

3D IR Metamaterial Science and Technology

at Sandia National Laboratories

Frederick (Rick) McCormick
 Senior Manager, Physical, Chemical, & Nanosciences Center
 Sandia National Laboratories, Albuquerque, NM, USA
fbmccor@sandia.gov

Abstract—Sandia National Laboratories’ Metamaterial Science and Technology Program has developed novel HPC-based design tools, wafer scale 3D fabrication processes, and characterization tools to enable thermal IR optical metamaterial application studies.

Keywords—metamaterials, plasmonics, nanophotonics, LWIR

I. INTRODUCTION

Research in electromagnetic metamaterials has steadily increased over the last 10 years, providing enhanced understanding and demonstration of novel physics at shorter and shorter wavelengths. While some evidence of this progress is being seen in radio frequency applications, the question remains: “When will *optical* metamaterials start appearing in device and system applications”? New technology adoption faces many technical and financial challenges to enable the application engineering studies and device demonstrations needed to compel modern device/systems designers to incorporate new material approaches. Among the technical challenges, there is the need to quantify the limits for loss and permeability provided by different approaches, as well as the desire for accurate and flexible design tools, scalable and robust fabrication techniques, and high fidelity metrology. Sandia’s Metamaterial Science and Technology program is attempting to address these challenges.

II. BACKGROUND & PROGRAM GOALS

In the late 1990’s and early-mid 2000’s, Sandia pursued a variety of R&D projects in photonic crystals, plasmonics, and other nanophotonics, including some collaborative work on THz metamaterials with Los Alamos National Labs (LANL).

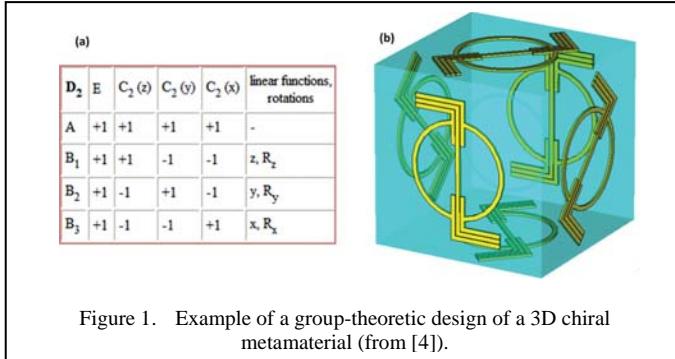


Figure 1. Example of a group-theoretic design of a 3D chiral metamaterial (from [4]).

In 2007, we began considering extensions of this work to applications of thermal infrared (LWIR) metamaterials. However, when we examined the current state of the

metamaterial art at these optical frequencies, we found a need for additional scientific insight and infrastructure, especially concerning approaches to realize isotropic large-area 3D metamaterials (rather than “meta-films”) and to control and/or reduce the loss associated with resonant metal unit cells. The primary goal of our 3-year (2009-2011) program was to develop the insights, tools, materials and fabrication techniques to help address these needs and enable the maturation of LWIR metamaterial technology into national security applications.

The Metamaterial Science and Technology Program has engaged approximately two dozen researchers on tasks involving: [1][2]

- Developing 3D metamaterial design insights and deployment of our high-performance resources to provide high-fidelity full-field electromagnetic modeling/design capabilities.
- Leveraging the material science and MESA and CINT [3] fabrication facilities at Sandia to develop the materials and process libraries needed to demonstrate new wafer-scale 3D metamaterial fabrication approaches.
- Utilization of the LWIR characterization equipment and expertise developed under prior nanophotonics projects, and development of new tools and analysis techniques.
- Preliminary efforts on extending earlier THz tunable metamaterial work into the optical IR regime.

After 3 years, the program has largely met its goals, developing new insights into the present limits of achievable manipulation of permittivity and permeability, developing new design approaches and highly scalable high-fidelity electromagnetic analysis code tools, creating a library of IR-compatible materials (and their associated deposition/pattern/etch processes), demonstrating two new wafer-scale fabrication approaches for 3D LWIR metamaterials, building two new phase-measuring metamaterial spectroscopy systems, and laying the foundation for a new program in active IR metamaterials.

III. METAMATERIAL DESIGN AND REALIZATION PROGRESS

A. Design and Modelling

Our Design team’s work focused on developing the tools and insights to efficiently explore the design space of 3D

metamaterials made with metal-resonator and dielectric resonator unit cells, including local interactions of the unit cell structures with the host matrix and substrate materials, methods to align the electric and magnetic resonances, and efficient and accurate full-field modeling of complete devices (composed of many unit cells).

To study the design of 3D metal unit cells, we have explored an inverse problem approach based on group theory, which can be used to predict electric and magnetic behavior of MM inclusions for any incident field, including the existence and isotropic nature of the electromagnetic constitutive relationship.[4] The work has demonstrated the design and numerical validation of bianisotropic, chiral, and biaxial 3D unit cells.

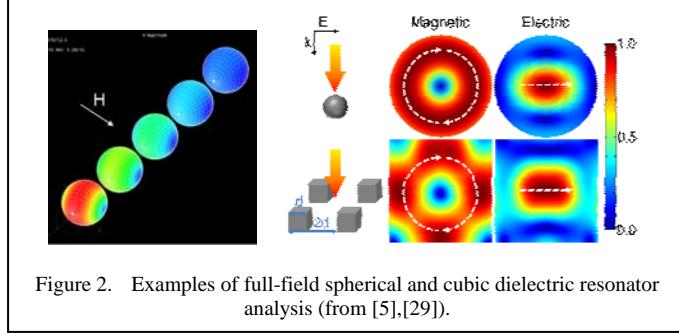


Figure 2. Examples of full-field spherical and cubic dielectric resonator analysis (from [5],[29]).

We have also examined dielectric resonator unit cells as a path to lower-loss 3D IR metamaterials. Various approaches have been explored to design and analyze spherical and cubic dielectric resonator metamaterials, and to align the electric and magnetic resonances that result. [5][6][7] Other work has examined the interaction of both metallic and dielectric resonators with their substrate and host matrix environments, including coupled-resonant behavior. [8][9]

To examine and quantify the accuracy limits of effective

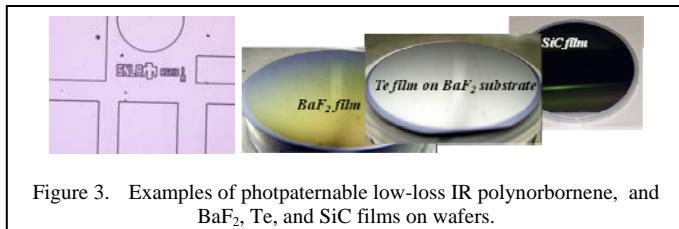


Figure 3. Examples of photopatternable low-loss IR polynorbornene, and BaF₂, Te, and SiC films on wafers.

media approximations, as well as the effects of boundaries, strong index gradients, and spatial dispersion effects in future metamaterial devices, large-scale simulations which do not require effective media approximations may be necessary. We have explored the use of both commercial (HFSS, CTS, GD-CALC, Lumerical, etc.) and in-house (EIGER and other) codes, and have developed sub-cell circuit models and other approaches which dramatically (>1000x) decrease the computation time and memory needed for this task.[10][11][12][13] These tools are also beginning to be used for initial manufacturing tolerance studies.

B. Materials and Processes

To realize these metal and dielectric metamaterial designs, a broad range of “base-materials” may be necessary: various metals, low and high dielectric constant host matrix materials,

low-loss IR polymers, etc. The assembly of this “materials library” is further complicated by the need to accurately characterize the properties of the materials in thin-film form, which can vary significantly from that of bulk, or between differing deposition methods.[14] Additionally, to be useful for wafer-scale fabrication, the associated processes for deposition, spinning, photopatterning, etching, and co-integration of the materials must be developed. Our materials team has developed and characterized the IR performance of high-yield thin film wafer-scale processes for a wide range of metals in addition to low and high dielectric constant IR materials, such as low-loss photo-patternable polynorbornene, polyethylene, low-loss barium fluoride, silicon carbide, magnesium oxide, germanium, tellurium, lead telluride, and of course the common semiconductor processing polymers (SU-8, PMMA, BCB, polyimide, etc.).[14] [15][16]

C. Wafer-Scale 3D IR Metamaterial Fabrication

The lack of many fabrication techniques for bulk-like metamaterials containing 3D isotropic unit cells for IR operation is a significant barrier to exploration of potential metamaterial solutions and applications. We began our program fabricating single and multilayer “metafilms” (split ring resonator films, fishnet multilayers),[8][9] and “2.5D” IR frequency selective surface absorbers (so called “perfect absorbers”).[17][18] That developmental work was crucial for our later demonstrations of 3D IR metamaterial designs using both “conventional” metal unit cell structures, as well as all-dielectric resonator approaches.

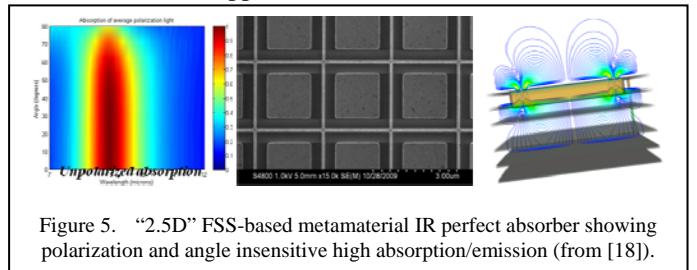


Figure 5. “2.5D” FSS-based metamaterial IR perfect absorber showing polarization and angle insensitive high absorption/emission (from [18]).

Membrane projection lithography (MPL) was invented to demonstrate at micron-scale for the LWIR the “Pendry-cube” metamaterial unit cells previously demonstrated at millimeter-scale for microwave frequencies. MPL creates a patterned membrane suspended over a cavity (the unit cell). Directional evaporation(s) through the patterned membrane results in

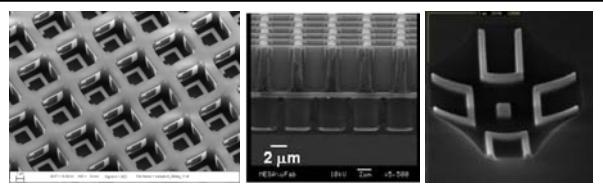


Figure 4. Single- and multilayer Membrane Projection Lithography-based (MPL) resonator and non-resonant (artificial dielectric) materials, Self-Aligned MPL-based tilted antennae absorbers/emitters.

deposition of a replica of the membrane pattern on the interior face(s) of the cavity.[19][20][21] The wafer-scale process can be repeated to create multilayer, “optically thick” 3D metamaterials.[22][23] Non-resonant structures may be printed to enable lower-loss “artificial dielectrics”, and the cavity walls

may be shaped or tilted to enable angularly selective absorption or emission, or other interesting effects.[24][25]

All-dielectric 3D metamaterials were developed under this program as a means of providing a low-loss path to manipulating both the magnetic and electric optical response. These dielectric resonator metamaterials must be fabricated from low-loss, high dielectric constant materials, which are plentiful in the microwave regime,[26][27] but are significantly more problematic at optical frequencies. After considering and characterizing a variety of materials, we have concentrated on Ge, Te, and TePb.[28][29] For example, Tellurium resonators arrayed on a Barium Fluoride substrate exhibit a magnetic resonance near 10 μm wavelength and an electric resonance at a slightly shorter wavelength. The retrieved effective

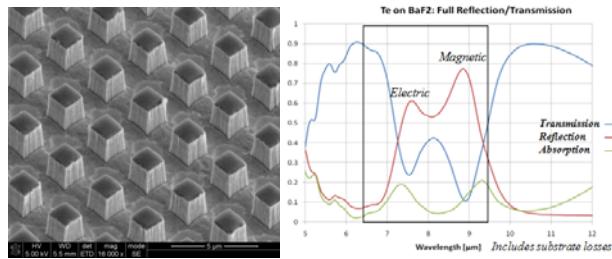


Figure 7. Te dielectric resonator optical metamaterial showing distinct electric and magnetic resonances in the LWIR (from [29]).

parameters indicate a negative permeability (permittivity) in the vicinity of the magnetic (electric) resonance.

D. Test and Characterization

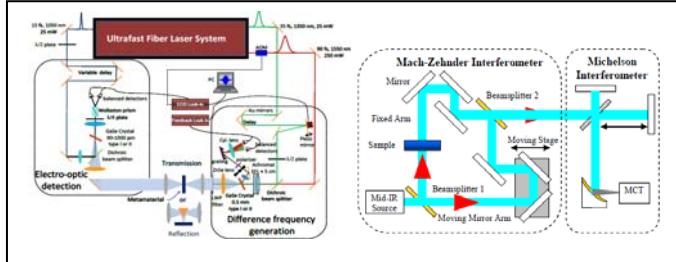


Figure 6. Phase-measuring IR metamaterial spectroscopy: IR Time Domain Spectroscopy (TDS) system, and IR Tandem Interferometric Spectroscopy (TIS) system (from **Error! Reference**).

Accurate characterization and parameter retrieval is a crucial aspect of the development of these metamaterials, and a variety of tools are being deployed, including both commercially available FTIR and IR ellipsometry, as well as custom-built tandem interferometric FTIR and ultrafast IR time-domain spectroscopy. At optical wavelengths, electric field resolved detection is difficult and metamaterial characterization is often done with FTIR, which unfortunately yields no information on the transmitted or reflected phase. However, the complex dispersion properties of 3D metamaterials ideally are retrieved from complex transmission and reflection measurements, and thus measurement of the absolute phase of advanced metamaterial systems is highly desirable. Additionally, access to the full electric field of IR transients can provide direct insight to the metamaterial response in both amplitude and phase, and may be crucial to

developing three-dimensional resonant metamaterial composites or materials exhibiting electromagnetically induced transparency for slow light applications. To address these needs, we have developed two IR metamaterial phase-measuring spectroscopic analysis systems: an ultrafast electrooptic sampling IR Time Domain Spectroscopy (TDS) system, and a Tandem Interferometric Spectroscopy (TIS) system. Both are in use characterizing our IR metamaterials.

E. Tunable / Active Metamaterials

While the primary focus of the last three years was on passive metamaterials, this team has leveraged prior THz frequency work with LANL and ongoing work at CINT to make progress on demonstrating active tunable IR metamaterials.[32][33][34] This work on active metamaterials will continue under a new 3-year program at Sandia.

IV. CONCLUSIONS

Due to space constraints, this review only presents results from the Sandia metamaterials program (hence the lack of other references). This work represents a first step toward the development of low loss infrared metamaterials suitable for device applications. Similarly groundbreaking work is taking place in many leading universities, industrial groups, and government labs: this exciting field is well poised to move from a discovery science phase to application engineering studies.

ACKNOWLEDGMENTS

The results presented in this overview are due to the ongoing efforts of the outstanding researchers listed as authors of the references, and we would also like to acknowledge the stimulating and productive academic, industrial, and government collaborations we've enjoyed during this work. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

REFERENCES

- [1] F.B. McCormick, "Nanophotonics at Sandia National Laboratories", 12-14 Jan. 2009, IEEE/LEOS Winter Topicals Meeting Series, 2009, Innsbruck, pp. 81 – 82, doi: 10.1109/LEOSWT.2009.4771666
- [2] http://www.sandia.gov/lard/images/events/fy10_lard_day/posters/sinclair.pdf
- [3] <http://www.sandia.gov/mstc/facilities.html>, <http://www.lanl.gov/cint/capabilities.shtml>
- [4] Charles M. Reinke, Teofilo M. De la Mata Luque, Mehmet F. Su, Lorena Basilio, Larry Warne, Michael B. Sinclair, and Ihab El-Kady, "Group-theory approach to tailored electromagnetic properties of metamaterials: An inverse-problem solution", Phys. Rev. E 83, 066603 (2011).
- [5] Lorena Basilio, Larry Warne, William Johnson, Michael Sinclair, "Direct simulations of metamaterial absorbing and refracting layers", 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, London, UK, Aug 30th-Sept 4th, 2009.
- [6] Lorena Basilio, William Langston, Larry Warne, Michael Sinclair, William Johnson, "An infrared negative-index layer based on single-species particles in a polaritonic host", Microwave and Optical Technology Letters, Volume 53, Issue 8, pages 1736–1740, August 2011

[7] Warne,Larry K., Basilio,Lorena I., Langston,William L., Johnson,William A., Sinclair,Michael B., "Perturbation Theory in the Design of Degenerate Dielectric Metamaterial Resonators", IEEE Transactions on Antennas and Propagation, (submitted)

[8] D. J. Shelton, D. W. Peters, M. B. Sinclair, I. Brener, L. K. Warne, L. I. Basilio, K. R. Coffey, and G. D. Boreman, "Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials," *Optics Express* **18**, 1085-1090 (2010).

[9] Svyatoslav Smolev, Zahyun Ku, S. R. J Brueck, Igal Brener, Michael B. Sinclair, Gregory A. Ten Eyck W. L. Langston, and Lorena I. Basilio, "Resonant coupling to a dipole absorber inside a metamaterial: Anticrossing of the negative index response", *J. Vac. Sci. Technol. B* **28**, C6016 (2010).

[10] Larry Warne, Michael Sinclair, William Johnson, David Peters, Lorena Basilio, William Langston, "Equivalent Circuit Models and Optimization of a Split-Ring Resonator Lattice", IEEE International Symposium on Antennas & Propagation and USNC/URSI National Radio Science Meeting, June, 2009.

[11] Lorena Basilio, Larry Warne, William Johnson, William Langston, Michael Sinclair, "An Effective Media Toolset for Use in Metamaterial Design", International Conference on Electromagnetics in Advanced Applications, Sydney Australia, September 2010.

[12] Johnson,William A., Warne,Larry K., Basilio,Lorena I., Sinclair,Michael B., "Sub-cell models with application to split ring resonators in the infrared", 2011 IEEE International Symposium on Antennas and Propagations and USNC/URSI National Radio Science, Spokane, July, 2011.

[13] Basilio,Lorena I., Warne,Larry K., Langston,William L., Johnson,William A., Sinclair,Michael B. "A Quick and Easy Simulation Procedure To Aid in Metamaterial Unit Cell Design", IEEE Antennas and Wireless Propagation Letters (submitted)

[14] Jon Ihlefeld, Glenn Boreman, Paul Kotula, Michael Sinclair, Vladimir Matias, James Ginn III, James Carroll, David Shelton, Mark Rodriguez, Paul Clem, "Structure-Property Relations in Negative Permittivity Reststrahlen Materials for IR Metamaterial Applications", Fourth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Karlsruhe, Germany, September 2010.

[15] J. F. Ihlefeld, J. C. Ginn, D. J. Shelton, V. Matias, M. A. Rodriguez, P. G. Kotula, J. F. Carroll III, G. D. Boreman, P. G. Clem, and M. B. Sinclair, "Crystal coherence length effects on the infrared optical response of MgO thin films", *Applied Physics Letters* **97**, 191913 (2010).

[16] Roger D. Rasberry, Yun-Ju Lee, James C. Ginn, Paul F. Hines, Christian L. Arrington, Andrea E. Sanchez, Michael T. Brumbach, Paul G. Clem, David W. Peters, Michael B. Sinclair and Shawn M. Dirk, "Low loss photopatternable matrix materials for LWIR-metamaterial applications", *J. Mater. Chem.*, 2011, 21, 13902-13908

[17] D. W. Peters, L. I. Basilio, and H. Loui, "Plasmonic antireflection surfaces for the mid-infrared," *Proc. SPIE*, Vol. 6480, 64800A (2007); DOI:10.1117/12.701333.

[18] David W. Peters, Paul Davids, Joel R. Wendt, Alvaro A. Cruz-Cabrera, Shanayn A. Kemme and Sally Samora, "Metamaterial-inspired high-absorption surfaces for thermal infrared applications", *Proc. SPIE* 7609, 76091C (2010); doi:10.1117/12.842191

[19] D. B. Burckel, P. Davids, I. Brener, G. A. Ten Eyck, A. R. Ellis, J. R. Wendt, B. S. Passmore, E. A. Shaner, and M. B. Sinclair, "Metamaterial resonators on curved surfaces", *Proc. SPIE* 7392, 739204 (2009)

[20] D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, "Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography," *Adv. Mater. (Deerfield Beach Fla.)* **22**(29), 3171–3175 (2010).

[21] D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, "Micrometer-scale cubic unit cell 3D metamaterial layers," *Adv. Mater. (Deerfield Beach Fla.)* **22**(44), 5053–5057 (2010).

[22] D. Bruce Burckel, Joel R. Wendt, Igal Brener, A. Robert Ellis, Michael B. Sinclair, "Layer-by-layer metamaterials using membrane projection lithography", Paper 8093-42 of Conference 8093, SPIE Optics + Photonics 2011, NanoScience + Engineering, 21 - 25 August 2011, San Diego Convention Center

[23] D. Bruce Burckel, Joel R. Wendt, Sally Samora , Michael B. Sinclair, Igal Brener, James C. Ginn, "Multilayer Infrared Metamaterial Fabrication Using Membrane Projection Lithography", Submitted to (8-24-11) *Journal of Vacuum Science and Technology B*

[24] D. Bruce Burckel, Joel R. Wendt, Igal Brener and Michael B. Sinclair, "Dynamic Membrane Projection Lithography", 1 September 2011 / Vol. 1, No. 5 / *OPTICAL MATERIALS EXPRESS* 962

[25] D. B. Burckel, E. A. Shaner, J. R. Wendt, I. Brener, M. B. Sinclair, "3D Non-Resonant-Inclusion IR Metamaterial Fabrication and Devices", *Metamaterials '2011: The Fifth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics*, Barcelona, Spain, 10-15 October 2011

[26] J. H. Loui, J. Carroll, P. Clem and M. Sinclair, "Experimental realization of low-loss 3D isotropic DNG materials", 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, London, UK, 2009, <http://proceedings.metamorphose-vi.org/2009/submission/86/>

[27] James Carroll, Hung Loui, Paul Clem, Michael Sinclair, "Magnetodielectric Sphere Composites: An All Dielectric Route for Low Loss, Isotropic DNG Metamaterials", Fourth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Karlsruhe Germany, September 2010.

[28] J. C. Ginn, G. A. Ten Eyck, I. Brener, D. W. Peters, and M. B. Sinclair, "Infrared Cubic Dielectric Resonator Metamaterial," in *Photonic Metamaterials and Plasmonics*, OSA Technical Digest (CD) (Optical Society of America, 2010), paper MWD2. http://www.opticsinfobase.org/abstract.cfm?URI=PMETA_PLAS-2010-MWD2

[29] James C. Ginn, Igal Brener, David W. Peters, Joel R. Wendt, Jeffrey O. Stevens, Paul F. Hines, Lorena I. Basilio, Larry K. Warne, Jon F. Ihlefeld, Paul G. Clem, Michael B. Sinclair, "Infrared Dielectric Resonator Metamaterial", arXiv:1108.4911v1 [physics.optics], submitted to *Phys. Rev. Lett.*

[30] Daniel Bender, Igal Brener, Joel Wendt, Brandon Passmore, Michael Sinclair, Gregory Ten Eyck "Amplitude and Phase-resolved measurements of optical metamaterials in the mid-infrared by phase matched electro-optic sampling", Fourth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics", Karlsruhe Germany, September 2010.

[31] B. S. Passmore, J. Anderson, G. A. Ten Eyck, J. R. Wendt, I. Brener, M. B. Sinclair, and E. A. Shaner, "Mid-Infrared Amplitude and Phase Measurement of Metamaterials Using Tandem Interferometry," in *Photonic Metamaterials and Plasmonics*, OSA Technical Digest (CD) (Optical Society of America, 2010), paper MWD4.

[32] I. Brener, X. G. Peralta, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H. - Chen, J. F. O'Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, and J. Li, "External Modulation of Terahertz Quantum Cascade Lasers Using Metamaterials," in *Plasmonics and Metamaterials*, OSA Technical Digest (CD) (Optical Society of America, 2008), paper MWC1. http://www.opticsinfobase.org/abstract.cfm?URI=META_PLAS-2008-MWC1

[33] Xiaoyu Miao, Brandon Passmore, Aaron Gin, William Langston, Shivashankar Vangala, William Goodhue, Eric Shaner, and Igal Brener, "Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials", *Appl. Phys. Lett.* **96**, 101111 (2010); doi:10.1063/1.3309707

[34] Gabbay, Alon; Reno, John; Wendt, Joel R.; Gin, Aaron; Wanke, Michael C.; Sinclair, Michael B.; Shaner, Eric; Brener, Igal; "Interaction between metamaterial resonators and intersubband transitions in semiconductor quantum wells", *Applied Physics Letters*, Volume: 98 Issue:20, 203103 - 203103-3 ,May 2011, doi: 10.1063/1.3592266.