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Issues 

Need to predict fracture/failure of critical components loaded in 
abnormal environments – crack initiation and propagation 

MISSION 

Aluminum and steel alloys which can exhibit distributed and localized 
processes evolving from void nucleation, growth, microinertia, and 

coalescence. Failure processes are rate and temperature dependent.  

MATERIALS AND MECHANISMS 

The community has developed plasticity/damage models to address 
rate dependence, temperature dependence, and void growth. Literature 
is rich with damage models for metals, polymers, and composites.  
Glitch – they corrupt the PDE.  

CURRENT MODELS 

Our goal is to retain the micromechanics of local damage models 
and add regularization through multiple methods. We need to work 
on the numerics and the physics simultaneously.   

REGULARIZATION 

50 µm 500 µm 

ALS, 7075-T7351 

Boyce, PH13-8, H950 



This could be you... 

635 µm  

Initial mesh 
elastic h:  0.635 mm 

h = element size 

damage h:  0.635 mm 

Subsequent meshes 
elastic h:  0.635 mm 
damage h:  refined 

The initial mesh yielded 
the correct compliance. 
Refinement focused 
on the crack-tip region. 
(SSY assumption) Initial mesh shown 

318 µm  159 µm  79.4 µm  31.8 µm  12.7 µm  6.35 µm  

!!  Finite elements are only used to solve a partial differential equation 
!!  Any correlation of a finite element with a physical process can be misleading 



Seeking a length scale for damage 
h = 159 µm 

Note:  Contours of porosity, 1.0E-4 to 1.0, log scale 

Snapshots of damage taken at propagation. The process zone scales with 
the mesh size and the predicted loads span the experimental finding. 

 h = 79.4 µm 

h = 31.8 µm 

h = 12.7 µm 110 µm
 

280 µm
 

650 µm
 

1500 µm
 

LEFM, a/W = 0.5, K1c = 28.8 MPa!m (E399)  



Exploring multiple methods for regularization 
cohesive zone, crack band 

gradients 

nonlocal 

Adaptive insertion before bifurcation 
Bulk + surface model, mesh topology 

Solve additional pde(s) 
Specify boundary conditions 

Integrate over a ball 
Rescaling at boundaries 

localization elements 

Adaptive insertion before bifurcation 
Restricted path via mesh topology 

variational nonlocal 

independent of mesh topology Mesh adaption needed 

PROBLEMATIC, BUT RICH 

Volume averaging on coarse domain 

NOTE: Artificial viscosity can be used but it convolutes the energetics of failure. 

F = F ‖F⊥ F⊥ = I +
φ

h
⊗N



Generalizing methods 

Rest of talk will be organized based 
on this generalization. We will focus 
on regularized surface and bulk 
methods. 

In general, one can show how each 
method fits  and is complementary. 

NOTE: We will initially focus on deterministic studies at a single scale  



Multiple approaches needed for components 
!!  Each method has a region of applicability defined by strength and toughness 
!!  Analysts need a toolbox to span aluminum to stainless steel alloys 



Localization elements 

!!  Kinematic assumptions 
!!  Improving/simplifying the formulation 
!!  Test case 

!!  Fitting parameters (smooth tension, K-field) 
!!  X-prize geometry  

!!  Addressing membrane forces 
!!  Part of a family of methods for regularization  



  

Yang, Mota and Ortiz, IJNME, 2005 

Kinematic assumptions 

!!  Finite-deformation kinematics. 
!!  Simulation of strain localization. 
!!  No additional constitutive assumptions F = F ‖F⊥



Issues to remedy 

Conjugacy 

Configuration 

Objectivity 



An intermediate configuration 

The jump is pushed backwards 

Retain definition of membrane def. grad. 

additive  
decomposition! 



The order is not unique 

The normal used for construction 

Retain definition of membrane def. grad. 

additive decomposition! 



Benefits of minor change in the kinematics 

Conjugacy 

Configuration, Additive decomposition 

Objectivity 



Case study for PH 13-8 H950 
We obtained a data point from a PH 13-8 H977 test in which they used Bridgman correction factors 
(knowing the notch dimensions) to infer that the stress at a true strain of 0.316 was 1750 MPa.   

f  4.52 x 104    
Y  1600 MPa 
n  0.386 
H  492 MPa 
Rd  1.0 x 10-4 

In this model, there is no recovery. 
Because f is big and n small, they 
do not affect the response. Hence, 
we really only fit two parameters, 
the yield stress, Y, and the 
hardening, H. Can two parameters 
get us there? 
 
NOTE: For ease, the constitutive 
behavior is assumed to be isotropic, 
linear hardening. 



Damage model and length scale 

Cocks and Ashby, 
1980 

Yang, Mota, Ortiz, 2005 

The only parameters that remain are the damage exponent, m, in the evolution of damage " and 
the characteristic length scale h used to normalize the gap vector # to yield a deformation gradient 
for the localization element. We lock down h at 30 µm and fit m with the plane-strain fracture 
toughness. For damage to evolve, we much select an initial porosity, "0. We choose to initialize the 
porosity to 1 x 10-4. 

triaxiality governing void growth 

gap vector for surface separation 

normal to mid-plane in the reference configuration 

characteristic length scale - 30 µm 

NOTE: In the original work of Cocks and Ashby, m is the power-law creep exponent. Just as in plasticity, 
we use the functional form of Cocks and Ashby to fit  m.  

F = F ‖F⊥ F⊥ = I +
φ

h
⊗N
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Resolution and lumping dissipation 

The size of the plastic 
zone at propagation, $a = 
60 µm, s = 30 µm. 
Coarser meshes do not 
blunt. 
 
KIc = 70 MPa!m 
h = 30 µm  

m = 4, Kc = 81 m = 5, Kc = 68 m = 6, Kc = 60 

m = 7, Kc = 55 m = 8, Kc = 51 

K-field boundary  
condition 



Probing properties through tensile necking 

Bar radius: 12.7 mm 
Bar length: 50.8 mm 
Gauge section: 25.4 mm 
Coarse element size ~  635 µm 
Finer element size ~ 318 µm 

NOTE:  A 2.54 µm taper is enforced over ! the gauge section to control the necking process. 



Global and local information 
The simple linear hardening model does quite well to match the slope during the necking process. 
However, given that we have one curve with no measurements of the neck, this is not too bad. We assert 
that we did not tune the failure model to the smooth necking simulation.  

Load-displacement is convergent 



Damage is convergent 

Although at slightly different times, the evolution of damage is comparable for 03 & 04. 

Mesh: 02 
Label: Medium 
Nodes: 29,535 
Elem: 23,673 
s ~ 120 mm 

Mesh: 03 
Label: Fine 
Nodes: 141,831 
Elem: 125,865 
s ~ 60 µm 

Mesh: 04 
Label: Finest 
Nodes: 1,079,622 
Elem: 1,015,812 
s ~ 30 µm 



Load-displacement is convergent 

Boyce s lab: 
!! Load line rate is 0.0127 mm/s 
 
Cordova s lab 
!! Load line rate before 2.03 mm is 
0.0027 mm/s 
!! Load line rate after  2.03 mm is 
0.00025 mm/s 



Element size on the order of h 

material: 2024-T3  
yield stress: 375 MPa, KIc ~ 30 MPa"m 
mesh size s: 30 µm, h = 60 µm  

K = 20 MPa"m K = 25 MPa"m 

Localization elements with no volume  
have membrane forces that scale with h. 
 
What if the mesh size s is order h? 
 
For ductile metals, this is the norm,  
the plastic zone size ~ process zone size 
   

NOTE:  The force calculation for membrane forces = off is cohesive .  

ON OFF ON OFF 



A case for no membrane forces for s~h 

K = 10 MPa"m K = 15 MPa"m 

K = 20 MPa"m K = 25 MPa"m 

A case for eliminating membrane forces when the mesh size is order h 

ON OFF ON OFF 

ON OFF ON OFF 



Conclusions 

!!  Developed methods have broad applicability   

!!  Multiple paths towards regularization needed 

!!  Localization elements provide regularization 

!!  Changes to kinematics remedy issues of configuration, conjugacy, and objectivity 

!!  Fitting process extrapolates plane-strain fracture toughness 

!!  Case for ignoring membrane forces when element size is on order h 

!!  Implemented into Sandia production code, SierraSM 

Acknowledgement: This work was supported in part through the Joint DoD/
DOE Munitions Technology Development Program.    



Extra Slides 



Methods pipeline for SierraSM 
Basic research in engineering science is earned, not given. Production tools enable research. 



Cohesive approaches 

" = 5 J/m2 

" = 10 J/m2 

crack  
initiation 

crack  
propagation 

crack  
interaction 

Sierra Mechanics (PRESTO) 

Cohesive methods work well when we can lump all dissipation into surface separation. 
Ductile fracture challenges this approach (2 model problem, easily incorporating triaxiality) 



Nonlocal approaches  

(LS-Dyna, single point integration) 

(Tim Kostka) 

Nonlocality promising but we would like to simplify the numerics, simplify behavior at 
boundaries, and ensure scalability for massively parallel simulations. 



K-field simulations 
Given a node set on the boundary, we can apply a displacement 
field that enforces mode I, KI, and mode II, KII, stress intensity 
factors in plane-strain. 
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s = 60 µm 

Given KIc = 70 MPa!m and %y = 1.25 GPa, the plastic zone size 
rp is roughly 0.5 mm (500 µm). We set the radius of the disk rd 
to be 150 mm. rd/rp ~ 300, small-scale yielding. For small-scale 
yielding, we can use the K-field boundary condition to imply 
parameters governing the evolution of damage (m). 



Discretization in length and time  
Mesh: 02 
Label: Medium 
Nodes: 29,535 
Elements: 23,673 
s ~ 120 µm 

Mesh: 03 
Label: Fine 
Nodes: 141,831 
Elements: 125,865 
s ~ 60 µm 

NOTE: Stiff, elastic plugs used to apply the pinned, line load. Contact could be used but typically 
aids instability during unloading (propagation). 

Time discretization: A minimum of 500 time steps were employed with adaptive time stepping (1000 steps specified).  



More refinement 
Mesh: 04 
Label: Finest 
Nodes: 1,079,622 
Elements: 1,015,812 
s ~ 30 µm 



Life is complicated 

(Cordova) 

(Boyce) 

Shear lips, anyone? anyone? Not good. 



Planned studies & improvements 

!!  Improvements 
!!  Revised multiplicative decomposition (implemented) 
!!  Membrane forces on/off (implemented) 
!!  Objective velocity gradient update (implemented) 
!!  Stable time step estimate (to do) 

!!  Planned studies 
!!  Weld Failure on the W-87 (Kostka, Templeton) 
!!  Membrane forces on X-Prize (Foulk, Emery, Boyce) 
!!  Implicit/explicit dynamics V&V study (Dike) 
!!  Adaptive remeshing (Emery, Veilleux)  
!!  Applicability to crack-band methods (MLEP-fail) (Veilleux) 



Seeking a length scale for plasticity 

Note:  Contours of equivalent plastic strain, 0.0 to 2.0%. Time t4 taken at propagation. 
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Kr K1c = 28.8 MPa!m (D. Dawson) rp = 1390 µm (major axis) 

Because the plastic zone size is tied to damage, plasticity is also mesh dependent 
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h =  159 µm 
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Mesh dependence under notched tension Notch1 Pull Force vs Disp
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coarse  – 752 elements 
med – 6016 elements 
fine – 48128 elements 
xfine – 385024 elements 
Strain rate = 50/s 
Material = A286 

!!  Specimens of various notched radii for fitting   
!!  The results depend on the mesh size 
!!  The fitted damage parameters are convoluted 
!!  Goodness of the model is not known 
!!  The issue stems from the governing PDEs 

Finite elements is just a method for solving a partial differential equation. 
The real issue is that we are using a local model without a length scale 
to solve a localization problem.  It corrupts what we hold sacred... 

(Jake Ostien) 

(Tim Kostka) 


