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v,k;.,' . .. The idea is very simple: If there is
. i \B a weak neutral current, elastic neutrino-nucleus
v,k H,f scattering should exhibit a sharp coherent forward
o ot o g, LSS peak characteristic of the size of the target just
Z boson as electron-nucleus elastic scattering does...
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- |t has never been observed!




Coherent Neutrino-Nucleus Scattering
(CNNS) i »
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Z boson

- Cross section enhanced by N2

- Detection of nucleus recoil with transfer momentum

q << 1/(nucleus radius) ~ tens of MeV (condition of

coherence)
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- Recoil energy g_[ v }keV

» Reactor antineutrinos produce Ge recoils of <~3keV

» Quenching to ~20% of the

recoil energy

» — detection of ionization

sighal <600eV
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Antineutrino signal vs. HPGe threshold
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Reactor anti-v signal rate vs. fuel

cycle burnup

1.00 Normalized anti-NCS rate

035 sopinelmenad - About 25% variation in total
050 - C(anti)NNS events during NPP
- fuel cycle
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- - Higher sensitivity to fuel
070 composition than inverse beta
N (10% variation)
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Point-Contact HPGe detector
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Coaxial C~20pF
~1kg

Typical FWHM
~1.8keV

« Point-contact
C~1pF
« ~0.5kg

« FWHM~163eV
in this Fig.

counts / keV kg day

Decrease capacitance
to lower noise threshold
and improve resolution
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BEGe: P-type ‘Point’ Contact

- Modified Broad Energy Ge detector

by Canberra INC

- Large mass 0.82kg

- Point contact ~5mm,

- Low capacitance ~1.5pF

- 147eV FWHM still too large

« Negligible contribution from other
circuits (preamp and High Voltage)
according to SPICE analysis

« Most of noise from detector element
and Front-End electronics (HPGe
crystal + JFET assembly)
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Sources of electronic noise in the Front-End

- S~ Cdetector + Cfeedback + CJFET + Cstray S
* Cetector €duced with a smaller point FI/V[—[]\[2 - — + Pt
contact T

* P~ liaage: depends on crystal
fabrication and operating temperature

- F is the main noise contribution in
BEGe2

/ = shaping time

e e T
- F~ Cdetector + Cfeedback + CJFET + Cstray_ é I t\ T %
- In JFETSs, F noise is negligible : _14‘;“\\VI\.W "
- F can have another component due S e
to lossy dielectric in contact with e T ——— 10
JFET input s e R
T R

Shaping Time, us
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BEGe in LBNL Front-End

LBNL mini-PPC-20g

I 10! Ty - FWHM = 85eV, threshold ~ 185eV
* . i woxrecrs ] - Low-Mass Front-End: JFET in thin
L ' silica substrate to reduce stray
7§ capacitance, radio purity
2 s ovrvr S - Achieved as low as 55eV FWHM
B S without detector.
{ A - Adapted to test larger BEGe detector
: 10! L to investigate F noise source
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BEGe in LBNL Front-End

BEGe ~ 1.5pF Capacitor ~ 2.5pF
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Results by Paul Luke @ LBNL

- Replacing detector with a larger capacitor suggest (though not
conclusive) that the flat noise is capacitance-induced

- Next: reduce detector capacitance by reducing the point contact
size




e :
1-kg PPC in LBNL Front-End

« LBNL currently fabricating 1kg-detector:
different surface and contact preparation,
1.5 mm pc diameter

« Firstiteration: C~0.9pF, lgakage~TMA
« Problems with incomplete charge

coII_ection, but useful for electronic noise
testing

Fabricated @ LBNL

» Modifying readout to 4-terminal JFET
(Mx20)

- SNL fabricating cryostat to hold crystal
and Front-End board

Goal: First time building a 1-kg Ge
detector with ~50-80eVFWHM of
electronic noise

Fabricated @ SNL




Deployable system at a reactor site

1- Requires stringent control of
background

Shielding of cosmic background: any overburden, tight muon veto,
polyethylene neutron moderator and borated thermal neutron
absorber
Reduction of radioactive background: ultra-low background Lead,
anticoincidence Compton and neutron veto, radio clean detector
materials

- Control and rejection of cosmogenic activation

2- With background of ~8kg' day™! in range
<1keV:

- 175eV threshold (~82eVFWHM) =
observation of reactor ON/OFF transition with 3o
in 30days

- 210eV threshold (~94eVFWHM) =
observation of reactor ON/OFF transition with
1.640 in 30days

3- CoGeNT deployment at SONGS2009 and
Dark Matter experiment CoGeNT2010 showed it
could be done

m

Maximum background events/(kg day) vs
electronic threshold
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Deployable system at a reactor site

- Cryogenic germanium detectors are
already well known and are frequently
used at nuclear reactor facilities around
the world.

- Little or no safety concerns from the
facility operators.

- In addition, the ability to shrink the
active detector from 1 ton of scintillator
material to something on the order of
10 kg of germanium would allow for
much more flexibility in finding
locations suitable for detector
installation.




Conclusions

- Electronic noise threshold still the main barrier for CNNS
observation with PPC HPGe: SNL-LBNL collaboration

working on this.

- “Measured” background allow possible observation of
CNNS (reactor ON/OFF) at ~210eV of electronic
threshold
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Background signals < 3keV

Primary particle Process und signal

Nuclei activation:

"1Ge activation

Scattering off Ge nucleus | Ge-nucleus recoils

Cosmic secondary n and
W-induced n

Solar and Geo v

Partial energy depositions
from X-rays and Auger e-,
nternal to germanium




A
Shielding background particles

The usual,
- Any existing overburden
- Tight muon veto

- Polyethylene neutron moderator and
borated thermal neutron absorber

But also,

- Ultra-low background Lead

- Anticoincidence Compton veto

- Radioclean shield and detector materials
- Lithium-drifted n+ contact covering most

Ge surface Shielding for SONGS deployment
- Shield during transportation

Courtesy Charles Greenberg




LT et Do CROTOUTICS T CUar

experiments: SONGS Tendon Gallery

SONGS2009: CANBERA BEGe, 440q,
163eV_FWHM, at 30m.w.e.

- Background counts: ~10keV-'kg-'d-.
- Near-threshold counts: ~22keV-kg'd-'.

- No evidence of significant increase in neutron
background at this overburden with proper
shielding.

- Signal processing to reduced cosmogenic
background not applied because no raw
preamplifier trace were recorded, but x2-3
reduction expected (see next slide).

counts / keV kg day
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measurea BBCEQFOUHHS ‘rom OH !er

CoGeNT2010 data: in Soudan mine at 2,100m.w.e.

experiments: underground mine

CoGeNT2010

2

CANBERA BEGe, 4409, 163eV FWHM

After 3 months underground, and “microphonics”
and “risetime” cuts

4

=

counts/0.05 KeV 18.5 kg days

Background counts: ~2keV-'kg-'d-
Near-threshold counts: ~8keV-'kg-'d-
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- Confirmed that decays from cosmogenic activation internal to Ge populate

the region <3keV. (Use cosmogenic peaks for calibration.)

- Partial energy deposition events (from nuclei decays ) are a significant near

threshold but can be efficiently rejected by “risetime” cuts.

- Natural radioactivity from materials is estimated to be negligible




How “Risetime” cuts work

- Events near the dead region will only deposit part of the energy

- But also, the induced charge in the electrodes will rise slowly because
near the dead layer the electric field is weak
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Thermal-Neutron activation

1000 -

- Roughly estimate the Ge”' decay
rate from measured thermal neutron
background 100 -

S Estimated Ge71 decays
per day-kg at Livermore
Surface -No shield

- A shield with a thermal-neutron
reduction ~100 times, would bring
the aboveground rate of Ge’"
decays to 10 counts per day-kg.

O Data of Ge71 decays from
SONGS2009- in Tendon
Gallery with shield

10

- =»Aboveground monitoring might
not be possible (Simulations are
underway) 0 -




Deployable system

- Cryogenic germanium detectors are already
well known and are frequently used at nuclear
reactor facilities around the world.

- Little or no safety concerns from the facility
operators.

- In addition, the ability to shrink the active
detector from 1 ton of scintillator material to
something on the order of 10 kg of germanium
would allow for much more flexibility in
finding locations suitable for detector
installation.

- A smaller detector will also present a smaller
area for interaction with cosmic backgrounds.




Signal vs. Background

For a given measurement time
(7days or 30days) and background
rate, the 3o-confidence level sets the
required electronic threshold.

- Extrapolate background below
400eV to be same as in
CoGeNT2010: ~8kg' day-! in range
<1keV

- Then, observation of reactor ON/OFF

transition at 3o in 30days > 175eV
threshold (~82eVFWHM)

- At 1.640 in 30days > 210eV
(~94eVFWHM)

Maximum background events/(kg day)
vS. electronic threshold
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Signal vs. Background

Safeguards problem: timely and

unambiguous observation of a reactor P(NS) Re,\?gt;;ga':l'::
ON/OFF transition, that could signify a
fuel diversion situation LT false positive<.15%
- With reactor OFF, background measurement
sets the signal trigger level 0 Ns
_ P
| Ly =30 o (N9 |
- With reactor ON, how large must the SReaCItOF ON-t
detectable signal Np be so that the false 'gnatpresen

negative are less that 0.75%7

N,>L,+3c,, S

false negative<.15%




