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What Do | Mean By Time-Dependent
Density Functional Theory (TDDFT)?

* Integrate time-dependent Kohn-Sham equation

ALOBNEOYION 70

« TDDFT den5|ty matches many-body density

n(r) = Z

 Integrate Newton’s equations for ions

m, O (t) _ F(y ()R, (1))
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Application A: Electronic
Contribution to Thermal Transport

Material Thermal Conductivity Heat Capacity Debye T| e-p coupling
[w/K-m] [J/K-kg] [K] [W/K-m?3]
Cu 401 11.2 244 385 394 10.8 345 2.6 X 1017
Si 148 120 0.02 705 888 0.0002 645 1.0 X 10!

* Both phonons and electrons
contribute to thermal properties fee.

At macroscale, electron-phonon
equilibrium gives aggregate Bt | DA
thermal properties

« What about at nanoscale? Ge/Si Superlattice
Nanowire
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Two Temperature Model (TTM)

« Second moment of Boltzmann equation
* Two temperatures: phonon 6, and electron 6,
 Two coupled, diffusive systems

o0 .
O}p _V. (ka 0, )— g(&’p -6, )+ 7, (x, t)

o, .
=V (kV6,)-g(0,-6,)+r.(%.1)

« Where c Is heat capacity, k is conductivity, ris a
heat source, and g is electron-phonon exchange

Cp
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When Can We Assume
Electron-Phonon Equilibrium?

 The uniform solution gives a time scale

C C
’Z' =
v g(ce +cp)

* The static solution gives a length scale

6.-0,=(6, - Hp)oeXpL—;J

ep

o [k, x
T ek +k,) %0020 o s
Material | Mep Below these time and length

scales, It 1S not safe to assume
S — 294 that phonons and electrons
! ©PS "M arein equilibrium!

Cu 0.36 ps| 6.41nm
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Conduction Band — DOS N,

T %= ux % %%\ Electrons
Cn en
gcl| A Defect
() Level
hole electron € CIo eIo
captur capture
v yvo 00 O 0® 00 00 N, Holes

Valence Band — DOS N,

¢, =, (v,
e, =0, (VIN, exp(—(&; —€)/kT)
e,=0, <v>Nv exp(—&/kT)
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Physics of Carrier Capture

From Henry and Lang, PRB 1977
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.lonic motion along a coordinate
-.Capture can occur at “level crossings”
-Activation energy to reach crossing
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Is There Hope for Bulk Systems?

N=>[ electrons
/ In volume V=>[I
éﬁz -

Effect of any given electron on the ionic force should
be small, so electron-ion correlations may be small
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Our Approach to
“Thermodynamics” with TDDFT

-Analogous to microcanonical molecular dynamics

-Propagate electronic pure state and time average

.Given many-body eigenstates |®_ ), consider

‘ \P> _ Z—% Ze—Ea /2kTei6’a

D,)
.State is normalized, <‘{3(‘]§[\\P> = Tr(,bﬁ), and for any A4
<<\P|121|\P>> _ Z_IZQ_(E“ +Eﬂ)/2kTei(<9ﬂ—¢9a)<cDa (Dﬂ>
«p
=712 e (@ 4@, ) = Tr(pd)

(04
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Some More Issues:

-Symmetry breaking

25[¥)®1%:)] vs. 2.S[¥)]® 2.5[¥,)]
S S S
-.Small systems, DOS sampling, & conservation laws
.TDDFT gives n(t)=(¥|a(¢)|'Y)

(PO NP

fz(t)( LI’>>® VS. <<\P

ZOZORIN

.How do we initialize TDDFT?
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Initially, ions in thermal
motion and electrons in
ground state !

-TDDFT energy E pper
rises above Born-
Oppenheimer (ground
state) energy Egq

‘Etpprr —Ego IS

instantaneous thermal
energy of electrons

. * Los Alamos

Energy Transfer with Hot
lons and Cold Electrons

TDDFT Run for 32 Atoms of Al

Time (fs)
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*Very rapid initial energy
transfer to electrons due to

TDDFT Calculation of Electron-Phonon
Thermal Equilibration Time in Al

Electronic Thermal Energy vs. Time

impulsive initial conditions 0.5

0.4-
*Then, electrons transfer
energy back to ions with % .
time constant t,,=1.8ps 7
o0
S 0.2
c.C = 0.
T,=—F 0
g(c, + cp) -

*Good agreement with 1.5-

— ETDDFT B EBO
— y=0.085 + 0.109*exp(-x/1763)

R
Wil
i

2.0 ps equilibration time 09

from experiment (Kandyla,
Shih, and Mazur, 2007)
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Working on TDDFT-Based Green-
Kubo Approach to Improve Efficiency

x 10

(e¢]

« Explicit energy flow is
computationally expensive

« Green-Kubo approach gives
same quantities from steady
state fluctuations

 Electron-Phonon coupling
obtained from fluctuations in the
lonic force

« Can calculate a wide variety of
guantities with same approach

— Bulk Al

D

H

o

Force-force autocorrelation, (Ryd/Bohr)?
®) N

'
H

200 400 600 800
A t, attoseconds

o

Problem: Autocorrelation
functions oscillate strongly!
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What are the fluctuations in TDDFT?

Low High energies:
energies: Plasmons
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How do we isolate the electron-hole excitations?
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Why does Eqpper - Ego
fluctuate with the phonons?

005
>i
)
S N
U') /
X
Q of T
|
%3]
4
o)
-
L ~/
005 -
-0.1
1000 1100 1200 1300 1400 1500
Time (fs)
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potential surface for ionic motion Sandi
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Energy Transfer with Hot
Electrons and Cold lons

Total lon KineticEnergy for 8 Atom Aluminum Supercell
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Results are promising, but need multip

runs to average out the fluctuations
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Conclusions

* Real-time TDDFT with ionic motion is a promising tool
to study electron-ion energy transfer

* We are investigating a “microcanonical” dynamics
approach to finite-temperature electronic systems

 Fundamental issues with electron-ion correlation limit
direct application of TDDFT to some problems

« Careful handling of several issues is required to get
meaningful results from TDDFT
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Current TDDFT Work

 Understand, model, and remove phonon effects

« OR work with non-moving ions (but what about

equilibration?)

* Develop better initialization to start closer to equilibrium
- Eliminate plasmons and accentuate electron-hole pairs

« Can we get hot ions and cold electrons?

» °Los Alamos
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Novel Experimental Work at CINT —
Thermal Transport at the Nanoscale

Critical experimental requirement: Methods
to sensitively measure thermal, electrical &
Seebeck coefficient simultaneously for In situ TEM to
. probe structure
single nanostructures

Cantilever Array |
Discovery Platform 2.0 Differential thermal transport J. Huang

Thermometers Test structure
\ \h /

SI y _3
. NW 4 ’C4 d @ )
J. Sullivan T. Harris, J. Huang
NW transport structure Heater 4-probe transport

A L Notiow
iona
oL : ]amos ) laboratories

21 NATIONA ABORATORY




Issues in Modeling Heat
Transport at the Nanoscale

* Time-dependent electronic structure (e.g., TDDFT)
— Captures full electron and ion dynamics, BUT
— Not feasible for most nanoscale systems

« Partial Differential Equation (PDE) based methods
— Works well at macroscale, BUT

— Misses effects of nanoscale structure on phonons (e.g.,
phonon confinement, ballistic transport, etc.)

« Molecular Dynamics (MD)
— Explicitly represents phonons and their effects, BUT
— Physics of electronic transport is absent
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Our Modeling Approach: MD for
Phonons, PDE for Electrons

Q

PDE Model ___ ° MD Model

of Electrons | o] of Phonons
(Electrical and Thermal Q ® ‘ QI IQ ® 0 5%
Conducﬂon,Thennoehcuic (Phonon Confinement,
Coupling, Joule Heating) BaHng1TanspoHi
Scattering Mechanisms)

 Use finite elements to solve PDE for electronic temperature 6,

* Obtain local ionic temperature 6, from MD velocities

Va> ll/l\lllll

Ce000000000

* lonic thermostats enforce Two Temperature Model coupling
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Example 1. Cu Nanowire with Electrons
Uniformly Heated by 60 ps Pulse

« Small electron heat capacity
- Rapid electron response

* Large phonon heat capacity -
Slower phonon response

* Different profiles for electron
and phonon temperatures
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Large Electron-Phonon Temperature
Differences in Steady State Systems

Example 2: A Thin Metal Film on an Insulator

Uniform Heating in Uniform Heating in
Electrons of Metal Phonons of Metal
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