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Example application: Hartree-Fock theory

 Approximate solution to Schrödinger's equation






 Electron interact with average  of other electrons, giving rise to a 
generalized eigenvalue problem

 Major steps (assuming spin restricted closed shell):




– Integral computation:







– Fock matrix formation:




– Diagonalization:




– Density computation:
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Unteasing concurrency from applications

  
FFoorrmm  tthhee  aattoommiicc  oorrbbiittaall  FFoocckk,,  FF,,  aanndd  oovveerrllaapp,,  SS  
SSyynncchhrroonniizzee  ssoo  tthhaatt  FF  iiss  ccoommpplleettee  oonn  aallll  nnooddeess  
BBeeggiinn  iitteerraattiivvee  eeiiggeennssoollvveerr  
    FFoorr  eeaacchh  sseett  ooff  iinnddeeppeennddeenntt  sshheellll  ppaaiirrss  
        CCoommppuuttee  tthhee  rroottaattiioonn  mmaattrriixx  
        SSyynncchhrroonniizzee  ssoo  rroottaattiioonn  mmaattrriixx  iiss  ccoommpplleettee  
        RRoottaattee  FF  aanndd  SS  
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Traditional imperative formulation


 graph


Elementary operations


Simulated timings




Comparison of data dependencies�
with and without synchronization


With synchronization:
Without synchronization:


Synchronization increases the number of data 
dependencies. Thus, the overall potential for 
parallelization is reduced by synchronizing 

operations such as barriers and collectives.




Hierarchical decomposition needed for�
locality and scalabilty


  Hierarchical in terms of operations

  Eigenvectors constructed from Fock matrix 

constructed from integrals

  Hierarchical in terms of data


  Large blocks containing small blocks, etc.

  Map data hierarchy to memory hierarchy

  CCSD example:


Contract

Contract

Contract Contract

Contract Contract

Contract

Contract

t2(0,0,0,1)

SumSum Sum

Contract Contract

Sum

Contract

t2(0,0,1,0)

Sum Sum

ContractContract

Contract

Contract Contract

Contract Contr

Sum

Contract

f_vo(0,0)

Contract Contract Contract

t1(0,0)

Contract ContractContract Contract ContractContractContractContractContractContract

Contract Contrac

Contract

Contract

Contract Contract Contract ContractContract ContractContract Contract ContractContract Contract Contract Contract

Contract

Contract

Contract

Contract

f_vo(1,0)

Contract

t1(0,1)

Contract Contract Contract Contract

Contract

Contract ContractContract ContractContract ContractContract Contract

Contract

v_vvvv(0,0,0,1)

Sum

v_vvvv(0,1,0,1)

Sum

h_vv(0,1)

Sum

v_vvvv(0,0,1,0)

Sum

v_vvvv(0,1,1,0)

Sum

h_vv(1,0)

Sum

v_vvvv(1,0,0,1)

Sum

v_vvvv(1,1,0,1)

Sum

h_vv(1,1)

Sum

v_vvvv(1,0,1,0)

Sum

v_vvvv(1,1,1,0)

Sum

h_oo(0,0)

Sum

v_oooo(0,0,0,0)

Sum SumSum

v_oovv(0,0,0,0)

Sum

Contract Contract

Sum

Contract

Sum

ContractContract

v_oovv(0,0,0,1)

Contract

Sum

Sum

Sum

Sum

Contract

v_oovv(0,0,1,0)

Contract

Sum

Sum

Contract

v_oovv(0,0,1,1)

Sum

Sum

Sum

v_ooov(0,0,0,0)

Sum

Sum

v_ooov(0,0,0,1)

Sum

Sum

v_ovvv(0,0,0,1)

Sum

Sum

v_ovvv(0,0,1,1)

Sum

v_ovvv(0,1,0,0)

Sum Sum

v_ovvv(0,1,1,0)

Sum

r2(0,0,0,0)

r2_10(0,0,0,0)

k(0,0,0,0)

T(0,0,0,0) T(0,0,1,0)

t1t1(0,0,1,0)

Sum

k(0,1,0,0)

k_2(0,1,0,0)3(0,1,0,0) k_4(0,1,0,0)

Sum Contract

r2_2(0,0,0,0)

a(0,0,0,0)

a_3a_4(0,0,0,0)

tau(0,0,0,0)

ContractContract

tau(0,0,0,1)

t1t1(0,0,0,1)

Contract

tau(0,0,1,0)

Contract

tau(0,0,1,1)

Contract

b_2(1,1,0,0)

r2_4(0,0,0,0)

g_vv(1,0)

g_vv_2(1,0) g_vv_3(1,0)

vv_vvvo(1,0,0,0) vv_vvvo(1,1,0,0)

r2_5(0,0,0,0)

g_oo(0,0)

g_oo_2(0,0)

g_oo_3(0,0)

vv_ovoo(0,0

r2_7(0,0,0,0)

vvt_oovo(0,0,0,0)

vt_oovo(0,0,0,0)

Contract

r2_8(0,0,0,0)

jk(0,0,0,0)

j(0,0,0,0)

j_4(0,0,0,0) j_5(0,0,0,0)

vv_vvoo(0,0,0,0) vv_vvoo(0,1,0,0)

Contract

jk(0,1,0,0)

j(0,1,0,0)

j_2(0,1,0,0)

j_3(0,1,0,0) j_4(0,1,0,0) j_5(0,1,0,0)

vv_vvoo(1,0,0,0) vv_vvoo(1,1,0,0)

t2t2(0,0,0,0)

Contract

t2t2(0,0,1,0)r2_9(0,0,0,0)

r2(0,0,0,1)

r2_10(0,0,0,1)

k(0,0,0,1)

k_4(0,0,0,1)

T(0,0,0,1) T(0,0,1,1)

Sum

k(0,1,0,1)

Sum

r2_2(0,0,0,1)

r2_3(0,0,0,1)

b(0,0,0,1)

b_2(0,0,0,1)b_3(0,0,0,1)

b(0,1,0,1)

b_2(0,1,0,1) b_3(0,1,0,1)

b(1,0,0,1)

b_2(1,0,0,1)b_3(1,0,0,1)

b(1,1,0,1)

b_2(1,1,0,1)b_3(1,1,0,1)

r2_4(0,0,0,1) r2_5(0,0,0,1)

r2_6(0,0,0,1)

vt_ovvv(0,0,0,1)

r2_7(0,0,0,1)

r2_8(0,0,0,1)

t2t2(0,0,0,1)

Contract

t2t2(0,0,1,1)r2_9(0,0,0,1)

r2(0,0,1,0)

r2_10(0,0,1,0)

r2_2(0,0,1,0)r2_3(0,0,1,0)

b(0,0,1,0)

,0,1,0) b_3(0,0,1,0)

b(0,1,1,0)

b_2(0,1,1,0) b_3(0,1,1,0)

b(1,0,1,0)

b_2(1,0,1,0)b_3(1,0,1,0)

b(1,1,1,0)

b_2(1,1,1,0) b_3(1,1,1,0)

r2_4(0,0,1,0)

g_vv(0,1)

g_vv_3(0,1)

vv_vvvo(0,0,1,0) vv_vvvo(0,1,1,0)

g_vv(1,1)

g_vv_2(1,1)

g_vv_3(1,1)

r2_5(0,0,1,0)

r2_6(0,0,1,0)

vt_ovvv(0,1,1,0)

r2_7(0,0,1,0)

vvt_oovo(0,0,1,0)

vt_oovo(0,0,1,0)

r2_8(0,0,1,0)

jk(0,0,1,0)

j(0,0,1,0)

j_2(0,0,1,0)

j_3(0,0,1,0)

j_4(0,0,1,0) j_5(0,0,1,0)

jk(0,1,1,0)

j(0,1,1,0)

j_4(0,1,1,0)j_5(0,1,1,0)

r2_9(0,0,1,0)

r2(0,0,1,1)

r2_10(0,0,1,1)r2_2(0,0,1,1)

r2_4(0,0,1,1)

r2_5(0,0,1,1)

r2_7(0,0,1,1)

r2_8(0,0,1,1)

r2_9(0,0,1

Expand in terms of tensor subblocks




Be careful for what you ask …


Am I asking for a monolithic runtime system?

 No – this is the problem with MPI. Need a lightweight, portable, and low-level 

primitives.

 Varying levels of sophistication can be built upon this low-lying interface.




Am I asking for new languages?

 Yes and no – general purpose languages spoken and developed by a wide 
community will always play a role. Libraries, DSLs (to generate the underlying 
code), and embedded DSLs (to supplement the underlying language) will be 
essential to hide machine complexity.









Introduction of DSL

for two electron integrals

(code too  for


compilers of the era was

subsequently removed)


Introduction of DSL

for many-body terms




Supplemental Slides




Motivation: complexity of parallel machines is 
accelerating, but tools to manage this are not


 Several complexity issues affect apps:

– Extreme parallelism

– More computation power enables more 



– More complex software

– Numerical issues


– Dropping mean time between failure

– Energy enters optimization objective function


 Human effort does not scale easily to such a complex environment

– Can another approach to programming solve some of these problems?


 Outline of current work:

– Hartree-Fock theory selected due to its expense and scaling issues


  Basis for many other electronic structure methods

–  Examine traditional implementation of Hartree-Fock theory

–  Show preliminary results of applying an alternative programming approach to 

Hartree-Fock and compare this to traditional implementations.


Improvements to chip performance over the 




Illustration of numerical issues using�
Hartree-Fock theory as an example


Large systems are ill-conditioned: 
smallest overlap eigenvalue for 
linear alkane rapidly decrease as 
system grows for diffuse basis sets




Eliminating near linear dependencies 

can change energies—even in the 
limit of an exact linear dep.




Errors due to keeping the nearly linear 

dep. functions grow like s1
-3, and we 

need the difference between large 
numbers:




Elementary operations for Hartree-Fock�
in terms of data dependencies


Two electron integrals formation, G:


Output: (ij|kl) for a shell quartet


Fock matrix formation, F:


Input: Two electron integrals


 
and density matrix


Output: Fock matrix elements


 
for a shell pair


Jacobi transform formation, J:


Input: Fock and overlap matrix elements


Output: Rotation matrix diagonalizing the sub-block


Matrix transformation, R:


Input: Fock or overlap matrix elements and Jacobi


 
transform


Output: Transformed matrix elements


Note: output has a sequence number that ensures rotations

are done in the correct order. Both J and R must be aware

of sequence number




Hartree-Fock data dependencies


 Computes the diagonal 
blocks of the Fock matrix 
after a single Jacobi sweep 
for a three shell system.

 Certain input data has been 
omitted to simplify the graph.

 Operations on the same row 
(ovals) can be computed in 
parallel

 Some parallelism can be 
exploited among operation on 
different rows




Simulated timings for 16 shells on 8 
processors



