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Abstract

Assessing the timing, cost, and market competitiveness of geothermal energy production requires
understanding the thermal performance of the reservoir, but numerical models of reservoir
performance can be complex and time consuming to execute. The computational overhead and
numerical complexity runs counter to the needs of real-time scenario analysis and the
propagation of uncertainties in the physical, technological, and economical parameters. The
ability of existing analytical solutions to simulate realistic heat transfer in a reservoir is limited
by the complexity of the system.

Here, we develop an approach for utilizing output from complex numerical models in a rapidly
deployable systems based assessment model. The approach generates a series of dimensionless
temperature drawdown curves based on the numerical modeling of a number of reservoir
conditions that are specific to enhanced geothermal systems (EGS). This approach allows for
substituting a complicated numerical solution with lookup tables that can be used in system
dynamic assessment models.

We considered a homogeneous 3-dimensional reservoir. A series of simulations were run by
varying the distance between the injection and production wells, the permeability, the reservoir
thickness, the mass injection rate, the injection temperature, the initial reservoir temperature, the
porosity and the reservoir depth. These simulations were done using FEHM (finite element
multi-phase flow and heat and mass transport computer code, Los Alamos National
Laboratories) to compute the temperature drawdown T(t) in the production well. The T(t) curves
were converted into dimensionless Tg4(tg) curves. Dimensionless temperature (Tq4) and time (tg)
were defined similarly to the corresponding dimensionless parameters in Gringarten et al.
solution. The approach was verified by using the dimensionless curves to predict temperature
drawdown and comparing the predicted curves with the FEHM simulations.

Introduction
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Geothermal energy development requires analysis of a number of complex systems to evaluate
accessibility of a resource, existing technologies, power demands, economics, and other
important conditions. To perform such analysis, a full suite of the systems and sub-systems needs
to be considered. A system dynamics model is being developed by Sandia National Laboratories
(Lowry et. al, 2010) to address this need. This model represents an integrated systems modeling
tool that allows a user to perform scenario assessments for different geothermal applications.

The model simulates heat and fluid flow through the entire EGS process. The current version of
the model calculates heat exchange between the reservoir and fluid using one of two analytical
solutions; the Carslaw and Jaeger (Carslaw and Jaeger, 1959) solution for a single fracture, and
the Gringarten (Gringarten et al., 1975) solution for a series of infinite parallel fractures. The
analytical solutions rely on a number of simplifications and are limited in their capabilities to
represent the actual reservoir conditions. One example of the analytical solution limitation is
provided in Appendix A. The system dynamics model would significantly benefit from
incorporating more realistic reservoir simulations if these simulations would not interfere with its
capability to provide near real-time scenario analysis.

One of the possible approaches to this problem is being developed through a series of numerical
heat transport simulations using 3-D finite element heat and mass transport computer code
FEHM (Zyvoloski, et al., 1997). This approach allows for substituting complicated numerical
solutions with lookup tables (or response surfaces) that can be used in system dynamic
assessment models.

Objective

The major objective of this work was to develop an approach for incorporating realistic reservoir
simulations into the system dynamics model. The output from a numerical reservoir simulation
that is required as an input into the system dynamics model is the temperature drawdown as a
function of time in each of the producing wells during the operational period of the power plant.
These temperature drawdowns need to be calculated for a specified set of uncertain parameters
being considered by a scenario. These parameters include injection rate, well separation distance,
injection temperature, reservoir temperature, depth of geothermal resource, reservoir thickness,
and reservoir permeability.

It was assumed that the temperature drawdowns calculated by the numerical reservoir model for
a number of representative reservoir conditions can be converted to dimensionless curves (or
type curves) that can be used to generate temperature versus time for any given set of
parameters. The purpose of this work was to demonstrate whether this assumption is credible for
homogeneous reservoir conditions. The approach was verified (or tested) by using the
dimensionless curves to predict temperature drawdown.

It is assumed that a similar approach can be developed to incorporate heterogeneous reservoir
conditions and that development will be addressed in future work.

Methods
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The reservoir simulations were performed using a numerical model domain shown in Figure 1.
The model simulates heat transport in the porous medium and is implemented with the computer
code FEHM (Zyvoloski, et al., 1997). The grid block dimensions in the x and y direction are 5 m
by 5 m. The grid block dimension in the z direction is 37.5 m. The fine grid in x and y direction
was required to generate heterogeneous permeability and porosity fields using the fractured
continuum model approach (McKenna and Reeves, 2005) for heterogeneous reservoir
simulations. The fine discretization also allows for a more accurate representation of heat and
fluid flow around the boreholes.

The homogeneous reservoir conditions were considered first with the effective permeability and
porosity specified within the enhanced permeability volume defined based on the reservoir
thickness and well separation distance. The permeability outside of this volume was set equal to
10 mA

The modeling domain shown in Figure 1 represents one quarter of a 5-point injection scheme (1
injector & 4 producers). The location of the injection well remains the same (front, left corner of
the cube) in all the simulations. The production well is placed at the different distances along the
cube diagonal. The separation distance of 800 m was used in the base case simulation.

The pre-injection boundary conditions are hydrostatic pressures and constant temperature on the
vertical sides of the cube, constant pressure and temperature on the top, and zero flux on the
bottom. The injection boundary conditions are zero flux across all the boundaries. Injection is
implemented using a fixed injection rate, which is equally sub-divided between the vertical grid
nodes representing the injection well. The injection interval corresponds to the reservoir
thickness. The production well is implemented by specifying fixed drawdown pressures in the
production well nodes.
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Figure 1. Conceptual Representation of the Reservoir Numerical Model
The following rock properties were used in all the simulations to be consistent with the systems
dynamic model (Lowry, et al., 2010): rock bulk density of 2,600 kg/m?; rock specific heat
capacity of 9.5x10™ MJ/kg-K; and rock heat conductivity of 3.0 W/m-K.

The following parameters were varied in the different simulations:

Effective permeability [m?]: 1x10™3; 5x10™3; 1x10™%; 5x10™%; 1x10™.
Effective porosity [-]: 0.004, 0.01, 0.04.

Depth to the reservoir top boundary [m]: 4,000; 5,000; and 6,000
Reservoir thickness [m]: 450; 600; 750

Reservoir temperature [°C]: 175, 225, 250.

Well separation distance [m]: 800 and 1,000.

Injection temperature [°C]: 20, 50, and 80

Injection rate [kg/s]: 30; 60; and 90.

Note that the total injection rate shown above is 4 times the injection rate used in the model.

The base case considered reservoir thickness of 750 m, well separation distance of 800 m,
injection rate of 30 kg/s, reservoir temperature of 225°C, injection temperature of 80°C, depth to
the model top of 4,000 m, effective porosity of 0.01, and effective permeability of 5x10™ m?.
Each simulation following the base case considered change in one parameter compared to the
base case.
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The range of the parameters used in the simulations was dictated by the corresponding ranges
implemented in the system dynamics model, except for the effective permeability and porosity
values. The analytical solutions currently implemented in the system dynamics model are for
fracture flow and they use fracture parameters instead of porous medium continuum parameters
defined in the numerical simulations.

Temperature versus time at the bottom of the production well were obtained for each numerical
simulation. The results of these simulations are presented in Figures 2 through 8 using
dimensionless temperature versus dimensionless time format. The actual temperature versus the
actual time are shown for two cases (Figure 10 and Figure 11) to demonstrate the thermal front
retardation relative to the fluid front under the different conditions.

The dimensionless temperature (T4) and time (ty) were defined as follows, which are similar to
the definitions in Gringarten et al. (1975):

(PuCu)® [_Q
1:d = //)),chr [LBNf,]Z(t_tlag) (1)
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Here t is the actual time; p,, is the water density; c,, is the water specific heat capacity; pr is the
rock density; ¢, is the rock specific heat capacity; K, is the rock thermal conductivity; Q is the
injection rate; L is the well separation distance; B is the reservoir thickness; N is the number of
fractures (an arbitrary parameter in the case of porous medium); and tj,g is the thermal front
travel time between the injection and production wells.

(PyCw)?
Note that the term  #r*r  changes very little (from 2.03x10° to 2.07x10%/m?) within the

reservoir temperature range considered. The parameter N was set equal to 3.5 to obtain the
dimensionless time scale similar to the one in Gringarten et al. (1975).

The examples in Figures 2 through 7 show the dimensionless thermal drawdowns for the
different injection temperatures, reservoir temperatures, depths to the reservoir top, well
separation distances, reservoir thicknesses, and effective porosities. As it can be seen from these
figures, when the actual temperatures are converted to the dimensionless temperatures the
resulting curves follow each other very closely and are nearly identical across Figures 2 through
7. A linear adjustment was needed for the reservoir thicknesses of 450 m and 600 m. In these two
cases the denominator LxBX N in Equation (1) was multiplied by a coefficient to get the match
shown in Figure 6.

Figure 8 shows dimensionless drawdowns for a range of the effective permeability values that
can be expected in an enhanced reservoir. There is one “type” curve per each effective
permeability value similar to one type curve per each dimensionless fracture spacing (Xeq) in
Gringarten et al. (1975). The Gringarten’s type curves are reproduced in Figure 8 from
Gringarten et al., (1975, Figure 3) to allow for a qualitative comparison.
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The dimensionless fracture spacing (Xeq) is defined in Gringarten (1975) as:

— Al _Q
Xed K, LBNf,]Xe

(3)

where X, is half fracture spacing.

The dimensionless curve corresponding to the effective permeability of 5x10™ m? shown in
Figure 8 is close to the Gringarten’s curve for xeq =7. The fracture spacing (2 Xe) corresponding
to Xeq =7 and to the parameters Q, L, B, and Ny used in this simulation can be calculated from
Equation (3). The fracture aperture (b) can be calculated from Snow’s equation (Snow, 1968):

_ _b®
k = 24x, 4)
where k is effective permeability.

The resulting fracture spacing and fracture aperture are 40 m and 0.25 mm respectively. Both
parameters seem to be reasonable from the physical point of view.

The numerical type curves enclose a smaller area than analytical type curves. This is probably
due to the fact that the reservoir dimensions are constrained in the numerical situation and the
analytical solution domain is infinite.
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NOTE: Base case injection temperature is 80°C

Figure 2. Dimensionless Temperature Drawdowns for the Simulations with the Different
Injection Temperatures
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Figure 3. Dimensionless Temperature Drawdowns for the Simulations with the Different
Reservoir Temperatures
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Figure 4. Dimensionless Temperature Drawdowns for the Simulations with the Different Depths
to the Reservoir Top
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Figure 5. Dimensionless Temperature Drawdowns for the Simulations with the Different Well
Separation Distances.
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Figure 6. Dimensionless Temperature Drawdowns for the Simulations with the Different

Reservoir Thicknesses.
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Figure 7. Dimensionless Temperature Drawdowns for the Simulations with the Different

Reservoir Effective Porosities.
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Figure 8. Dimensionless Temperature Drawdowns for the Simulations with the Different
Effective Permeabilities.

The dimensionless curve approach was verified by using the dimensionless curves to predict
temperature drawdowns, and by comparing these predicted drawdowns to the calculated ones.
The following parameters were used in this test case: reservoir thickness (B) of 600 m, reservoir
temperature (Tyes) of 200°C, injection temperature (Tin;) Of 60°C, depth to the reservoir top (D) of
5,000 m, effective permeability (k) of 1x10™** m?, effective porosity (¢) of 0.01, well separation
distance (L) of 800 m, and injection rate (Q) of 45 kg/s. These parameters were not evaluated in
any previous simulations.

Figure 9 shows the temperature versus time obtained from the numerical simulation (calculated
drawdowns) and temperature versus time calculated from the dimensionless curve corresponding
to the effective permeability of 1x10™* m? (predicted drawdowns). A good match was obtained
between calculated and predicted temperatures during the 30 year operational period.

12
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NOTE: The following parameters were used in this test: B=600 m, T,es=200°C, Tinj:GOOC,
D=5,000 m, k=1x10"" m?, ¢=0.01, L= 800 m, Q=45 kg/s.

Figure 9. Calculated and Predicted Temperature Drawdowns

To use the dimensionless curve approach described above, one needs to know the thermal front
travel time between the injection and production wells (tiag). This is the time when the first
noticeable change in temperature occurs at the production well (the temperature drawdown is
equal to or greater than 0.1% of Ty). Starting form this time, the temperature at the production
well sharply decreases for some period of time, which is followed by a slower decrease later in
time. Two different cases are discussed below. The first case demonstrates conditions in which
the travel times are very different. The second case demonstrates conditions in which the travel
times are practically the same.

The temperatures versus time are shown in Figure 10 for three simulations with the different
reservoir temperatures. All the other parameters used in these simulations were the same. As it
can be seen from this figure, the thermal breakthrough times, the time at which the temperatures
first drop from the reservoir temperature, are very different — 6,600 days for Tyes =175°C; 4,200
days for Tres =225°C; and 3,400 days for Tres =250°C. As it can be seen from these data, the
thermal breakthrough time is almost 2 times longer when reservoir temperature is 175°C
compared to reservoir temperature of 250°C. The thermal breakthrough time is 1.24 times longer
when reservoir temperature is 175°C compared to reservoir temperature of 225°C.

13
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NOTE: All parameters are the same as in the base case, except the reservoir temperatures used in
2 simulations.

Figure 10. Temperature Drawdowns in the Production Well for Different Reservoir
Temperatures

The temperatures versus time are shown in Figure 11 for three simulations with the different
effective porosities. All the other parameters used in these simulations were the same. . As it can
be seen from this figure, the effective porosity within the range considered (0.004 to 0.04) has
insignificant impact on the thermal breakthrough time and on the thermal drawdowns in the
production well.

These results can be explained by estimating velocity of the thermal front and corresponding
thermal breakthrough times under the different reservoir temperatures and porosities taking into
account temperature dependent density and viscosity of water.

The thermal front velocity was estimated as:

LU
"R 5)
u=-1

(6)

where v is Darcy’s velocity, ¢ is effective porosity, and R is thermal retardation factor.

14
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The Darcy’s velocity v is calculated in FEHM as (Equation 8 in Zyvoloski, et al., 1997):

v, _ Xy I_k_g

H m (7)
The thermal retardation factor R is defined as:

R=1+ (1_8)prcr
ep\Cy (8)

where p is the water density; p, is the water specific heat capacity; p, is the rock density; and c; is
the rock specific heat capacity. Note that Equation 8 was derived based on assumptions such
single phase flow, thermodynamic equilibrium between the rock and the fluid, incompressible
rock, constant thermal properties of both the rock and the fluid, and neglecting thermal
conduction.

According to this estimation, the thermal front velocity is about 2 times higher (the thermal
breakthrough time is 2 times faster) in the reservoir with the initial temperature of 250°C than in
the reservoir with the initial temperature of 175°C and 1.3 times faster than in the reservoir with
the initial temperature of 225°C. This conclusion is consistent with the numerical simulation
results shown in Figure 10.

Note that the thermal retardation factor is almost the same for all three cases (around 64) because
the product of p; and ¢, does not change significantly with temperature (density decreases and
specific heat increases). However, the thermal front velocity increases with temperature due to
increase in seepage velocity. Also note that the thermal breakthrough time is significantly longer
than the water breakthrough time.

In the simulations with the different effective porosities the thermal breakthrough times are
similar because lower porosity leads to increasing both, seepage velocity and retardation factor,
as well as higher porosity leads to decreases in both of these parameter values. As a result, the
ratio of seepage velocity and retardation factor only slightly changes from one reservoir porosity
case to another.
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NOTE: All parameters are the same as in the base case, except the effective porosities used in 2
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Figure 11. Temperature Drawdowns in the Production Well for Different Effective Porosities

Summary

The current work considered an approach that allows for converting multiple numerical reservoir
simulations into the dimensionless type curves. Each curve represents a dimensionless
temperature response of a homogeneous reservoir with a fixed effective permeability. This
dimensionless curve can be converted into the actual temperature drawdowns during the
operational period using the reservoir specific parameters and injection characteristics such as
the reservoir thickness, reservoir temperature, well separation distance, injection temperature,
and injection rate. It was shown that the reservoir porosity and the depth of the reservoir have
insignificant effects on the temperature drawdowns in the production well. The dimensionless
curves were generated for a 5-point injection scheme and thus are limited to this specific
configuration.

The approach was verified by using the dimensionless curves to predict temperature drawdown.
The predicted drawdowns were then compared with the calculated drawdowns obtained from the
corresponding numerical simulation.

16
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Work is underway to consider the effects of heterogeneous reservoir permeability and porosity
on the temperature drawdowns. The applicability of the dimensionless curve approach will be
tested for the heterogeneous reservoir conditions. The goal is to account for heterogeneity via
lumped parameters that can be incorporated in the dimensionless curve approach.
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Appendix A: Example of a Calculation Using Gringarten’s Solution

The example demonstrates a situation in which the applicability of the analytical solution for
infinite parallel fractures may be limited.

Figure A-1 shows the dimensionless type curves of Gringarten et al., (1975) for the different
dimensionless fracture spacing. Let’s assume that the required dimensionless temperature at the
end of the operational period is 0.6. This requirement can be met with 4 pairs of t4-Xeq Values as
shown in Figure A-1 and summarized in Table A-1.

Let’s assume the following parameters: reservoir thickness of 450 m, reservoir temperature of

200°C, injection temperature of 60°C, production rate of 360 kg/s, well separation distance of
700 m.
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were added to the original figure to illustrate the example calculation.

Figure A-1. Dimensionless Temperature versus Dimensionless Time for the Different Fracture
Spacing

The half fracture spacing x, can be calculated for each t4-Xeq pair using Equations (1) and (3) and
assuming tjag equal to 0. The number of fractures N¢ can be calculated from Equation (3). The
values of x. and Ny are provide in Table A-1. Note that 2x.Ny represents the length perpendicular
to the fractures (L-1). As it can be seen from Table A-1, in the case of xeq equal to 4 or greater,
the length of the system (L-1->2,500 m) may be greater than a size of a typical reservoir.

Table A-1. Calculated Half Fracture Spacing (x.), Number of Fractures (Ns), and total Length
Perpendicular to the Fracture Orientation (L-1)

Xed tq Xe, M \FS LL, m

0.5 1 17 52 1764
1 2 24 37 1762
2 3.9 35 26 1807
4 5.6 58 22 2517
8 7 103 20 4032

18



