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Novel Experimental Work at CINT —
Thermal Transport at the Nanoscale

Experimental Goal: Methods to sensitively
measure thermal, electrical & thermoelectric

I " " In situ TEM to
properties simultaneously for single b stucture
nanostructures
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Why Are Electrons Important
to Thermal Behavior?

Material Thermal Conductivity Heat Capacity Debye T| e-p coupling
[w/K-m] [J/K-kg] [K] [W/K-m?3]
Cu 401 11.2 244 385 394 10.8 345 2.6 X 1017
Si 148 120 0.02 705 888 0.0002 645 1.0 X 10!

* Both phonons and electrons
contribute to thermal properties

« At macroscale, electron-phonon
equilibrium gives aggregate
thermal properties

* This Is not necessarily true at Ge/Si Superlattice
the nanoscale! Nanowire
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Two Temperature Model (TTM)

« Second moment of Boltzmann equation
* Two temperatures: phonon 6, and electron 6,
 Two coupled, diffusive systems

o0 .
O}p _V. (ka 0, )— g(&’p -6, )+ 7, (x, t)

o, .
=V (kV6,)-g(0,-6,)+r.(%.1)

« Where c Is heat capacity, k is conductivity, ris a
heat source, and g is electron-phonon exchange

Cp

Ce

Laboratories



Phenomenology

* The spatially uniform solution gives a time scale
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* The steady-state solution gives a length scale

o [k, x
T ek +k,) %0020 o s
Material | Mep Below these time and length

scales, It 1S not safe to assume
S — 294 that phonons and electrons
! ©PS "M arein equilibrium!

Cu 0.36 ps| 6.41nm
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Our Modeling Approach: MD for
Phonons, PDE for Electrons

Q

PDE Model ___ ° MD Model

of Electrons | o] of Phonons
(Electrical and Thermal Q ® ‘ QI IQ ® 0 5%
Conducﬂon,Thennoehcuic (Phonon Confinement,
Coupling, Joule Heating) BaHng1TanspoHi
Scattering Mechanisms)

 Use finite elements to solve PDE for electronic temperature 6,

* Obtain local ionic temperature 6, from MD velocities
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* lonic thermostats enforce Two Temperature Model coupling
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Example 1. Cu Nanowire with Electrons
Uniformly Heated by 60 ps Pulse

« Small electron heat capacity
- Rapid electron response

* Large phonon heat capacity -
Slower phonon response

* Different profiles for electron
and phonon temperatures
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Large Electron-Phonon Temperature
Differences in Steady-State Systems

Example 2: A Thin Metal Film on an Insulator
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Finding Parameters from First Principles -
Time Dependent Density Functional Theory

Unlike DFT, TDDFT allows electrons and ions to exchange energy!

*Direct simulation of energy

transfer between electrons 0.5

and ions in Al gives time
constant t,= 1.8 ps
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*Good agreement with 1.5- -
2.0 ps equilibration time 0.1
from experiment (Kandyla,
Shih, and Mazur, 2007) 0
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Working on TDDFT-Based Green-
Kubo Approach to Improve Efficiency

x 10

« Explicit energy flow is ' - =
computationally expensive

* Green-Kubo approach
gives same quantities from
steady state fluctuations

« Electron-Phonon coupling
obtained from fluctuations
INn the 1onic force

(e¢]

Force-force autocorrelation, (Ryd/Bohr)?
N
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* Can calculate a wide variety A, attoseconds
of quantities with same |
approach Problem: Autocorrelation

functions oscillate strongly!
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What are the fluctuations in TDDFT?

Low | High energies:
energles. Plasmons
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Working to separate electron-hole fluctuations
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Conclusions

* [t IS not safe to assume that the electronic and ionic
temperatures are the same at the nanoscale

 Enhanced a MD code with a PDE-based representation
of electronic heat conduction

* Developing a promising approach to calculating
electronic properties using TDDFT

« Our approach is intrinsically multiphysics and
multiscale
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Why does Eqpper - Ego
fluctuate with the phonons?
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Finding Parameters from First Principles -
Time Dependent Density Functional Theory

TDDFT allows electrons and ions to exchange energy!

Initially, ions in thermal motion TDDFT Run for 32 Atoms of Al

and electrons in ground state 091 ' ! ' '
.TDDFT energy Eqpper MSES o
above Born-Oppenheimer S 0.6-
(ground state) energy Egq 2205
o 0.4
‘E1pper — Ego IS instantaneous & ;.
thermal energy of electrons 0.2-
0.1
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Current TDDFT Work

 Understand, model, and remove phonon effects

« OR work with non-moving ions (but what about

equilibration?)

* Develop better initialization to start closer to equilibrium
- Eliminate plasmons and accentuate electron-hole pairs

« Can we get hot ions and cold electrons?
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Issues in Modeling Heat
Transport at the Nanoscale

* Time-dependent electronic structure (e.g., TDDFT)
— Captures full electron and ion dynamics, BUT
— Not feasible for most nanoscale systems

« Partial Differential Equation (PDE) based methods
— Works well at macroscale, BUT

— Misses effects of nanoscale structure on phonons (e.g.,
phonon confinement, ballistic transport, etc.)

« Molecular Dynamics (MD)
— Explicitly represents phonons and their effects, BUT
— Physics of electronic transport is absent
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