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Novel Experimental Work at CINT – 

 Thermal Transport at the Nanoscale 

Experimental Goal: Methods to sensitively 

measure thermal, electrical & thermoelectric 

properties simultaneously for single 

nanostructures  
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Why Are Electrons Important 

to Thermal Behavior? 

Material 
Thermal Conductivity Heat Capacity Debye T e-p coupling 

[w/K-m] [J/K-kg] [K] [W/K-m3] 

Cu 401 11.2 244 385 394 10.8 345 2.6 X 1017 

Si 148 120 0.02 705 888 0.0002 645 1.0 X 1011 

• Both phonons and electrons 

contribute to thermal properties 

• At macroscale, electron-phonon 

equilibrium gives aggregate 

thermal properties  

• This is not necessarily true at 

the nanoscale! 

Ge/Si Superlattice 

Nanowire 



4 

Two Temperature Model (TTM) 

• Second moment of Boltzmann equation 

• Two temperatures: phonon p and electron e 

• Two coupled, diffusive systems 

 

 

 

 

•  Where c is heat capacity, k is conductivity, r is a 

heat source, and g is electron-phonon exchange 
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Phenomenology 

• The spatially uniform solution gives a time scale 

 

 

• The steady-state solution gives a length scale 

 

 

 



ep 
kekp

g ke  kp 

Material ep ep 

Cu 0.36 ps 6.41 nm 

Si 5.8 ps 494 nm 

Below these time and length 

scales, it is not safe to assume 

that phonons and electrons 

are in equilibrium! 
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Our Modeling Approach: MD for 

Phonons, PDE for Electrons 

• Use finite elements to solve PDE for electronic temperature e 

• Obtain local ionic temperature p from MD velocities 

 

 

 

• Ionic thermostats enforce Two Temperature Model coupling 



p 
m

3kBI ,

 ˜ N I v  v

PDE Model 

of Electrons 

MD Model 

of Phonons 

(Electrical and Thermal 

Conduction, Thermoelectric 

Coupling, Joule Heating) 

(Phonon Confinement, 

Ballistic Transport, 

Scattering Mechanisms) 
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Example 1: Cu Nanowire with Electrons 

Uniformly Heated by 60 ps Pulse 

• Small electron heat capacity 

- Rapid electron response 

• Large phonon heat capacity - 

Slower phonon response 

• Different profiles for electron 

and phonon temperatures 
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Large Electron-Phonon Temperature 

Differences in Steady-State Systems 

Metal Insulator Metal Insulator 

Uniform Heating in 

 Phonons of Metal 

Example 2:  A Thin Metal Film on an Insulator  

Uniform Heating in 

 Electrons of Metal 
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Finding Parameters from First Principles - 

Time Dependent Density Functional Theory 

 

•Direct simulation of energy  

transfer between electrons 

and ions in Al gives time 

constant ep= 1.8 ps 

 

 

 

•Good agreement with 1.5-

2.0 ps equilibration time 

from experiment (Kandyla, 

Shih, and Mazur, 2007) 


 ep 
cec p

g ce  c p 

Unlike DFT, TDDFT allows electrons and ions to exchange energy! 
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• Explicit energy flow is 

computationally expensive 

• Green-Kubo approach 

gives same quantities from 

steady state fluctuations 

• Electron-Phonon coupling 

obtained from fluctuations 

in the ionic force 

• Can calculate a wide variety 

of quantities with same 

approach 

Working on TDDFT-Based Green-

Kubo Approach to Improve Efficiency 

Problem: Autocorrelation 

functions oscillate strongly! 
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Low 

energies: 

Phonons 

What are the fluctuations in TDDFT? 

High energies: 

Plasmons 

Working to separate electron-hole fluctuations  
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• It is not safe to assume that the electronic and ionic 

temperatures are the same at the nanoscale 
 

• Enhanced a MD code with a PDE-based representation 

of electronic heat conduction 

 

• Developing a promising approach to calculating 

electronic properties using TDDFT 

 

• Our approach is intrinsically multiphysics and 

multiscale 

Conclusions 
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Electronic excitations change the 

potential surface for ionic motion  

Why does ETDDFT - EBO 

fluctuate with the phonons? 
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Finding Parameters from First Principles - 

Time Dependent Density Functional Theory 

TDDFT allows electrons and ions to exchange energy! 

•Initially, ions in thermal motion 

and electrons in ground state 

 

•TDDFT energy ETDDFT rises 

above Born-Oppenheimer 

(ground state) energy EBO 

 

•ETDDFT – EBO is instantaneous 

thermal energy of electrons 
 

 

ETDDFT 

EBO 

TDDFT Run for 32 Atoms of Al 
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• Understand, model, and remove phonon effects 

 

•  OR work with non-moving ions (but what about 

equilibration?) 

 

• Develop better initialization to start closer to equilibrium 

- Eliminate plasmons and accentuate electron-hole pairs 

 

• Can we get hot ions and cold electrons? 

Current TDDFT Work 
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Issues in Modeling Heat 

Transport at the Nanoscale 

• Time-dependent electronic structure (e.g., TDDFT) 

– Captures full electron and ion dynamics, BUT 

– Not feasible for most nanoscale systems 

 

• Partial Differential Equation (PDE) based methods 

– Works well at macroscale, BUT 

– Misses effects of nanoscale structure on phonons (e.g., 
phonon confinement, ballistic transport, etc.) 

 

• Molecular Dynamics (MD) 

– Explicitly represents phonons and their effects, BUT 

– Physics of electronic transport is absent  


