
Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for

the U.S. Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000.

Pushing back the point of diminishing returns
for parallel performance

Workshop on Exascale Programming Challenges

July 27 – 29, 2011

USC/ISI

Marina del Rey, CA

Curtis Janssen, Sandia National Laboratories

cljanss@sandia.gov

Unlimited Release

SAND 2011-5207C

SAND2011-5207C

Challenges impacting exascale application
performance

Schroeder and Gibson, Journal of Physics: Conference
Series, 78 (2007) 012022, SciDAC 2007 Proceedings.

Generated using David A. Wheeler's 'SLOCCount'

Example application: Hartree-Fock theory

 Approximate solution to Schrödinger's equation

 Electron interact with average of other electrons, giving rise to a
generalized eigenvalue problem

 Major steps (assuming spin restricted closed shell):

– Integral computation:

– Fock matrix formation:

– Diagonalization:

– Density computation:

H = 1
2

∇i
2

i

n

∑ − qa
ria

+ 1
rij
+ qaqb

raba<b

N

∑
i< j

n

∑
a

N

∑
i

n

∑

Fpq = Hpq + Prs vpqrs +
1
2
vprqs

⎛
⎝⎜

⎞
⎠⎟

Ppq = 2 CpaCqa
a

N /2

∑

FC = SCe CSCT = 1

Spq = χ p (r)χq (r)dr∫

Gpqrs = χ p (r1)χq (r1)
1
r12

χ r (r2)χ s (r2)dr1 dr2∫

Hpq = χ p (r) ∇2 − qa
rAa

N

∑⎛
⎝⎜

⎞
⎠⎟
χq (r)dr∫

Unteasing concurrency from applications

FFoorrmm tthhee aattoommiicc oorrbbiittaall FFoocckk,, FF,, aanndd oovveerrllaapp,, SS
SSyynncchhrroonniizzee ssoo tthhaatt FF iiss ccoommpplleettee oonn aallll nnooddeess
BBeeggiinn iitteerraattiivvee eeiiggeennssoollvveerr
 FFoorr eeaacchh sseett ooff iinnddeeppeennddeenntt sshheellll ppaaiirrss
 CCoommppuuttee tthhee rroottaattiioonn mmaattrriixx
 SSyynncchhrroonniizzee ssoo rroottaattiioonn mmaattrriixx iiss ccoommpplleettee
 RRoottaattee FF aanndd SS
 SSyynncchhrroonniizzee ssoo tthhaatt FF aanndd SS aarree ccoommpplleettee
 EEnndd lloooopp oovveerr iinnddeeppeennddeenntt sshheellll ppaaiirrss
EEnndd eeiiggeennssoollvveerr iitteerraattiioonnss

Traditional imperative formulation

 graph

Elementary operations

Simulated timings

Comparison of data dependencies�
with and without synchronization

With synchronization:
Without synchronization:

Synchronization increases the number of data
dependencies. Thus, the overall potential for
parallelization is reduced by synchronizing

operations such as barriers and collectives.

Hierarchical decomposition needed for�
locality and scalabilty

  Hierarchical in terms of operations

  Eigenvectors constructed from Fock matrix

constructed from integrals

  Hierarchical in terms of data

  Large blocks containing small blocks, etc.

  Map data hierarchy to memory hierarchy

  CCSD example:

Contract

Contract

Contract Contract

Contract Contract

Contract

Contract

t2(0,0,0,1)

SumSum Sum

Contract Contract

Sum

Contract

t2(0,0,1,0)

Sum Sum

ContractContract

Contract

Contract Contract

Contract Contr

Sum

Contract

f_vo(0,0)

Contract Contract Contract

t1(0,0)

Contract ContractContract Contract ContractContractContractContractContractContract

Contract Contrac

Contract

Contract

Contract Contract Contract ContractContract ContractContract Contract ContractContract Contract Contract Contract

Contract

Contract

Contract

Contract

f_vo(1,0)

Contract

t1(0,1)

Contract Contract Contract Contract

Contract

Contract ContractContract ContractContract ContractContract Contract

Contract

v_vvvv(0,0,0,1)

Sum

v_vvvv(0,1,0,1)

Sum

h_vv(0,1)

Sum

v_vvvv(0,0,1,0)

Sum

v_vvvv(0,1,1,0)

Sum

h_vv(1,0)

Sum

v_vvvv(1,0,0,1)

Sum

v_vvvv(1,1,0,1)

Sum

h_vv(1,1)

Sum

v_vvvv(1,0,1,0)

Sum

v_vvvv(1,1,1,0)

Sum

h_oo(0,0)

Sum

v_oooo(0,0,0,0)

Sum SumSum

v_oovv(0,0,0,0)

Sum

Contract Contract

Sum

Contract

Sum

ContractContract

v_oovv(0,0,0,1)

Contract

Sum

Sum

Sum

Sum

Contract

v_oovv(0,0,1,0)

Contract

Sum

Sum

Contract

v_oovv(0,0,1,1)

Sum

Sum

Sum

v_ooov(0,0,0,0)

Sum

Sum

v_ooov(0,0,0,1)

Sum

Sum

v_ovvv(0,0,0,1)

Sum

Sum

v_ovvv(0,0,1,1)

Sum

v_ovvv(0,1,0,0)

Sum Sum

v_ovvv(0,1,1,0)

Sum

r2(0,0,0,0)

r2_10(0,0,0,0)

k(0,0,0,0)

T(0,0,0,0) T(0,0,1,0)

t1t1(0,0,1,0)

Sum

k(0,1,0,0)

k_2(0,1,0,0)3(0,1,0,0) k_4(0,1,0,0)

Sum Contract

r2_2(0,0,0,0)

a(0,0,0,0)

a_3a_4(0,0,0,0)

tau(0,0,0,0)

ContractContract

tau(0,0,0,1)

t1t1(0,0,0,1)

Contract

tau(0,0,1,0)

Contract

tau(0,0,1,1)

Contract

b_2(1,1,0,0)

r2_4(0,0,0,0)

g_vv(1,0)

g_vv_2(1,0) g_vv_3(1,0)

vv_vvvo(1,0,0,0) vv_vvvo(1,1,0,0)

r2_5(0,0,0,0)

g_oo(0,0)

g_oo_2(0,0)

g_oo_3(0,0)

vv_ovoo(0,0

r2_7(0,0,0,0)

vvt_oovo(0,0,0,0)

vt_oovo(0,0,0,0)

Contract

r2_8(0,0,0,0)

jk(0,0,0,0)

j(0,0,0,0)

j_4(0,0,0,0) j_5(0,0,0,0)

vv_vvoo(0,0,0,0) vv_vvoo(0,1,0,0)

Contract

jk(0,1,0,0)

j(0,1,0,0)

j_2(0,1,0,0)

j_3(0,1,0,0) j_4(0,1,0,0) j_5(0,1,0,0)

vv_vvoo(1,0,0,0) vv_vvoo(1,1,0,0)

t2t2(0,0,0,0)

Contract

t2t2(0,0,1,0)r2_9(0,0,0,0)

r2(0,0,0,1)

r2_10(0,0,0,1)

k(0,0,0,1)

k_4(0,0,0,1)

T(0,0,0,1) T(0,0,1,1)

Sum

k(0,1,0,1)

Sum

r2_2(0,0,0,1)

r2_3(0,0,0,1)

b(0,0,0,1)

b_2(0,0,0,1)b_3(0,0,0,1)

b(0,1,0,1)

b_2(0,1,0,1) b_3(0,1,0,1)

b(1,0,0,1)

b_2(1,0,0,1)b_3(1,0,0,1)

b(1,1,0,1)

b_2(1,1,0,1)b_3(1,1,0,1)

r2_4(0,0,0,1) r2_5(0,0,0,1)

r2_6(0,0,0,1)

vt_ovvv(0,0,0,1)

r2_7(0,0,0,1)

r2_8(0,0,0,1)

t2t2(0,0,0,1)

Contract

t2t2(0,0,1,1)r2_9(0,0,0,1)

r2(0,0,1,0)

r2_10(0,0,1,0)

r2_2(0,0,1,0)r2_3(0,0,1,0)

b(0,0,1,0)

,0,1,0) b_3(0,0,1,0)

b(0,1,1,0)

b_2(0,1,1,0) b_3(0,1,1,0)

b(1,0,1,0)

b_2(1,0,1,0)b_3(1,0,1,0)

b(1,1,1,0)

b_2(1,1,1,0) b_3(1,1,1,0)

r2_4(0,0,1,0)

g_vv(0,1)

g_vv_3(0,1)

vv_vvvo(0,0,1,0) vv_vvvo(0,1,1,0)

g_vv(1,1)

g_vv_2(1,1)

g_vv_3(1,1)

r2_5(0,0,1,0)

r2_6(0,0,1,0)

vt_ovvv(0,1,1,0)

r2_7(0,0,1,0)

vvt_oovo(0,0,1,0)

vt_oovo(0,0,1,0)

r2_8(0,0,1,0)

jk(0,0,1,0)

j(0,0,1,0)

j_2(0,0,1,0)

j_3(0,0,1,0)

j_4(0,0,1,0) j_5(0,0,1,0)

jk(0,1,1,0)

j(0,1,1,0)

j_4(0,1,1,0)j_5(0,1,1,0)

r2_9(0,0,1,0)

r2(0,0,1,1)

r2_10(0,0,1,1)r2_2(0,0,1,1)

r2_4(0,0,1,1)

r2_5(0,0,1,1)

r2_7(0,0,1,1)

r2_8(0,0,1,1)

r2_9(0,0,1

Expand in terms of tensor subblocks

Be careful for what you ask …

Am I asking for a monolithic runtime system?

 No – this is the problem with MPI. Need a lightweight, portable, and low-level

primitives.

 Varying levels of sophistication can be built upon this low-lying interface.

Am I asking for new languages?

 Yes and no – general purpose languages spoken and developed by a wide
community will always play a role. Libraries, DSLs (to generate the underlying
code), and embedded DSLs (to supplement the underlying language) will be
essential to hide machine complexity.

Introduction of DSL

for two electron integrals

(code too for

compilers of the era was

subsequently removed)

Introduction of DSL

for many-body terms

Supplemental Slides

Motivation: complexity of parallel machines is
accelerating, but tools to manage this are not

 Several complexity issues affect apps:

– Extreme parallelism

– More computation power enables more

– More complex software

– Numerical issues

– Dropping mean time between failure

– Energy enters optimization objective function

 Human effort does not scale easily to such a complex environment

– Can another approach to programming solve some of these problems?

 Outline of current work:

– Hartree-Fock theory selected due to its expense and scaling issues

  Basis for many other electronic structure methods

–  Examine traditional implementation of Hartree-Fock theory

–  Show preliminary results of applying an alternative programming approach to

Hartree-Fock and compare this to traditional implementations.

Improvements to chip performance over the

Illustration of numerical issues using�
Hartree-Fock theory as an example

Large systems are ill-conditioned:
smallest overlap eigenvalue for
linear alkane rapidly decrease as
system grows for diffuse basis sets

Eliminating near linear dependencies

can change energies—even in the
limit of an exact linear dep.

Errors due to keeping the nearly linear

dep. functions grow like s1
-3, and we

need the difference between large
numbers:

Elementary operations for Hartree-Fock�
in terms of data dependencies

Two electron integrals formation, G:

Output: (ij|kl) for a shell quartet

Fock matrix formation, F:

Input: Two electron integrals

and density matrix

Output: Fock matrix elements

for a shell pair

Jacobi transform formation, J:

Input: Fock and overlap matrix elements

Output: Rotation matrix diagonalizing the sub-block

Matrix transformation, R:

Input: Fock or overlap matrix elements and Jacobi

transform

Output: Transformed matrix elements

Note: output has a sequence number that ensures rotations

are done in the correct order. Both J and R must be aware

of sequence number

Hartree-Fock data dependencies

 Computes the diagonal
blocks of the Fock matrix
after a single Jacobi sweep
for a three shell system.

 Certain input data has been
omitted to simplify the graph.

 Operations on the same row
(ovals) can be computed in
parallel

 Some parallelism can be
exploited among operation on
different rows

Simulated timings for 16 shells on 8
processors

