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Challenges impacting exascale application
performance
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Example application: Hartree-Fock theory

* Approximate solution to Schrodinger's equation
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 Electron interact with average field of other electrons, giving rise to a
generalized eigenvalue problem

* Major steps (assuming spin restricted closed shell):

_ S, =[x,@y@d  H, = xp(r)(vz— ﬁ]%q(r)dr
—Integral computation: I J 2 2

1
G = J 2,0, (1) ——2,(1)7, () d,
12

—Fock matrix formation: 1
qu = Hpq + PFS VPQFS + Evprqs

—Diagonalization:
FC=SCe CSC'=1

—Density computation: N2
PP(] = 2ZCPGCW
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‘ Unteasing concurrency from applications

//?;rm the atomic orbital Fock, F, and overlap, S
Synchronize so that F is complete on all nodes
Begin iterative eigensolver
For each set of independent shell pairs
Compute the rotation matrix

Synchronize so rotation matrix is complete
Rotate F and S
Synchronize so that F and S are complete
End 1oop over independent shell pairs
End eigensolver iterations

Elementary operations
Traditional imperative formulation ryop
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=™ Comparison of data dependencies

with and without synchronization

With synchronization:

Without synchronization:
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Synchronization increases the number of data ‘i\
dependencies. Thus, the overall potential for ‘

parallelization is reduced by synchronizing \

operations such as barriers and collectives.
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Hierarchical decomposition needed for

locality and scalabilty

« Hierarchical in terms of operations

« Eigenvectors constructed from Fock matrix
constructed from integrals

« Hierarchical in terms of data
« Large blocks containing small blocks, etc.
 Map data hierarchy to memory hierarchy
« (CCSD example:
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Be careful for what you ask ...

Am | asking for a monolithic runtime system?

* No - this is the problem with MPI. Need a lightweight, portable, and low-level
interface for fast messaging. Includes active messages and fault notification
primitives.

*Varying levels of sophistication can be built upon this low-lying interface.

Am | asking for new languages?

* Yes and no — general purpose languages spoken and developed by a wide
community will always play a role. Libraries, DSLs (to generate the underlying
code), and embedded DSLs (to supplement the underlying language) will be
essential to hide machine complexity.

Introduction of DSL MPQC Source Lines of Code
for two electron integrals
(code too difficult for 5
compilers of the era was Y Ve[ 05a, X ORI & Introduction of DSL
subsequently removed) for many-body terms
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3 !Motivation: complexity of parallel machines is
accelerating, but tools to manage this are not

Improvements to chip performance over the

» Several complexity issues affect apps: o ookt o I
| nteger Feriformance —eo—
— Extreme parallelism

FP Performance —g—
—More computation power enables more
complex/higher fidelity simulations

—More complex software

-h
(=}
-

-l
o
w

=
w
Clock Rate (MHz)

Multicore
development
[ Pipelining

f development

-y
o
N

Relative Performance
—h
o
N

Multiple-issue
development

[y
o

—Numerical issues |
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—Dropping mean time between failure 1980 1985
—Energy enters optimization objective function
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« Human effort does not scale easily to such a complex environment
— Can another approach to programming solve some of these problems?
» Qutline of current work:

— Hartree-Fock theory selected due to its expense and scaling issues
 Basis for many other electronic structure methods
— Examine traditional implementation of Hartree-Fock theory

— Show preliminary results of applying an alternative programming approach to
Hartree-Fock and compare this to traditional implementations.
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e

lllustration of numerical issues using

Hartree-Fock theory as an example

Large systems are ill-conditioned:
smallest overlap eigenvalue for
linear alkane rapidly decrease as
system grows for diffuse basis sets

Eliminating near linear dependencies
can change energies—even in the
limit of an exact linear dep.

Errors due to keeping the nearly linear
dep. functions grow like s,3, and we
need the difference between large
numbers:
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oo Elementary operations for Hartree-Fock

In terms of data dependencies

e Two electron integrals formation, G:
Output: (ij|kl) for a shell quartet

Fock matrix formation, F:
Input: Two electron integrals
and density matrix
Output: Fock matrix elements
for a shell pair

Jacobi transform formation, J:
Input: Fock and overlap matrix elements
Output: Rotation matrix diagonalizing the sub-block

Matrix transformation, R:
Input: Fock or overlap matrix elements and Jacobi
transform
Output: Transformed matrix elements
Note: output has a sequence number that ensures rotations
are done in the correct order. Both J and R must be aware
of sequence number
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Hartree-Fock data dependencies
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« Computes the diagonal
blocks of the Fock matrix
after a single Jacobi sweep
for a three shell system.

» Certain input data has been
omitted to simplify the graph.

» Operations on the same row
(ovals) can be computed in
parallel

 Some parallelism can be
exploited among operation on
different rows
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ﬂz Simulated timings for 16 shells on 8

processors
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