
A High-Performance and Energy-Efficient CT
Reconstruction Algorithm For Multi-Terabyte Datasets

Edward S. Jimenez1, Laurel J. Orr1, Kyle R. Thompson1, and Ryeojin Park2

1Sandia National Laboratories
PO Box 5800

Albuquerque, NM 87185, USA
{esjimen,ljorr,krthomp}@sandia.gov

2University of Arizona
1401 E. University Blvd
Tucson, AZ 85721, USA
rpark@email.arizona.edu

Abstract—There has been much work done in implementing
various GPU-based Computed Tomography reconstruction algo-
rithms for medical applications showing tremendous improvement
in computational performance. While many of these reconstruction
algorithms could also be applied to industrial-scale datasets, the
performance gains may be modest to non-existent due to a combi-
nation of algorithmic, hardware, or scalability limitatio ns. Previous
work presented showed an irregular dynamic approach to GPU-
Reconstruction kernel execution for industrial-scale reconstructions
that dramatically improved voxel processing throughput. However,
the improved kernel execution magnified other system bottlenecks
such as host memory bandwidth and storage read/write bandwidth,
thus hindering performance gains. This paper presents a multi-
GPU-based reconstruction algorithm capable of efficientlyrecon-
structing large volumes (between 64 gigavoxels and 1 teravoxel
volumes) not only faster than traditional CPU- and GPU-based
reconstruction algorithms but also while consuming significantly less
energy. The reconstruction algorithm exploits the irregular kernel
approach from previous work as well as a modularized MIMD-
like environment, heterogeneous parallelism, as well as macro- and
micro-scale dynamic task allocation. The result is a portable and
flexible reconstruction algorithm capable of executing on awide
range of architectures including mobile computers, workstations,
supercomputers, and modestly-sized hetero or homogeneousclusters
with any number of graphics processors.

I. I NTRODUCTION

Industrial Computed Tomography (CT) is an indirect 3D imag-
ing technique that typically consists of datasets that are orders-
of-magnitude larger compared to medical-scale datasets due to
detectors with many pixels (usually 6-16 million pixels), many
more projections, larger reconstruction volumes, high energy x-
rays, or any combination thereof [1]–[3].

The reconstruction algorithm, frequently Feldkamp-Davis-
Dress [4] for large-scale industrial applications, is computation-
ally complex ato(n4) and can require an unreasonable amount
of time to complete in a traditional computing environment.
The computational complexity of reconstruction has let to the
investigation of graphics processing units (GPUs) to be utilized
as coprocessors to complete the heavy computational task ofthe
reconstruction algorithm while the central processing unit (CPU)
manages storage and memory I/O tasks. For medical datasets,
GPU-based reconstruction algorithms have seen tremendousim-
provement in computation time while achieving comparable nu-
merical stability [5], [6].

Many of these GPU-based approaches to medical-scale CT
reconstruction could easily be applied to industrial-scale datasets;
unfortunately, the time required to reconstruct could still be unac-
ceptable due to bottlenecks created by the larger input, increased
computational requirements, host and/or device bandwidthlimita-
tions, and irregular memory access patterns [3], [7]. Furthermore,
these bottlenecks could become much more exaggerated by the
GPU kernel design (i.e instruction ordering) as well as the host
I/O capability in both host memory and storage. The large-scale
datasets may range from a few gigabytes to several terabytesfor
both the input and the output reconstructed volume; this results
in non-trivial storage tasks as well as severe bandwidth pressure
on the entire system.

This work presents a flexible and portable multi-GPU recon-
struction algorithm that exhibits high-performance and energy
efficiency on a wide range of reconstruction tasks applicable
to industrial applications. This work will present performance
results on two large-scale datasets; the first, is a 64 gigavoxel
reconstruction from 1800 16 megapixel projections; the second, a
synthetic ”future-sized” dataset consisting of a teravoxel (1 trillion
voxels) reconstructed from 10,000 100 megapixel projections.
There are two high-performance multi-GPU algorithms that will
be presented as well as a ”naı̈ve” multi-GPU implementationand
a traditional CPU-based approach for comparison.

II. A PPROACH

The approach presented in this work utilizes an irregular
kernel design developed by Jimenez et. al. [3]. An irregular
approach for the kernel design is crucial as the scan geometry
for many industrial applications can vary widely due to object
size, magnification requirements, or hardware system limitations.
Any combination of these leads to an unpredictable memory
access pattern requiring a variable amount of data for any given
neighborhood within the reconstruction volume as shown in figure
1. A wide memory access pattern combined with the massive
input dataset and massively multithreaded environment of the
GPU device results in an irregular computation for reconstruction
tasks. Work done by Jimenez and Orr [7] demonstrated the impact
of kernel design for irregular reconstructions and showed that
computational times improved by up to three-fold when account-
ing for the irregular nature of the computation. This improvement
could be the difference between a large reconstruction requiring

SAND2013-9830C



many days to complete to accomplishing the same computation
in less than a day.

Thread-based parallelization of many reconstruction algorithms
is done by assigning a voxel (or set of voxels) to a thread and
executing parallel threads to simultaneously update voxelinfor-
mation. Thus, for a cluster of threads updating voxel information
(regardless of proximity with respect to voxel position), the back-
projection nature of reconstruction could potentially result in
threads accessing data from the input in non-localized regions;
in the case of GPUs, this results in a computational performance
degradation due to severe memory latencies of accessing disparate
memory addresses.

The approach described by Jimenez et. al. showed that the key
to improving kernel computational performance was dependent
on not only massive multi-threading and fast memory, but also:

• Memory uploads- Data uploads are maximized instead of
minimized to accommodate more slices simultaneously.

• Host Pinned Memory- Pinned host memory will allow for
faster data upload to the devices.

• GPU Cache hit-rate maximization- An irregular approach
dramatically improves the GPU cache hit-rate thus maximiz-
ing computational performance and a reduction of wasted
GPU clock cycles.

• Dynamic Task Allocation- Varying GPU tasks with respect
to location in the volume will improve load-balancing be-
tween the GPUs as well as benefit the irregular computation.

• Instruction Ordering- Kernel design was implemented such
that any register latency from write backs are amortized by
assigning instructions that are independent of the inaccessi-
ble register.

• Resource Maximization- The kernel is designed independent
of the GPU model and specifications, this will allow the
kernel to execute optimally across a wide variety of GPUs.
Resource maximization will query the resources available on
the GPU and ensure that all compute cores are utilized as
well as all device memory.

• Cache Structure- The cache structure of GPUs is distinctly
unique compared to traditional CPUs. Namely, texture and
constant (”scratch pad” cache) [8] cache. To maximize
performance, these unique caches must be exploited.

Addressing the computational bottleneck of reconstruction only
addresses a portion of the problem. Once all voxels of a given
image plane have been reconstructed, the image plane is typically
written to storage media. For industrial applications, this could
range from several dozen gigabytes to several terabytes for
the entire reconstructed volume. Since most computing systems
cannot store the entire reconstructed volume in system memory,
the reconstruction algorithm will intermittently pause towrite the
completed subvolume to storage media. For large-scale industrial
applications, this results in tremendous performance degradation
as the consequences are two-fold: The I/O storage tasks require
nontrivial time to complete the task and all GPUs sit idle,
not contributing to the progress of the reconstruction all while
consuming energy waiting for the completion of the pending
storage tasks.

This issue was addressed by Orr and Jimenez [9] by imple-
menting a modularized approach to improve architectural support
to a multi-GPU algorithm to reduce GPU idle time by overlapping
storage write tasks during GPU computation via an input read-
ahead approach. This approach dynamically queries the entire

system to determine the available host memory, number of
devices, and specifications of each device to determine the largest
subvolume that can reside in host memory while still allowing for
relevant projection image input data to reside in host memory
as well. Next, the algorithm utilizes an MIMD-like approach
by assigning varying assignments to each available host thread
on the system. Each thread is assigned to either manage kernel
launches and memory transfers between host and a specific device
or manage post-processing and storage writes of the reconstructed
image planes. The algorithm will read the input to host memory
and begin GPU-based computations on a given subvolume of
the volume determined to fit in host memory. Upon completion,
the reconstructed subvolume is transfered to host memory by
its assigned thread and computation of the next subvolume is
immediately started. While computation of the next subvolume
is performed, the host threads assigned to storage writing tasks
receive a message that write tasks are pending and then begin
writing pending image planes to storage and continue to do so
until all pending planes are written. The original intent ofOrr and
Jimenez was to demonstrate an approach to reconstruct ”future-
sized” datasets efficiently. However, this work contends that this
approach is also beneficial to current large-scale reconstructions.

III. I MPLEMENTATION

The algorithms presented were developed using Visual Studio
2008 and were written using the C++ programming language. The
GPU kernels were written using Nvidiaś CUDA programming
environment version 5.0. All implementations will executethe
FDK reconstruction algorithm [4].

A. Modular Approach

The modular approach (MA) utilizes the kernel design opti-
mizations of Jimenez et. al. and the storage I/O optimizations
described by Orr and Jimenez and the storage I/O optimizations
described by Orr and Jimenez. This approach, as described inthe
previous section, requires parallel host threads to eithersupply
input data to a particular device or apply post-processing on
completed reconstructed image planes and write them to storage
media. Parallel host code was achieved using OpenMP 2.0.

B. Serial Approach

The serial approach (SA) also utilizes the kernel design of
Jimenez et. al. but does not exploit the I/O optimizations of
Orr and Jimenez. This approach still requires host parallelization,
all available host threads are evenly distributed to all available
devices and are responsible for providing input data to its assigned
device as well as post-processing and storage writing tasks. This
approach is presented to illustrate the impact of the approach
taken by Orr and Jimenez. Parallelization of the host code is
achieved by utilizing OpenMP 2.0.

C. Näıve Approach

For comparison purposes, a ”naı̈ve” multi-GPU-based imple-
mentation will also be presented. This naı̈ve approach is a port of
a CPU-based reconstruction algorithm that is modified sufficiently
to function on a GPU, but does not exploit any GPU specific
characteristics such as hardware interpolation, cache optimiza-
tions or subvolume processing. The main feature of the approach
is minimal and includes exploiting the multi-threaded nature of
the GPU. Each kernel launch updates a single image plane with
data from a single projection serially until all projectiondata



Fig. 1. Example of irregular memory access due to variable geometry

has been applied to the image plane. Additionally, none of the
optimizations identified by Jimenez et. al. are exploited. The naı̈ve
approach is similar to the one presented by work done by Jimenez
and Orr [7]. Similar to the above implementations, parallelization
of the host threads is done by using OpenMP 2.0.

D. CPU Implementation

For baseline comparison, we present a CPU-based design thatis
widely used in the industrial non-destructive testing community.
The CPU-design is a hybrid design that parallelizes the source
code using OpenMP 2.0 and MPICH2. This approach is optimized
for maximal CPU utilization.

IV. EVALUATION

This work will focus on the performance of each implemen-
tation on a single system. The system consists of a Supermicro
Server with dual Intel Xeon Processors clocked at 2.0 GHz (Octo-
core with Hyper-Threading), 512 GB RAM, 8 disk RAID0 array
connected via an Intel Controller, and 8 Tesla M2090 GPUs.
Each M2090 device is a Fermi-class device with 6GB of GDDR5
memory and 512 streaming processors.

Performance of each implementation will be measured against
two datasets. The first is a40003 voxel volume reconstruction
from 1800 16 megapixel projections which is representative
of the larger-end of current reconstructions. The second isa
teravoxel (1 trillion voxels) volume reconstruction from 10,000
100 megapixel projections, which was selected as a stress-test as
well as a potential future-sized dataset. Performance metrics to
be measured include computation time, kilowatt-hours consumed
(measured using Kill-A-Watt meters connected directly to the
system), and performance scalability with respect to the number
of GPUs.

V. RESULTS

A. 64 Gigavoxel Dataset

Figure 2 presents the computational performance of each GPU-
based implementation. Both optimized approaches far outperform

the naı̈ve approach; in fact, performance of the naı̈ve approach
degrades significantly when more GPUs are added. The figure
also seems to show very little improvement with respect to GPUs;
this seems to imply that the computation task in the 64-billion
voxel volume is not the main bottleneck, but in fact the storage
I/O is the main hindrance, this was further supported by the
observance of each GPU reconstructing image planes at a rate
greater than one per second. I/O burden seems to be slightly
alleviated by exploiting the I/O optimization of Orr and Jimenez,
but with the lack of significantly overlapping tasks (compute
and write) due to quick computations, the performance gainsare
very modest. The CPU-based approach required over 34 hours
to complete the same reconstruction; many works have shown
that GPU-based CT reconstruction significantly outperformCPU-
based implementations, so this is to be expected [6], [10], [11].

Figure 3 presents energy consumption for each implementation.
The modular approach performs between 19 and 48 percent more
efficiently than the serial approach, and may be attributed to
the reduced GPU downtime and slightly improved computational
performance. However, both optimized approaches dramatically
outperform the naı̈ve and CPU-based implementations by an
order-of-magnitude for 8 GPUs.

Figure 4 shows the scalability with respect to devices for each
GPU-based implementation. Since the computation task is not the
main bottleneck for the optimized approaches, it is not surprising
that there is minimal scalability improvement. However, asseen
in figures 2 and 3, scalability is absent for the naı̈ve approach.

B. Teravoxel Dataset

The synthetic teravoxel dataset was large enough to adequately
stress all implementations so that true performance comparisons
could be made. It should be noted that for the CPU-based
reconstruction, only a subvolume was reconstructed and the
values for the entire volume were extrapolated. The subvolume
reconstructed consisted of 10 billion voxels located in thecenter
image planes of the volume as this is typically the region that



2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

1000

Number of GPUs

C
om

pu
ta

tio
n 

T
im

e 
(M

in
ut

es
)

BVD: Reconsruction Time

 

 

Modularized
Serial
Naive

Fig. 2. Reconstruction time performance for the 64 gigavoxel volume with respect to number of GPUs

the algorithm performs best due to coalesced memory reads and
reduced necessary data for a full reconstruction.

Figure 5 shows a tremendous improvement in computational
performance for both optimized implementations over the naı̈ve
approach. Additionally, performance is measurably improved
when increasing the number of devices. the I/O optimizationin
the modular approach has a measurable impact resulting in an
improvement in computation time of approximately 12 hours for
a single GPU and over 3 hours for 8 GPUs. The CPU-based
implementation required over 2500 hours.

Figure 6 shows that the optimized implementations are about
two orders-of-magnitude more energy efficient than the CPU-
based method and an order-of-magnitude more energy efficient
than the naı̈ve approach. The trend for the optimized approaches is
similar to the trend seen in figure 5 implying that the reducedGPU
downtime is the main source of energy savings for the modular
approach when compared to the serial approach.

Figure 7 shows that the optimized approaches scale nearly
identically with a slight deviation at 8 GPUs. The naı̈ve approach
exhibits better scalability compared to figure 4; however, the
scalability performance is very poor compared to the optimized
implementations.

VI. CONCLUSION

This work has shown that kernel design of GPU-based recon-
struction that is focused on the irregular nature of large-scale
reconstruction tasks will dramatically improve performance when
compared to CPU- and other GPU-based methods. Additionally, a
modular approach was shown to improve performance on current
large-scale datasets and not just future-scale datasets aswas
shown by Orr and Jimenez [9].

Intelligent algorithm design in GPU kernels has shown that
significant energy savings can be achieved, again, not only com-
pared to CPU-based methods, but also against Naı̈ve approaches
to GPU kernel design. No previous work could be found on
energy consumption metrics of reconstruction algorithms.The
initial tests presented in this work show that large-scale industrial
reconstructions could realize tremendous energy savings,even for
the cases in which trillions of voxels need to be processed. In the
case of the 64 billion voxel dataset, a 23.5x energy consumtion
improvement was realized and a 35.2x consumption improvement
for the teravoxel dataset. Future work will study other important
aspects of efficiency such as the energy-delay product [12],
amperage, voxel throughput and global reconstruction throughput
per megajoule, etc. Many green computing efforts focus on the
hardware design to improve energy efficiency, but clearly there is
work to be done on the software design aspects of efficiency as
well.

VII. A CKNOWLEDGEMENTS

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Depart-
ment of Energy’s National Nuclear Security Administrationunder
contract DE-AC04-94AL85000.

REFERENCES

[1] S. Izumi, S. Kamata, K. Satoh, and H. Miyai, “High energy x-ray computed
tomography for industrial applications,”Nuclear Science, IEEE Transactions
on, vol. 40, no. 2, pp. 158 –161, apr 1993.

[2] H. H. Barrett and K. J. Myers,Foundations of Image Science. Wiley-
Interscience, 2004.



2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

Number of GPUs

K
W

H

BVD: Total KWH

 

 

Modular
Serial
Naive
Hybrid−CPU

Fig. 3. Energy Consumption the 64 gigavoxel reconstructionwith respect to number of GPUs

[3] E. Jimenez, L. Orr, and K. Thompson, “An irregular approach to large-
scale computed tomography on multiple graphics processorsimproves
voxel processing throughput,” inHigh Performance Computing, Networking,
Storage and Analysis (SCC), 2012 SC Companion:, 2012, pp. 254–260.

[4] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,”
Journal of the Optical Society of America A, vol. 1, no. 6, pp. 612–619,
1984.

[5] S. Xiao, Y. Bresler, and J. Munson, D.C., “Fast feldkamp algorithm for
cone-beam computer tomography,” inImage Processing, 2003. ICIP 2003.
Proceedings. 2003 International Conference on, vol. 2, sept. 2003, pp. II –
819–22 vol.3.

[6] F. Xu and K. Mueller, “Ultra-fast 3d filtered backprojection on commodity
graphics hardware,” inBiomedical Imaging: Nano to Macro, 2004. IEEE
International Symposium on, april 2004, pp. 571 – 574 Vol. 1.

[7] E. S. Jimenez and L. J. Orr, “Rethinking the Union of Computed Tomogra-
phy Reconstruction and GPGPU Computing,” inWorkshop on Penetrating
Radiation Systems and Applications XIV, ser. SPIE Optical Engineering +
Applications, Aug. 2013.

[8] J. W., S. K.A., and M. M., “Characterizing and Improving the Use of
Demand-Fetched Caches in GPUs,” ser. International Conference on Su-
percomputing 2012, June 2012.

[9] L. J. Orr and E. S. Jimenez, “Preparing for the 100-megapixel Detector: Re-
constructing a Multi-Terabyte Computed-Tomography Dataset,” in Workshop
on Penetrating Radiation Systems and Applications XIV, ser. SPIE Optical
Engineering + Applications, Aug. 2013.

[10] F. Xu and K. Mueller, “Accelerating popular tomographic reconstruction
algorithms on commodity pc graphics hardware,”Nuclear Science, IEEE
Transactions on, vol. 52, no. 3, pp. 654 – 663, june 2005.

[11] K. Mueller, F. Xu, and N. Neophytou, “Why do commodity graphics
hardware boards (GPUs) work so well for acceleration of computed to-
mography?” inSociety of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, ser. Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, vol. 6498, Feb. 2007.

[12] R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose
microprocessors,”Solid-State Circuits, IEEE Journal of, vol. 31, no. 9, pp.
1277–1284, 1996.



1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
Performance Scalability − 64 Gigavoxels

Graphics Processors

P
er

fo
rm

an
ce

 S
ca

le

 

 

Ideal
MA
SA
Naive

Fig. 4. Scalability with respect to GPU count for the 64 gigavoxel volume

2 3 4 5 6 7 8
20

40

60

80

100

120

140

160

180

200

Number of GPUs

C
om

pu
ta

tio
n 

T
im

e 
(H

ou
rs

)

TVD: Reconsruction Time

 

 

Modularized
Serial
Naive

Fig. 5. Reconstruction time performance for the teravoxel volume with respect to number of GPUs



2 3 4 5 6 7 8

10
2

10
3

Number of GPUs

K
W

H

TVD: Total KWH

 

 

Modular
Serial
Naive
Hybrid−CPU

Fig. 6. Energy Consumption the teravoxel reconstruction with respect to number of GPUs

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8
Performance Scalability − Teravoxel

Graphics Processors

P
er

fo
rm

an
ce

 S
ca

le

 

 

Ideal
MA
SA
Naive

Fig. 7. Scalability with respect to GPU count for the teravoxel volume


