleinik, Phys. Rev. B, 65, 172103 (2002).

. R. Drautz, D. Nguyen-Manh, D. A. Murdick, X. W. Zhou, H. N. G. Wadley, and D. G. Pettifor, TMS Lett., 1, 31 (2004).

. R. Drautz, D. A. Murdick, D. Nguyen-Manh, X. W. Zhou, H. N. G. Wadley, and D. G. Pettifor, Phys. Rev. B, 72, 144105 (2005).

. D. A. Murdick, X. W. Zhou, H. N. G. Wadley, D. Nguyen-Manh, R. Drautz, and D. G. Pettifor, Phys. Rev. B, 73, 45206 (2006).
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Tight-Binding Approximation Kinetic Monte Carlo Ps0(2 hops) B (3smember ting hps)

k x
Coarse grain "\\ / \
EEIK Oy = @I @mDw T ckaamame
electronic attice & i i i i

Effective one-electron Model

Densit inteFI;faelLeane : 1 & & (@) cbond ¥ &
O = \@x ;% \@x/ + \x,ij
L - 1
Many-body Quantum Theory Bond-Order Potentials ;k/

BOP Origin

Electronic Atomistic (a) o bond

structure
to atom-centered ) (b) 7 bond
TETAE Molecular Dynamics

bond-centered @, (2 hops) Dy (4 hops)

Derived from quantum mechanics theory through systematic coarse-graining;
Separate treatment of c and = bonding energies (products of bond order™ and bond
integral®);

The first two levels of the expanded Green function retained for the ¢ and © bond
orders;

Up to four electron hops are considered, naturally incorporating the 3-member
ring term in the ¢ bonding (R;,) and the dihedral angle (A¢,,.) effect in the p
bonding;

Valence effect is addressed.

Accuracy comparable to quantum mechanics and scale comparable to
conventional molecular dynamics.

* bond order: half the difference of electrons in the bond and anti-boding states.
# bond integral: hopping probability of electrons from one orbital to another.
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ol
Ideal Atomistic Model for Defects

1. Transferrable to a variety of configurations: clusters (dimer, trimer,
square, tetrahedron, and chain for elements and compounds; Cd,Te and
CdTe, trimers for compounds), lattices (diamond-cubic, simple-cubic,
body-centered-cubic, face-centered-cubic, hexagonal-close-packed,
graphite, graphene, and A8 for elements; zinc-blende, wurtzite, NaCl,
CsCl, binary-graphite, AuCu, CuPt, NiAs, CrB, AlISb, binary-graphene,
and face-centered-square for the stoichiometric compound CdTe; Ag,0,
CaF, for the non-stoichiometric compounds CdTe, or Cd,Te), and
defects (vacancies, Cd@Te and Te@Cd antisites, Cd and Te interstitials
at different locations);

2. Lowest energy for the equilibrium structure;

3. Validatable in vapor- and melt- growth simulations: testing a variety
of configurations that are not possible to study directly.
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ational
17 Laboratories



BOP Goals

Accuracy comparable to quantum mechanics and scale comparable to
conventional molecular dynamics

Bond order potential (BOP) is derived from quantum mechanics theories;
We will develop a CdTe BOP and validate it against clusters (dimer, trimer,
square, tetrahedron, and chain for elements and compounds; Cd,Te and CdTe,
trimers for compounds), lattices (diamond-cubic, simple-cubic, body-centered-
cubic, face-centered-cubic, hexagonal-close-packed, graphite, graphene, and A8
for elements; zinc-blende, wurtzite, NaCl, CsCl, binary-graphite, AuCu, CuPt,
NiAs, CrB, AISb, binary-graphene, and face-centered-square for the
stoichiometric compound CdTe; Ag,0O, CaF, for the non-stoichiometric
compounds CdTe, or Cd,Te), and defects (vacancies, Cd@Te and Te@Cd
antisites, Cd and Te interstitials at different locations);

We will also validate the BOP using melt- and vapor- phase growth
simulations.
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{Two-step Parameterization +
Vapor Deposition Validation }:
Thousand Iterations

. For the nearest neighbor structures (e.g., dimer, dc, sc, fcc, hep, NaCl, zb,
etc.), Eb = (I)(l') - ZBG(r) .®c B 2Bn(r) .®n = (I)(l') - ZBG(F) .(c1.®c * ) .®n)9
where ¢,, are ¢, constants;

. Under hydrostatic strain, the bond orders O_ and O_ are constant. From
the equilibrium condition JOE,/0r =0, ¢,°0 + ¢, ‘O_ = ¢’(r)/2,’(r);

. The equilibrium bond energy E, , and its second derivative E” , as a
function of the equilibrium bond length r, can be expressed as E, ¢ = ¢(r) —
Bc(r) '(I)’(T)/Bc’(l') and E”b,O = (I)”(rO) - Bc” (l’) .(I)’(r)/Bc’(r) respectively;

. The first step is to optimize the parameters in the pair functions ¢(r) and
B,(r) using the target lattice constants, cohesive energies, and bulk moduli
of a variety of the nearest neighbor structures;

. The second step is then to fit bond order parameters by fitting to the bond
order of the nearest neighbor structures and various properties of the non-
nearest neighbor structures.

1. K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B, 66, 35205 (2002).
2. J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys., 15, 5649 (2003).
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Have validated against clusters (dimer, trimer, square, tetrahedron, and chain for elements and compounds; Cd,Te and CdTe,
trimers for compounds), lattices (diamond-cubic, simple-cubic, body-centered-cubic, face-centered-cubic, hexagonal-close-
packed, graphite, planer-graphite, and A8 for elements; zinc-blende, wurtzite, NaCl, CsCl, binary-graphite, AuCu, CuPt, NiAs,
CrB, AlSb, planar-binary-graphite, and face-centered-square for the stoichiometric compound CdTe; Ag,O, CaF, for the non-
stoichiometric compounds CdTe, or Cd,Te), and defects (vacancies, Cd@Te and Te@Cd antisites, Cd and Te interstitials at

different locations)
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Other Properties

Elastic Constants of zinc-blende CdTe (GPa)

GC; experiment DFT* | BOP Tersoff- Stillinger-
(300K)' Rockett® Weber®
Cu 533 532 | 49.5 50.7 443
Ci 36.5 36.0 | 31.3 37.5 19.6
Cy4 (relaxed) 20.4 --- - 15.2 18.0
Cu --- 31.8 | 40.6 46.8 30.7
(unrelaxed)

Defect energies of zinc-blende CdTe (eV)

defect type DFT | BOP | Tersoff-Rockett’ | Stillinger-Weber"
Cd vacancy 2.20 | 2.66 2.43 2.60
Te vacancy 2,72 | 1.64 0.93 1.53
Cd antisite 3.01 | 3.24 0.18 0.80
Te antisite 3.16 | 2.04 1.19 0.74
Cd in Cd interstitial | 1.98 | 1.21 1.36 4.27
Te in Cd interstitial | 3.52 | 2.92 0.55 2.60
Cd in Te interstitial | 2.14 | 2.12 0.61 3.76
Te in Te interstitial | 3.91 | 2.92 1.28 3.57

. J. M. Rhowe, R. M. Nicklow, D. L. Price, and K. Zanio, Phys. Rev. B, 10, 671 (1974).
. B. K. Agrawal, and S. Agrawal, Phys Rev. B, 45, 8321(1992).

. J. Oh, and C. H. Grein, J. Crys. Growth, 193, 241 (1998).

. Z.Q. Wang, D. Stroud, and A. J. Markworth, Phys. Rev. B, 40, 3129 (1989).
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Cd and Te Vapor Growth Simulations
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Crystalline growth was obtained for Cd and Te elemental
growth as well as CdTe compound growth.
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Substrate temperature 1200K; adatom energy 0.1 eV;
vapor species Cd + Te,; deposition rate 2.7 nm/ns
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CdTe Vapor Growth Simulations

1.20 ns
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Our recent work on CdTe. Te was seen to evaporate as Te,, and such a

phenomenon cannot be captured by SW potential.
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MD Simulation of Melt-Growth of CdTe
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Growth Observation
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Quality of the Grown Crystals
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*‘Discovery of Stacking Fault Defects

(a) framed region in Fig. 4(b) (b) defect nucleation at local facets
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Dislocation Models

(a) Perfect crystal (a) Perfect crystal
y[111] Ty 1]

. / 1107a/4

z[112] X [110] z[112] [110]a/4 / X [110]

(b) Crystal with two [110]a/2 screw dislocations

~468 A
A
~235A ~235A
~65A ~65A
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Dislocation Energies/Configurations in CdTe

Dislocation line energies (eV/A)

VHYEHVLHEHLHHLHHHYHYS e ooy
VHLHLHLYHLYEHHH O shuffle glide shuffle glide
AL LA LLL LYY 166 >4 0.83 y

2 AL L L LLAL L L L L

Edge shuffle dislocation configurations (top view of two planes)
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Screw shuffle dislocation configurations (top view of two planes)

020%0%0%0%0%0%0%0%0%0%0%0%°0%°0%0%0%0°%0 0,0,98,0,0,0,0,0,0,0,0,0,0,0,0,0350,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
ooooooooooo ©_0_0_0_0_0_0_0_0.06_,0_0_,0_0_0_0_0_0_0_0_0_0_0 0,0,_0_0_0_0_0_0_0_0_0_,0_0_0_0_0_0_0_0_0_0
ooooooooooooooo 0,0.0.,0,.0.0 0, 0,00 0_0_0_0_0_0_0_0_0_.60_0_0_0_0_00_0_,0_0_0_.0_0_0_,0_0_0_0_0_0_0
o ©o_0_0_0_0_0_0_0_O0_ 0 0 ©0 0 0 0 _0_0_.0_.08_,0_0_0_0 0 0_0_0_0_0_0_0_0 9,0_0_0_0 ©_0_0_0_0_0_0_0_0_0_0_0_0 ©o_0
©_0_0_.0_.0_,0,0_0.0.0.,0_,0_0_.0_.0.0_0_0_0 9.,0,,0,0.,0_0_0_,0_,0_0_0_0_0 0o, 0,.68,0_0_0_0_0_ 0_0_0_0_0_0_0_0_0_0_0_0_0_0_0
©, 0,0 0,.0.0,0.0.0,.0_0 ©o_0_0_0_0_0_0_.0_0_.06_,0_0_0_0_0_0_0_0_0_0_0_0_0 _,0_0_0_0_0_0_0_0,0_0,_,0_0_0_0_0_0_0_0_0_0O
ooooooooooooooo ©o_0_0_0_0_0 e, 0,_,0_0_ 0 0_0_0_0_0_ 00 0.68_,0_0_0_0_00_0_.0_0_,00_0_0_0_0_0_0_0_0O0_O
©_.0_0_.,0_.0_0_0_.0_.0_.0_.0_0_.0_0_.0_0_0_0 0,0,.06,0_0_0 o o, 0_0_0_0_.0 9,0,0_0_0_0_0_.0_.0_0_.0_,0_.0.,0,0_.0_0_0_0_0_0
©e_0_0,0_,0_0,0,0_.0_.0_,0_,0_0_,0_.0_0_0_0_0 0.0 0,.0,0.0.0.0_0_0_0_0_0 o_,0,68_0_0_,0_0_0_0_0_.0.0,0.0,0.0.0.0_,0_0_.0.0_0
eeeee ©o_0_0_0_0_0_0_0_0_0 ©o_0.,0_0.06_0_0_0_0_0_0_0_0_0_0_0_0_0 9,0_0_0_0_0_0_ 0 _ 0 _O0_0_0_0_0_0_0_0_ 0 O0_O_0O
ooooooooooooo 0,._0_0_0_0_0_0 e, 0,0 _0_0_0_0 eo,0,0_0_0.60_,0.,0_.0_.0_0_0 ©0,0.0_0_,0_.0_.0_.0_0_0_0_0_0O
©_0_0,0,0_0,0_0_0,0_0_0_0,0_0_0_0O . 0.0_.06_,0_,0_0_0_0_0_0_0_0_0 o_0_.0 0,0_0_0_0_0_0_0O ©0,0,0_0_0_0_,0,0_0_0_0_0_0
ooooooooooooooooooo (-3 -] 0,0,0_0_0_0_0 e_o0_o0_o0_0,.,68_,0_0_0_0_0_ 0 0 0_ 00 0_ 0000 0_0_0_0_0
©,0,0,0,0_0_0_,0_0_0_,0,0_0_0_0 ©o_0_0_0_.06_0_0_0_0_0_0_ 0 _ 0 _0_0_0_0_0 0,90,0_,0_0_0_0_0_0_0_0_0_0_0_0_0,_0_0_0_0_0O
oooooooooooooooo 0,.0,.0_.0_0 0,.,0,0,0_,0_0_0_0_0_0_0_0_0_.60_,0_0_0_,0_00_0_,0_,0_,0.0_,0_0_0_0_0_0_0_0O0_O
oooooooooooooooooo 0o.0.96.0,0_0_0_0_0_0_0_O0_0O0_O0_0_0 9_0_0_0_0_0_0_0_0_0_0_0_0_0,0_0_0_0,0_0_0
ooooooooooooooooooo .0 0., 0.0, 0,0 0,000 0_0_.0.,0,.60,0.,0.0.0 0 0_0_.0.0_,0_.0.0.0_.0_.0_0_.0_0_0
©_0_0_0_.0_0_0_.0_0_0_0_0_0_0_0_0_0_0_0_.0.,0806_,0_0_0_,0_0_0_0_0_0_0_.0_0_0 ,0_0_0_0_0_0_0_0_0_0 ©o_0_0_0 [} °
ooooooooooooooo 0,0_0_0_0_0 0. 0,00, 0.0 0_0_0_0_0_0_0.,60_0_0_0_0_0_0_0_0_0_00_0_0_0_0_0_0_O
oooooooooooooooo ©o_0_0_0.86.0_0_0_0_0_0 o_0_0_0_0_.0 9,0,.,0_0_0_0_0_0 o o_0_.0 o
©,0_,0,0.,0_0_,0_0_0_0 ©,0_.0_0_0_0_0_.0.0 0,0_0_0_0_0_0_0_0_0_o0_0_0,608,0_,0_0_0_0_0 ©o_0_0_0_o0 o_o
ooooooooo ©_0_0_0_0_0 o,0_,0.,0.,906_0_0_0_0_0_0_0_0_0_0_0_0_0 9,0_0_o0_0_0_0_ 0_O0_0_0_0_0_0_0_0_0_0_0_0_0O
ooooooooooooo ©e_0_0_0_0_0_0_0 e_,0_,0_0_ 0 0©0_ 0 ©0_O0_O0_ 0 0 0.60,0_ 00000000000 000 00 O0_0O0_0
oooooooooooooooo 0. 0.,0_.0.06,0_0_0_0_0_0 ©o.,0_0_0_0,0 9,0_0_.0_0_0_,0_0_.0_0_.0_,0,0_,0.,0.,0_,0_.0_0_0_0
ooooooooo ‘o.o.o.e.oco‘oaoeoeo‘o'o.o.oao.e"oeo.eeog0°o°oeooe'oeo',e'e.OO.o.eoe°o°o°o°e°e°o°o°o°o°oeo.o.'ooooeoo‘o.
oooooooooooo 900 0 0 0 0 00 00 00 00 0 0 0 00 0 0 80 ©0 0 0 0000 000 00 0 00 0 0 0 ©0 ©

@ ﬁandia I
ational
32 Laboratoriég



in CdTe

10118 111

Dislocation Loop Configurat

After relaxation

T[Tm]

Loop creation
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Zn Vapor Growth Simulations
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Future Work for the Remainder of the Project

* Theoretical Work

- Perform quantum-mechanical calculations on lattice constants, cohesive energies,
elastic constants, defect energies, and surfaces reconstructions of a variety Zn, ZnTe,
CdZn, and CdZnTe phases.

- Develop BOPs for Zn, ZnTe, CdTe, and CdZnTe systems.

- Improve algorithm of BOPs calculations in LAMMPS.

- Perform large scale simulation on various possible dislocation configurations,
characteristics, stress field, and interaction with other defects (in particular on
precipitate formation).

- Perform large scale simulations on small scale defect evolution under
thermomechanical conditions

* Experiments

- In conjunction with crystal growth work at PNNL, perform SEM CL analysis of
dislocations in as-grown CZT samples.

- Use the input from theoretical work to design improved growth of CZT crystals.
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