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Motivation:

Efficient simulation of molecular gas transport
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Efficient simulation of molecular gas transport
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Efficient simulation of molecular gas transport
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Improved efficiency for
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Inefficiency of the DSMC method:

Statistical error

DSMC11

G. Radtke Relative statistical uncertainty in the hydrodynamic
variables?

Uum 1 1 or 1 \/kB/CV

= etc.

|ux,0| B \/NCNens Maﬁ’ E B VNCNens A71/T0 ’

Stat. error

m Small departure from equilibrium (Ma < 1, AT /Ty < 1, etc.)
leads to high levels of statistical noise.
Low variance deviational simulation Monte Carlo
m Deviational particle approach: simulate f4 = f — fe

m Leads to constant relative uncertainty in the limit of small
departure from equilibrium

2Hadjiconstantinou et al., J. Comp. Phys., 2003
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VR Methods

Variance reduced particle methods:

A brief history

Deviational particle approach
m Unstable, requires particle
cancellation
Baker & Hadjiconstantinou (2005)
Baker & Hadjiconstantinou (2006)

Low-variance deviational simulation
Monte Carlo (LVDSMC)

m Exploits structure of the collision
operator to achieve stability

m Hard sphere:
Homolle & Hadjiconstantinou (2007)

m BGK model:
Radtke & Hadjiconstantinou (2009)
Hadjiconstantinou, et al. (2009)

m VHS model:

Wagner (2007)
Radtke, et al. (2010, 2011)

Alternative approaches:

Linearized distribution using
weights

m Unstable for hard sphere,
requiring particle cancellation

Chun & Koch (2005)

Direct variance reduction of DSMC
(VRDSMC)
m Kernel density estimation
required for stability, resulting in
bias error

Al-Mohssen &
Hadjiconstantinou (2010)



LVDSMC simulation method:

Deviational particle approach

DSMC11

LVDSMC Y
DSMC simulation

Fixed equilibrium

Deviational particle approach: f9 = f — fe

equilibrium distribution

(differences are exaggerated )

constant properties:

po, wo, To

deviational simulation

Spatially-variable equilibrium

. 2
fMB = 7T372ACB3 exXp [*7”6 uws | }
MB

cve = V2RTvs

spatially-variable properties:

pve(x), ums(x), Tvs(x)

2
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LVDSMC simulation method:

Advection step

BEHIEH Boltzmann equation

G. Radtke
0 0 1 /o
8{_|_C.8f:/dQQ/d%*acr(ff*—ff*)
\—,_a.’; S R3

m [c2

advection collision

Advection step for deviational particles

Advection Fixed equilibrium f¢1 = f° Variable equilibrium f9 = f™B
o d o d 9 d ) d 9 MB
ofT 9 ort o, 9f
ot ox ot ox ox

m Deviational particles advect like m Additional particles generated at
DSMC particles cell interfaces
d
. . A of
T, = x; +c; At [ o ucn[fMBffi"B]
int

Inefficient for simulating multiple
spatial dimensions



LVDSMC simulation method:

Collision step for the BGK collision model

PSMELL Bhatnagar-Gross-Krook (BGK) collision model

G. Radtke
af:| f_floc loc P |: ||C_u||2:|
N —— = ex -
|: coll T f (27TRT)3/2 ’ 21

Fixed equilibrium distribution®

of
BGK Coll |:8t:|

m Simple, easy to implement

At At
at= S g g0y _Blp
coll \T—,_/ \J,_/

particle generation particle deletion

m Particle sink term provides stability

3Hadjiconstantinou, Radtke, and Baker, J. Heat Trans.; 2010



LVDSMC simulation method:

Collision step for the BGK collision model

pSMCHE Bhatnagar-Gross-Krook (BGK) collision model

[g} T exp{_“c—ulq
coll

)

ot T (27 RT)%/ 2RT

Spatially-variable equilibrium distribution

BGK Coll

0 At At
|:f Atzf(floc—fMB)—AfMB —|—AfMB _7fd
coll T ~— T
. . change in equilibrium R i
particle generation particle deletion
m AfMB chosen to eliminate the lower order moments of particle
generation distribution

AVZVE At P — PMB
Aump = — | u—umB

ATvg T T —Twve

m fMB approaches local equilibrium state: consistent with physics
inherent in BGK (relaxation-time) model

m Highly efficient for continuum limit (Kn — 0)



LVDSMC simulation method:

Collision step for the BGK collision model

DSMC11

Bhatnagar-Gross-Krook (BGK) collision model
[g:| ~ .f - floc . loc P
coll

G. Radtke

e —ul®
: —

_
T (27TRT)3/2 exPp { 2RT

ot -

Spatially-variable equilibrium distribution: linearized version*

BGK Coll

8t:| At:g(f'“—f“"s)—AfMB +AfMB 7gfd
coll T — T

change in equilibrium . )
& 4 particle deletion

m In the linearized regime (Ma < 1, AT < Ty, etc.), no particle
generation required

particle generation — 0

m Simplified collision step
m Highly-efficient overall method for 1D transport

“Radtke and Hadjiconstantinou, Phys. Rev.-E, 2009



Numerical efficiency:

BGK LVDSMC methods

DSMC11 . .
Simulation example:

G. Radtke

m BGK, spatially-variable equilibrium distribution

m Transient shear problem

Details
m Kn=0.1
mu (:I:%) =FU
U <K co

Sl

BGK Coll

70 sec. (3.0 GHz)




Numerical efficiency:

BGK LVDSMC methods

DSMC11

Simulation example:
m BGK, spatially-variable equilibrium distribution

m Transient shear problem

0.8/ — DSMC (Ma = 0.02)
Details 0.6f — LvDSMC
B Kkn=0.1 u 0.4}
BGK Coll - u(:l:%):$U U 0l
U< co ot ol /e oS e

-0.2

o4

70 sec. (3.0 GHz) 06y
-0.8%
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Numerical efficiency:

BGK LVDSMC methods

DSMC11 Statistical error in temperature LVDSMC: fixed vs.
G. Radtke LVDSMC vs. DSMC spatially-variable equilibrium
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LVDSMC simulation method:

Collision step for the VHS collision model

Dl VHS collision model

G. Radtke

|:g:| :Cﬁ/\dzﬂ\/dsc*cf (f/fi_ff*)
Ot | o S2 RrR3

Deviational collision step (! = f — f°)

o
ot

| =y v e
coll N—~— ———
linear part nonlinear part

VHS Coll.
Linear part®
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SCercignani, 1969; Wagner, Monte Carlo Meth.- Appl:; 2008; etc.

KW (e, e.)




LVDSMC simulation method:

Collision step for the VHS collision model

DSMC11 Linear part of the VHS collision operator

G. Radtke

£ :/d?’c* 2KV~ K@) (e e) £ —upd
R3 N——
particle deletion

particle generation

Markov jump processes®

> At
bt1 dta ot
TBRED particle generation and deletion events processed during stochastic

collision time steps
Initial implementation
Radtke, Hadjiconstantinou, and Wagner, RGD 27, 2010
Mass-conservative version
Radtke, Hadjiconstantinou, and Wagner, Phys. Fluids, 2011

m Simulations with ~ 10 particles per cell, without random walks in the
hydrodynamic variables!

6Wagner, Monte Carlo Meth. Appl., 2008




Validation: mass-conservative, VHS

Response of argon gas to spatially-varrying boundary temperature
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Applications:

Second-order temperature jump

DSMC11 -
Second-order jump boundary con n

G. Radtke
d’T
oz (@8)

dT
T( ) Tg = bl)\f (:CB) =+ bz)\

Internal heat generation problem

2
a7 7] 2~
w2 q L Kn = 0.05, hard sphere
T 1
151
m by is known (Sone, 2007) [
Temp. jum
b e m by can be calculated using [
LVDSMC T
Radtke, Hadjiconstantinou, w3 ) N
.o . /s . LVDSMC simulation %)
Takata, and Aoki, in preparation o5k second-order N
1 — — — - first-order *
Takata, Aoki, Hattori, and i
Hadjiconstantinou, in preparation L ) ,
90.5 0 0.5



Applications:

Second-order temperature jump

DSMC11

Second-order jump boundary condition

dar d*’T
T (z8) = To = bid - (w8) + bﬁw (zg)

G. Radtke

Internal heat generation problem Parameter fit
031
_KdQT =g . hard sphere
da? bo K 025 — *

Temp. jump m by is known (Sone, 2007)
m by can be calculated using 0151
LVDSMC [

01f BGK

Radtke, Hadjiconstantinou,
Takata, and Aoki, in preparation

Takata, Aoki, Hattori, and b
m . . . w N NN TR NN T SN O AN S TN N N SO N |
Hadjiconstantinou, in preparation 00 0.02 0.04 0.06 0.08 0.1
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Applications:

Simulation of Knudsen pumps

DSMC11 LVDSMC approach:
able to efficiently resolve the AT /Ty — 0 limit.
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Applications:

Simulation of Knudsen pumps

DSMCE Study of Kn pump performance for different configurations

T. A. Klein, MIT SM Thesis, in progress.
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Conclusion

LVDSMC methods for efficient simulation of nanoscale flows
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G. Radtke BGK particle simulation methods

m Fixed equilibrium: most efficient for general multi-dimensional
geometries

m Spatially-variable equilibrium: highly-efficient for resolving the

continuum (Kn — 0) limit

Advanced VHS particle simulation method

m Collisions simulated as Markov jump events without time step error
in the collision step

m Extended to include mass conservation, enabling efficient simulation

Conclusion

of gas flows with ~ 10 particles per cell

LVDSMC simulation codes available at:
http://web.mit.edu/ngh-group
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