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Abstract—There has been much work done in implementing
various GPU-based Computed Tomography reconstruction alg-
rithms for medical applications showing tremendous improement
in computational performance. While many of these reconstuction
algorithms could also be applied to industrial-scale datasts, the
performance gains may be modest to non-existent due to a corinb
nation of algorithmic, hardware, or scalability limitatio ns. Previous
work presented showed an irregular dynamic approach to GPU-
Reconstruction kernel execution for industrial-scale reonstructions
that dramatically improved voxel processing throughput. However,
the improved kernel execution magnified other system bottieecks
such as host memory bandwidth and storage read/write bandwith,
thus hindering performance gains. This paper presents a mdt
GPU-based reconstruction algorithm capable of efficientlyrecon-
structing large volumes (between 64 gigavoxels and 1 teraxel
volumes) not only faster than traditional CPU- and GPU-basd
reconstruction algorithms but also while consuming signiftantly less
energy. The reconstruction algorithm exploits the irregubr kernel
approach from previous work as well as a modularized MIMD-
like environment, heterogeneous parallelism, as well as meo- and
micro-scale dynamic task allocation. The result is a portake and
flexible reconstruction algorithm capable of executing on awide
range of architectures including mobile computers, worksations,
supercomputers, and modestly-sized hetero or homogeneodkisters
with any number of graphics processors.

I. INTRODUCTION

Many of these GPU-based approaches to medical-scale CT
reconstruction could easily be applied to industrial-scktasets;
unfortunately, the time required to reconstruct could bl unac-
ceptable due to bottlenecks created by the larger inputeased
computational requirements, host and/or device banduiitita-
tions, and irregular memory access patterns [3], [7]. Farrttore,
these bottlenecks could become much more exaggerated by the
GPU kernel design (i.e instruction ordering) as well as tbsth
I/O capability in both host memory and storage. The largdesc
datasets may range from a few gigabytes to several terafpytes
both the input and the output reconstructed volume; thiglies
in non-trivial storage tasks as well as severe bandwidtbsure
on the entire system.

This work presents a flexible and portable multi-GPU recon-
struction algorithm that exhibits high-performance andcrgg
efficiency on a wide range of reconstruction tasks appleabl
to industrial applications. This work will present perfante
results on two large-scale datasets; the first, is a 64 gighvo
reconstruction from 1800 16 megapixel projections; the@sdca
synthetic "future-sized” dataset consisting of a terav¢kerillion
voxels) reconstructed from 10,000 100 megapixel projestio
There are two high-performance multi-GPU algorithms thik w
be presented as well as a "naive” multi-GPU implementadioth
a traditional CPU-based approach for comparison.

Industrial Computed Tomography (CT) is an indirect 3D imag-

ing technique that typically consists of datasets that aders-

of-magnitude larger compared to medical-scale datasedstalu

detectors with many pixels (usually 6-16 million pixels)any
more projections, larger reconstruction volumes, highrgyne-
rays, or any combination thereof [1]-[3].

Il. APPROACH

The approach presented in this work utilizes an irregular
kernel design developed by Jimenez et. al. [3]. An irregular
approach for the kernel design is crucial as the scan gegmetr
for many industrial applications can vary widely due to a@bje

The reconstruction algorithm, frequently Feldkamp-Davisize, magnification requirements, or hardware systemdiioits.

Dress [4] for large-scale industrial applications, is comagion-

Any combination of these leads to an unpredictable memory

ally complex ato(n*) and can require an unreasonable amouatcess pattern requiring a variable amount of data for avgngi

of time to complete in a traditional computing environmenheighborhood within the reconstruction volume as showrgiaré
The computational complexity of reconstruction has lethe t 1. A wide memory access pattern combined with the massive
investigation of graphics processing units (GPUs) to bkzatl input dataset and massively multithreaded environmenthef t
as coprocessors to complete the heavy computational tagie of GPU device results in an irregular computation for recartsion
reconstruction algorithm while the central processing (@PU) tasks. Work done by Jimenez and Orr [7] demonstrated thedmpa
manages storage and memory 1/O tasks. For medical datasafikernel design for irregular reconstructions and showreat t
GPU-based reconstruction algorithms have seen tremenaous computational times improved by up to three-fold when aotou
provement in computation time while achieving comparahle ning for the irregular nature of the computation. This imprment
merical stability [5], [6]. could be the difference between a large reconstructioniriegu



many days to complete to accomplishing the same computatgystem to determine the available host memory, number of
in less than a day. devices, and specifications of each device to determineathedt
Thread-based parallelization of many reconstructionrilyms subvolume that can reside in host memory while still allaypior
is done by assigning a voxel (or set of voxels) to a thread arelevant projection image input data to reside in host mgmor
executing parallel threads to simultaneously update voXer- as well. Next, the algorithm utilizes an MIMD-like approach
mation. Thus, for a cluster of threads updating voxel infation by assigning varying assignments to each available hosathr
(regardless of proximity with respect to voxel positiome tback- on the system. Each thread is assigned to either managel kerne
projection nature of reconstruction could potentiallyufesn launches and memory transfers between host and a specifiedev
threads accessing data from the input in non-localizedoresyi or manage post-processing and storage writes of the reaotesd
in the case of GPUs, this results in a computational perfao®a image planes. The algorithm will read the input to host mgmor
degradation due to severe memory latencies of accessipardte and begin GPU-based computations on a given subvolume of
memory addresses. the volume determined to fit in host memory. Upon completion,
The approach described by Jimenez et. al. showed that the #ey reconstructed subvolume is transfered to host memory by
to improving kernel computational performance was dependéts assigned thread and computation of the next subvolume is
on not only massive multi-threading and fast memory, but:als immediately started. While computation of the next subrau
« Memory uploads Data uploads are maximized instead o6 performed, the host threads assigned to storage writiskst
minimized to accommodate more slices simultaneously. receive a message that write tasks are pending and then begin
« Host Pinned Memory Pinned host memory will allow for writing pending image planes to storage and continue to do so
faster data upload to the devices. until all pending planes are written. The original intentaf and
« GPU Cache hit-rate maximization An irregular approach Jimenez was to demonstrate an approach to reconstructéfutu
dramatically improves the GPU cache hit-rate thus maximigized” datasets efficiently. However, this work contends this
ing computational performance and a reduction of wastégproach is also beneficial to current large-scale reaactgins.
GPU clock cycles. m

« Dynamic Task Allocation Varying GPU tasks with respect . ) ) .
to location in the volume will improve load-balancing be- The algorithms presented were developed using Visual Studi

tween the GPUs as well as benefit the irregular computaticgP98 and were written using the C++ programming language. Th

« Instruction Ordering- Kernel design was implemented suct>PY kernels were written using Nvidias CUDA programming
that any register latency from write backs are amortized {§avironment version 5.0._ All implementations will execube
assigning instructions that are independent of the inasced DK reconstruction algorithm [4].

ble register. o . . . A. Modular Approach
« Resource MaximizationThe kernel is designed independent The modular approach (MA) utilizes the kernel design opti-

of the GPU model and specifications, this will allow the ._ _° . A
) . . mizations of Jimenez et. al. and the storage /O optiminatio
kernel to execute optimally across a wide variety of GPUS.

oo . . described by Orr and Jimenez and the storage I/O optimizatio
Resource maximization will query the resources availahle

0 : . ) ) )
the GPU and ensure that all compute cores are utilized %esscnbed by Orrand Jimenez. This approach, as descritteé in

well as all device memory, previous section, requires parallel host threads to eisigply

o Cache Structure The cache structure of GPUs is distinctlyInpUt data to a partlcula.r device or apply pqst-processmg 0
unique compared to traditional CPUs. Namely, texture ar?gmpleted reconstructed image pla}nes and. write them taggor
constant ("scratch pad” cache) [8] -cache 'Izo maximizrged'a' Parallel host code was achieved using OpenMP 2.0.

performance, these unique caches must be exploited.  B. Serial Approach

Addressing the computational bottleneck of reconstrmatilly ~ The serial approach (SA) also utilizes the kernel design of
addresses a portion of the problem. Once all voxels of a givgienez et. al. but does not exploit the 1/O optimizations of
image plane have been reconstructed, the image plane ealiypi Orr and Jimenez. This approach still requires host paizigdn,
written to storage media. For industrial applicationsstbould || available host threads are evenly distributed to allilalte
range from several dozen gigabytes to several terabytes dekices and are responsible for providing input data tosissgmed
the entire reconstructed volume. Since most computingeByst device as well as post-processing and storage writing t33ks
cannot store the entire reconstructed volume in system mem@pproach is presented to illustrate the impact of the amproa

the reconstruction algorithm will intermittently pausevtdte the taken by Orr and Jimenez. Parallelization of the host code is
completed subvolume to storage media. For large-scalesinidl achieved by utilizing OpenMP 2.0.

applications, this results in tremendous performanceatizdion )
as the consequences are two-fold: The I/O storage taskgeeqfs- Né@ve Approach
nontrivial time to complete the task and all GPUs sit idle, For comparison purposes, a "naive” multi-GPU-based imple
not contributing to the progress of the reconstruction afilev mentation will also be presented. This naive approach sragh
consuming energy waiting for the completion of the pendingCPU-based reconstruction algorithm that is modified saffity
storage tasks. to function on a GPU, but does not exploit any GPU specific
This issue was addressed by Orr and Jimenez [9] by implaracteristics such as hardware interpolation, cachienizat
menting a modularized approach to improve architectunapstt tions or subvolume processing. The main feature of the ambro
to a multi-GPU algorithm to reduce GPU idle time by overlagpi is minimal and includes exploiting the multi-threaded matof
storage write tasks during GPU computation via an input +eathe GPU. Each kernel launch updates a single image plane with
ahead approach. This approach dynamically queries theeentiata from a single projection serially until all projectiaiata
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Fig. 1. Example of irregular memory access due to variablamggry

has been applied to the image plane. Additionally, none ef tthe naive approach; in fact, performance of the naive cgubr
optimizations identified by Jimenez et. al. are exploitdie iaive degrades significantly when more GPUs are added. The figure
approach is similar to the one presented by work done by #mermlso seems to show very little improvement with respect ttJ§P
and Orr [7]. Similar to the above implementations, paraédlon this seems to imply that the computation task in the 64duilli
of the host threads is done by using OpenMP 2.0. voxel volume is not the main bottleneck, but in fact the ggera

. I/O is the main hindrance, this was further supported by the
D. CPU Implementation observance of each GPU reconstructing image planes at a rate

For baseline comparison, we present a CPU-based desiga thgteater than one per second. I/O burden seems to be slightly
widely used in the industrial non-destructive testing camity. alleviated by exploiting the 1/O optimization of Orr and dnez,

The CPU-design is a hybrid design that parallelizes thec®ubut with the lack of significantly overlapping tasks (comput
code using OpenMP 2.0 and MPICH2. This approach is optimizedd write) due to quick computations, the performance gaigs

for maximal CPU utilization. very modest. The CPU-based approach required over 34 hours
to complete the same reconstruction; many works have shown
that GPU-based CT reconstruction significantly outperf@ii-

This work will focus on the performance of each implememnsased implementations, so this is to be expected [6], [1d], [
tation on a single system. The system consists of a Supermicr Figure 3 presents energy consumption for each implementati
Server_W|th dual Intel Xe_on Processors clocked _at 2.0 GH2dOCThe modular approach performs between 19 and 48 percent more
core with Hyper-Threading), 512 GB RAM, 8 disk RAIDO arrayiciently than the serial approach, and may be attributed t
connected via an Intel Controller, and 8 Tesla M2090 GPUge reduced GPU downtime and slightly improved computation
Each M2090 device is a I_:erml—class device with 6GB of GDDR?erformance. However, both optimized approaches draaiitic
memory and 512 streaming processors. outperform the naive and CPU-based implementations by an

Performance of each implementation will be measured aga'B?der-of-magnitude for 8 GPUs.
two datasets. The first is 4000% voxel volume reconstruction Figure 4 shows the scalability with respect to devices fahea
from 1800 16 megapixel projections which is representati\cepu_based implementation. Since the computation tasktitheo
of the larger-end of current reconstructions. The second ismain bottleneck for the optimized approaches, it is not ssiny

tec;gvoxel (1 tr||II|on_ voxels) v?]l.urrr:e reconlstruc(;lon fron®,000 ¢ there is minimal scalability improvement. Howeversagn
100 megapixe p_rOJectlons, which was se ected as a st_essass in figures 2 and 3, scalability is absent for the naive apgroa
well as a potential future-sized dataset. Performanceicsetno

be measured include computation time, kilowatt-hours coresl
(measured using Kill-A-Watt meters connected directly he t
system), and performance scalability with respect to th@mer  The synthetic teravoxel dataset was large enough to adsguat
of GPUs. stress all implementations so that true performance casge
could be made. It should be noted that for the CPU-based
. reconstruction, only a subvolume was reconstructed and the
A. 64 Gigavoxel Dataset values for the entire volume were extrapolated. The sulmelu
Figure 2 presents the computational performance of each-GREconstructed consisted of 10 billion voxels located in ¢aater
based implementation. Both optimized approaches far distpe image planes of the volume as this is typically the regiort tha

IV. EVALUATION

B. Teravoxel Dataset

V. RESULTS
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Fig. 2. Reconstruction time performance for the 64 gigavewxdume with respect to number of GPUs

the algorithm performs best due to coalesced memory reatls anintelligent algorithm design in GPU kernels has shown that
reduced necessary data for a full reconstruction. significant energy savings can be achieved, again, not antyc
Figure 5 shows a tremendous improvement in computatioqered to CPU-based methods, but also against Naive ap@®ac
performance for both optimized implementations over thivena to GPU kernel design. No previous work could be found on
approach. Additionally, performance is measurably imptbv energy consumption metrics of reconstruction algorithifise
when increasing the number of devices. the I/O optimizaiion initial tests presented in this work show that large-soadkstrial
the modular approach has a measurable impact resulting inraaonstructions could realize tremendous energy savavgs, for
improvement in computation time of approximately 12 hourns f the cases in which trillions of voxels need to be processethé
a single GPU and over 3 hours for 8 GPUs. The CPU-basease of the 64 billion voxel dataset, a 23.5x energy consumti
implementation required over 2500 hours. improvement was realized and a 35.2x consumption improwéme
Figure 6 shows that the optimized implementations are abdat the teravoxel dataset. Future work will study other imgaot
two orders-of-magnitude more energy efficient than the CPldspects of efficiency such as the energy-delay product [12],
based method and an order-of-magnitude more energy efficiemperage, voxel throughput and global reconstructiorutjinput
than the naive approach. The trend for the optimized agpessis per megajoule, etc. Many green computing efforts focus @n th
similar to the trend seen in figure 5 implying that the reduG&® hardware design to improve energy efficiency, but clearydhs
downtime is the main source of energy savings for the modulaork to be done on the software design aspects of efficiency as
approach when compared to the serial approach. well.
Figure 7 shows that the optimized approaches scale nearly
identically with a slight deviation at 8 GPUs. The naive mgeh VII. ACKNOWLEDGEMENTS
exhibits better scalability compared to figure 4; howevée t
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