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Motivation:
Efficient simulation of molecular gas transport
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Motivation:
Efficient simulation of molecular gas transport
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Direct simulation Monte Carlo
efficient for large departures
from equilibrium

high-altitude
hypersonic flow

Gallis, 2005
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Motivation:
Efficient simulation of molecular gas transport
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6DSMC

Variance-reduced methods
Improved efficiency for
low-speed flows and
small temperature gradients

?
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Inefficiency of the DSMC method
Example: transient temperature response of argon gas
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1 Introduction
Statistical noise for the DSMC method
Review of variance reduced particle methods

2 Low-variance deviational simulation Monte Carlo (LVDSMC)
Advection step
Bhatnagar-Gross-Krook (BGK) collision model
Variable hard sphere collision operator

3 Applications
Second-order temperature jump
Knudsen pumps

4 Conclusion
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Inefficiency of the DSMC method:
Statistical error

Relative statistical uncertainty in the hydrodynamic
variables2

σux

|ux,0|
=

1√
NCNens

1

Ma
√
γ
,

σT
∆T

=
1√

NCNens

√
kB/cV

∆T/T0
, etc.

Small departure from equilibrium (Ma� 1, ∆T/T0 � 1, etc.)
leads to high levels of statistical noise.

Low variance deviational simulation Monte Carlo

Deviational particle approach: simulate fd = f − f eq

Leads to constant relative uncertainty in the limit of small
departure from equilibrium

2Hadjiconstantinou et al., J. Comp. Phys., 2003



DSMC11

G. Radtke

Motivation

Outline

Introduction

Stat. error

VR Methods

LVDSMC

Advection

BGK Coll.

VHS Coll.

Applications

Temp. jump

Kn pumps

Conclusion

Variance reduced particle methods:
A brief history

Deviational particle approach

Unstable, requires particle
cancellation

Baker & Hadjiconstantinou (2005)

Baker & Hadjiconstantinou (2006)

Low-variance deviational simulation
Monte Carlo (LVDSMC)

Exploits structure of the collision
operator to achieve stability

Hard sphere:
Homolle & Hadjiconstantinou (2007)

BGK model:
Radtke & Hadjiconstantinou (2009)
Hadjiconstantinou, et al. (2009)

VHS model:
Wagner (2007)
Radtke, et al. (2010, 2011)

Alternative approaches:

Linearized distribution using
weights

Unstable for hard sphere,
requiring particle cancellation

Chun & Koch (2005)

Direct variance reduction of DSMC
(VRDSMC)

Kernel density estimation
required for stability, resulting in
bias error

Al-Mohssen &
Hadjiconstantinou (2010)
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LVDSMC simulation method:
Deviational particle approach

Deviational particle approach: fd = f − f eq
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fd(c)
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(differences are exaggerated )

Fixed equilibrium

f0 =
ρ0

π3/2c30
exp

[
−||c− u0||2

c20

]
c0 =

√
2RT0

constant properties:

ρ0, u0, T0

Spatially-variable equilibrium

fMB =
ρMB

π3/2c3MB

exp

[
−||c− uMB||2

c2MB

]
cMB =

√
2RTMB

spatially-variable properties:

ρMB(x), uMB(x), TMB(x)
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LVDSMC simulation method:
Advection step

Boltzmann equation

∂f

∂t
+ c · ∂f

∂x︸ ︷︷ ︸
advection

=
1

m

∫
S2

d2Ω

∫
R3

d3c∗ σ cr

(
f ′f ′∗ − ff∗

)
︸ ︷︷ ︸

collision

Advection step for deviational particles

Fixed equilibrium f eq = f0

∂fd

∂t
+ c · ∂f

d

∂x
= 0

Deviational particles advect like

DSMC particles

xi → xi + ci∆t

Variable equilibrium f eq = fMB

∂fd

∂t
+ c · ∂f

d

∂x
= −c · ∂f

MB

∂x

Additional particles generated at

cell interfaces[
∂fd

∂t

]
int

∝ cn[fMB
− − fMB

+ ]

Inefficient for simulating multiple

spatial dimensions
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LVDSMC simulation method:
Collision step for the BGK collision model

Bhatnagar-Gross-Krook (BGK) collision model

[
∂f

∂t

]
coll

≈ −f − f
loc

τ
; f loc =

ρ

(2πRT )3/2
exp

[
−||c− u||

2

2RT

]

Fixed equilibrium distribution3[
∂f

∂t

]
coll

∆t =
∆t

τ
(f loc − f0)︸ ︷︷ ︸

particle generation

−∆t

τ
fd︸ ︷︷ ︸

particle deletion

Simple, easy to implement

Particle sink term provides stability

3Hadjiconstantinou, Radtke, and Baker, J. Heat Trans., 2010
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LVDSMC simulation method:
Collision step for the BGK collision model

Bhatnagar-Gross-Krook (BGK) collision model

[
∂f

∂t

]
coll

≈ −f − f
loc

τ
; f loc =

ρ

(2πRT )3/2
exp

[
−||c− u||

2

2RT

]

Spatially-variable equilibrium distribution[
∂f

∂t

]
coll

∆t =
∆t

τ
(f loc − fMB)−∆fMB︸ ︷︷ ︸

particle generation

+∆fMB︸ ︷︷ ︸
change in equilibrium

−∆t

τ
fd︸ ︷︷ ︸

particle deletion

∆fMB chosen to eliminate the lower order moments of particle
generation distribution ∆ρMB

∆uMB

∆TMB

 =
∆t

τ

 ρ− ρMB

u− uMB

T − TMB


fMB approaches local equilibrium state: consistent with physics
inherent in BGK (relaxation-time) model

Highly efficient for continuum limit (Kn→ 0)
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LVDSMC simulation method:
Collision step for the BGK collision model

Bhatnagar-Gross-Krook (BGK) collision model

[
∂f

∂t

]
coll

≈ −f − f
loc

τ
; f loc =

ρ

(2πRT )3/2
exp

[
−||c− u||

2

2RT

]

Spatially-variable equilibrium distribution: linearized version4[
∂f

∂t

]
coll

∆t =
∆t

τ
(f loc − fMB)−∆fMB︸ ︷︷ ︸
particle generation → 0

+∆fMB︸ ︷︷ ︸
change in equilibrium

−∆t

τ
fd︸ ︷︷ ︸

particle deletion

In the linearized regime (Ma� 1, ∆T � T0, etc.), no particle
generation required

Simplified collision step

Highly-efficient overall method for 1D transport

4Radtke and Hadjiconstantinou, Phys. Rev. E, 2009
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Numerical efficiency:
BGK LVDSMC methods

Simulation example:

BGK, spatially-variable equilibrium distribution

Transient shear problem

Details

Kn = 0.1

u
(
±L

2

)
= ∓U

U � c0

CPU time:

70 sec. (3.0 GHz)
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Numerical efficiency:
BGK LVDSMC methods

Simulation example:

BGK, spatially-variable equilibrium distribution

Transient shear problem

Details

Kn = 0.1

u
(
±L

2

)
= ∓U

U � c0

CPU time:

70 sec. (3.0 GHz)

— DSMC (Ma = 0.02)

— LVDSMC
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Numerical efficiency:
BGK LVDSMC methods

Statistical error in temperature

LVDSMC vs. DSMC
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LVDSMC

For a single cell in the center of the
simulation containing ≈ 950 particles

(all methods)

LVDSMC: fixed vs.

spatially-variable equilibrium
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LVDSMC simulation method:
Collision step for the VHS collision model

VHS collision model

[
∂f

∂t

]
coll

= Cβ

∫
S2

d2Ω

∫
R3

d3c∗ c
β
r

(
f ′f ′∗ − ff∗

)
Deviational collision step (fd = f − f0)[

∂f

∂t

]
coll

= L[fd]︸ ︷︷ ︸
linear part

+ Q[fd, fd]︸ ︷︷ ︸
nonlinear part

Linear part5

L[fd] =

∫
R3

d3c∗
[
2K(1) −K(2)

]
(c, c∗) f

d
∗ − νfd

K(1)(c, c∗) =
4Cβ

||c− c∗||

∫
Γ⊥(c−c∗)

d3ζ
f0(c+ ζ)

||c− c∗ − ζ||1−β

K(2)(c, c∗) = 4πCβ ||c− c∗||βf0

ν(c) = 4πCβ

∫
R3

d3c∗||c− c∗||βf0
∗

5Cercignani, 1969; Wagner, Monte Carlo Meth. Appl., 2008; etc.
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LVDSMC simulation method:
Collision step for the VHS collision model

Linear part of the VHS collision operator

L[fd] =

∫
R3

d3c∗
[
2K(1) −K(2)

]
(c, c∗) f

d
∗︸ ︷︷ ︸

particle generation

−νfd︸ ︷︷ ︸
particle deletion

Markov jump processes6

- ∆t
- - - . . .

δt1 δt2 δt3
particle generation and deletion events processed during stochastic
collision time steps

Initial implementation

Radtke, Hadjiconstantinou, and Wagner, RGD 27, 2010

Mass-conservative version

Radtke, Hadjiconstantinou, and Wagner, Phys. Fluids, 2011

Simulations with ∼ 10 particles per cell, without random walks in the
hydrodynamic variables!

6Wagner, Monte Carlo Meth. Appl., 2008
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Validation: mass-conservative, VHS
Response of argon gas to spatially-varrying boundary temperature
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∆T → 0 ∆T = 0.05T0

Kn = 1Kn = 1Kn = 1

Contour: (T − T0)/∆T

Vector:
u/c0

∆T/T0

– · – ∆T → 0

– – – LVDSMC

—— DSMC
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Applications:
Second-order temperature jump

Second-order jump boundary condition

T (xB)− TB = b1λ
dT

dn
(xB) + b2λ

2 d2T

dn2
(xB)

Internal heat generation problem

−K
d2T

dx2
= q̇′′′

b1 is known (Sone, 2007)

b2 can be calculated using
LVDSMC

Radtke, Hadjiconstantinou,
Takata, and Aoki, in preparation

Takata, Aoki, Hattori, and
Hadjiconstantinou, in preparation

-0.5 0 0.50

0.5

1

1.5

2
Kn = 0.05, hard sphere

x/L

T̂

LVDSMC simulation
second-order
first-order
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Applications:
Second-order temperature jump

Second-order jump boundary condition

T (xB)− TB = b1λ
dT

dn
(xB) + b2λ

2 d2T

dn2
(xB)

Internal heat generation problem

−K
d2T

dx2
= q̇′′′

b1 is known (Sone, 2007)

b2 can be calculated using
LVDSMC

Radtke, Hadjiconstantinou,
Takata, and Aoki, in preparation

Takata, Aoki, Hattori, and
Hadjiconstantinou, in preparation

Parameter fit
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Applications:
Simulation of Knudsen pumps

LVDSMC approach:

able to efficiently resolve the ∆T/T0 → 0 limit.

��������)
�
��

0 0.5 1 1.5 2
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-0.5

-0.7

0.05

x/L

y

L

T − T0

∆T

u/c0

∆T/T0

Figure 1: Simulation of a simple Knudsen compressor with Kn = 1 and arbitrarily
small temperature gradients. The arrows are velocity vectors and the contours are
dimensionless isothermal lines (T − T0)/∆T .

2

hard sphere, Kn = 1
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Applications:
Simulation of Knudsen pumps

Study of Kn pump performance for different configurations

T. A. Klein, MIT SM Thesis, in progress.

Kn=0.5 Kn=0.5

Kn=1

Kn=1

pressure contours shown
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Conclusion
LVDSMC methods for efficient simulation of nanoscale flows

BGK particle simulation methods

Fixed equilibrium: most efficient for general multi-dimensional
geometries

Spatially-variable equilibrium: highly-efficient for resolving the

continuum (Kn→ 0) limit

Advanced VHS particle simulation method

Collisions simulated as Markov jump events without time step error
in the collision step

Extended to include mass conservation, enabling efficient simulation

of gas flows with ∼ 10 particles per cell

LVDSMC simulation codes available at:

http://web.mit.edu/ngh-group
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