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Abstract 
 
Assessing the timing, cost, and market competitiveness of geothermal energy production requires 
understanding the thermal performance of the reservoir, but numerical models of reservoir 
performance can be complex and time consuming to execute.  The computational overhead and 
numerical complexity runs counter to the needs of real-time scenario analysis and the 
propagation of uncertainties in the physical, technological, and economical parameters. The 
ability of existing analytical solutions to simulate realistic heat transfer in a reservoir is limited 
by the complexity of the system.  
 
Here, we develop an approach for utilizing output from complex numerical models in a rapidly 
deployable systems based assessment model. The approach generates a series of dimensionless 
temperature drawdown curves based on the numerical modeling of a number of reservoir 
conditions that are specific to enhanced geothermal systems (EGS).  This approach allows for 
substituting a complicated numerical solution with lookup tables that can be used in system 
dynamic assessment models. 
 
We considered a homogeneous 3-dimensional reservoir. A series of simulations were run by 
varying the distance between the injection and production wells, the permeability, the reservoir 
thickness, the mass injection rate, the injection temperature, the initial reservoir temperature, the 
porosity and the reservoir depth. These simulations were done using FEHM (finite element 
multi-phase flow and heat and mass transport computer code, Los Alamos National 
Laboratories) to compute the temperature drawdown T(t) in the production well. The T(t) curves 
were converted into dimensionless Td(td) curves. Dimensionless temperature (Td) and time (td) 
were defined similarly to the corresponding dimensionless parameters in Gringarten et al. 
solution. The approach was verified by using the dimensionless curves to predict temperature 
drawdown and comparing the predicted curves with the FEHM simulations.  
 
Introduction 
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Geothermal energy development requires analysis of a number of complex systems to evaluate 
accessibility of a resource, existing technologies, power demands, economics, and other 
important conditions. To perform such analysis, a full suite of the systems and sub-systems needs 
to be considered. A system dynamics model is being developed by Sandia National Laboratories 
(Lowry et. al, 2010) to address this need. This model represents an integrated systems modeling 
tool that allows a user to perform scenario assessments for different geothermal applications.  
 
The model simulates heat and fluid flow through the entire EGS process. The current version of 
the model calculates heat exchange between the reservoir and fluid using one of two analytical 
solutions; the Carslaw and Jaeger (Carslaw and Jaeger, 1959) solution for a single fracture, and 
the Gringarten (Gringarten et al., 1975) solution for a series of infinite parallel fractures. The 
analytical solutions rely on a number of simplifications and are limited in their capabilities to 
represent the actual reservoir conditions. One example of the analytical solution limitation is 
provided in Appendix A. The system dynamics model would significantly benefit from 
incorporating more realistic reservoir simulations if these simulations would not interfere with its 
capability to provide near real-time scenario analysis.  
 
One of the possible approaches to this problem is being developed through a series of numerical 
heat transport simulations using 3-D finite element heat and mass transport computer code 
FEHM (Zyvoloski, et al., 1997).  This approach allows for substituting complicated numerical 
solutions with lookup tables (or response surfaces) that can be used in system dynamic 
assessment models. 
 
Objective 
 
The major objective of this work was to develop an approach for incorporating realistic reservoir 
simulations into the system dynamics model. The output from a numerical reservoir simulation 
that is required as an input into the system dynamics model is the temperature drawdown as a 
function of time in each of the producing wells during the operational period of the power plant. 
These temperature drawdowns need to be calculated for a specified set of uncertain parameters 
being considered by a scenario. These parameters include injection rate, well separation distance, 
injection temperature, reservoir temperature, depth of geothermal resource, reservoir thickness, 
and reservoir permeability.  
 
It was assumed that the temperature drawdowns calculated by the numerical reservoir model for 
a number of representative reservoir conditions can be converted to dimensionless curves (or 
type curves) that can be used to generate temperature versus time for any given set of 
parameters. The purpose of this work was to demonstrate whether this assumption is credible for 
homogeneous reservoir conditions. The approach was verified (or tested) by using the 
dimensionless curves to predict temperature drawdown.  
 
It is assumed that a similar approach can be developed to incorporate heterogeneous reservoir 
conditions and that development will be addressed in future work. 
 
Methods 
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The reservoir simulations were performed using a numerical model domain shown in Figure 1. 
The model simulates heat transport in the porous medium and is implemented with the computer 
code FEHM (Zyvoloski, et al., 1997). The grid block dimensions in the x and y direction are 5 m 
by 5 m. The grid block dimension in the z direction is 37.5 m. The fine grid in x and y direction 
was required to generate heterogeneous permeability and porosity fields using the fractured 
continuum model approach (McKenna and Reeves, 2005) for heterogeneous reservoir 
simulations. The fine discretization also allows for a more accurate representation of heat and 
fluid flow around the boreholes.  
 
The homogeneous reservoir conditions were considered first with the effective permeability and 
porosity specified within the enhanced permeability volume defined based on the reservoir 
thickness and well separation distance. The permeability outside of this volume was set equal to 
10-17m2.  
 
The modeling domain shown in Figure 1 represents one quarter of a 5-point injection scheme (1 
injector & 4 producers). The location of the injection well remains the same (front, left corner of 
the cube) in all the simulations.  The production well is placed at the different distances along the 
cube diagonal. The separation distance of 800 m was used in the base case simulation.  
 
The pre-injection boundary conditions are hydrostatic pressures and constant temperature on the 
vertical sides of the cube, constant pressure and temperature on the top, and zero flux on the 
bottom. The injection boundary conditions are zero flux across all the boundaries.  Injection is 
implemented using a fixed injection rate, which is equally sub-divided between the vertical grid 
nodes representing the injection well. The injection interval corresponds to the reservoir 
thickness. The production well is implemented by specifying fixed drawdown pressures in the 
production well nodes. 
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Figure 1. Conceptual Representation of the Reservoir Numerical Model 
The following rock properties were used in all the simulations to be consistent with the systems 
dynamic model (Lowry, et al., 2010): rock bulk density of 2,600 kg/m3; rock specific heat 
capacity of 9.5x10-4 MJ/kg-K; and rock heat conductivity of 3.0 W/m-K.  
 
The following parameters were varied in the different simulations: 

• Effective permeability [m2]: 1x10-13; 5x10-13; 1x10-12; 5x10-12; 1x10-11. 
• Effective porosity [-]: 0.004, 0.01, 0.04. 
• Depth to the reservoir top boundary [m]: 4,000; 5,000; and 6,000 
• Reservoir thickness [m]: 450; 600; 750 
• Reservoir temperature [0C]: 175, 225, 250. 
• Well separation distance [m]: 800 and 1,000. 
• Injection temperature [0C]: 20, 50, and 80 
• Injection rate [kg/s]: 30; 60; and 90. 

 
Note that the total injection rate shown above is 4 times the injection rate used in the model.  
 
The base case considered reservoir thickness of 750 m, well separation distance of 800 m, 
injection rate of 30 kg/s, reservoir temperature of 2250C, injection temperature of 800C, depth to 
the model top of 4,000 m, effective porosity of 0.01, and effective permeability of 5x10-13 m2. 
Each simulation following the base case considered change in one parameter compared to the 
base case.  
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The range of the parameters used in the simulations was dictated by the corresponding ranges 
implemented in the system dynamics model, except for the effective permeability and porosity 
values. The analytical solutions currently implemented in the system dynamics model are for 
fracture flow and they use fracture parameters instead of porous medium continuum parameters 
defined in the numerical simulations.  
 
Temperature versus time at the bottom of the production well were obtained for each numerical 
simulation. The results of these simulations are presented in Figures 2 through 8 using 
dimensionless temperature versus dimensionless time format. The actual temperature versus the 
actual time are shown for two cases (Figure 10 and Figure 11) to demonstrate the thermal front 
retardation relative to the fluid front under the different conditions.  
 
The dimensionless temperature (Td) and time (td) were defined as follows, which are similar to 
the definitions in Gringarten et al. (1975): 
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Here t is the actual time; ρw is the water density; cw is the water specific heat capacity; ρr is the 
rock density; cr is the rock specific heat capacity; Kr is the rock thermal conductivity; Q is the 
injection rate; L is the well separation distance; B is the reservoir thickness; Nfr is the number of 
fractures (an arbitrary parameter in the case of porous medium); and tlag is the thermal front 
travel time between the injection and production wells.  
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  changes very little (from 2.03x106 to 2.07x106s/m2) within the 
reservoir temperature range considered.  The parameter Nfr was set equal to 3.5 to obtain the 
dimensionless time scale similar to the one in Gringarten et al. (1975).   
 
The examples in Figures 2 through 7 show the dimensionless thermal drawdowns for the 
different injection temperatures, reservoir temperatures, depths to the reservoir top, well 
separation distances, reservoir thicknesses, and effective porosities.  As it can be seen from these 
figures, when the actual temperatures are converted to the dimensionless temperatures the 
resulting curves follow each other very closely and are nearly identical across Figures 2 through 
7. A linear adjustment was needed for the reservoir thicknesses of 450 m and 600 m. In these two 
cases the denominator LxBx Nfr in Equation (1) was multiplied by a coefficient to get the match 
shown in Figure 6.  
 
Figure 8 shows dimensionless drawdowns for a range of the effective permeability values that 
can be expected in an enhanced reservoir. There is one “type” curve per each effective 
permeability value similar to one type curve per each dimensionless fracture spacing (xed) in 
Gringarten et al. (1975). The Gringarten’s type curves are reproduced in Figure 8 from 
Gringarten et al., (1975, Figure 3) to allow for a qualitative comparison.  
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The dimensionless fracture spacing (xed) is defined in Gringarten (1975) as: 
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where xe is half fracture spacing. 
  
The dimensionless curve corresponding to the effective permeability of 5x10-13 m2 shown in 
Figure 8 is close to the Gringarten’s curve for xed =7. The fracture spacing (2 xe) corresponding 
to xed =7 and to the parameters Q, L, B, and Nfr used in this simulation can be calculated from 
Equation (3). The fracture aperture (b) can be calculated from Snow’s equation (Snow, 1968): 
 

                                                    ex
bk 24
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where k is effective permeability. 
 
The resulting fracture spacing and fracture aperture are 40 m and 0.25 mm respectively. Both 
parameters seem to be reasonable from the physical point of view.    
 
The numerical type curves enclose a smaller area than analytical type curves. This is probably 
due to the fact that the reservoir dimensions are constrained in the numerical situation and the 
analytical solution domain is infinite.  
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NOTE: Base case injection temperature is 800C 
 

Figure 2. Dimensionless Temperature Drawdowns for the Simulations with the Different 
Injection Temperatures 
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NOTE: Base case reservoir temperature is 2250C 
 

Figure 3. Dimensionless Temperature Drawdowns for the Simulations with the Different 
Reservoir Temperatures 
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NOTE: Base case depth to the reservoir top is 4,000 m 
 
Figure 4. Dimensionless Temperature Drawdowns for the Simulations with the Different Depths 

to the Reservoir Top 
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NOTE: Base case well separation distance (L) is 800 m 
 

Figure 5. Dimensionless Temperature Drawdowns for the Simulations with the Different Well 
Separation Distances. 
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NOTE: Base case reservoir thickness (B) is 750 m 
 

Figure 6. Dimensionless Temperature Drawdowns for the Simulations with the Different 
Reservoir Thicknesses. 
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NOTE: Base case reservoir effective porosity is 0.01 
 

Figure 7. Dimensionless Temperature Drawdowns for the Simulations with the Different 
Reservoir Effective Porosities. 

 



Kalinina , et al. 

 12 

 
NOTE: Base case reservoir permeability (k) is 5x10-13 m2 
 

Figure 8. Dimensionless Temperature Drawdowns for the Simulations with the Different 
Effective Permeabilities. 

 
The dimensionless curve approach was verified by using the dimensionless curves to predict 
temperature drawdowns, and by comparing these predicted drawdowns to the calculated ones. 
The following parameters were used in this test case: reservoir thickness (B) of 600 m, reservoir 
temperature (Tres) of 2000C, injection temperature (Tinj) of 600C, depth to the reservoir top (D) of 
5,000 m, effective permeability (k) of 1x10-11 m2, effective porosity (ε) of 0.01, well separation 
distance (L) of 800 m, and injection rate (Q) of 45 kg/s.  These parameters were not evaluated in 
any previous simulations. 
 
Figure 9 shows the temperature versus time obtained from the numerical simulation (calculated 
drawdowns) and temperature versus time calculated from the dimensionless curve corresponding 
to the effective permeability of 1x10-11 m2 (predicted drawdowns).  A good match was obtained 
between calculated and predicted temperatures during the 30 year operational period.   
 



Kalinina , et al. 

 13 

0

50

100

150

200

250

0 5 10 15 20 25 30

Time, yrs

Te
m

pe
ra

tu
re

, C

Calculated Predicted
 

NOTE: The following parameters were used in this test: B=600 m, Tres=2000C, Tinj=600C, 
D=5,000 m, k=1x10-11 m2, ε=0.01, L= 800 m, Q=45 kg/s.   
 

Figure 9. Calculated and Predicted Temperature Drawdowns 
 
To use the dimensionless curve approach described above, one needs to know the thermal front 
travel time between the injection and production wells (tlag). This is the time when the first 
noticeable change in temperature occurs at the production well (the temperature drawdown is 
equal to or greater than 0.1% of Tres). Starting form this time, the temperature at the production 
well sharply decreases for some period of time, which is followed by a slower decrease later in 
time. Two different cases are discussed below. The first case demonstrates conditions in which 
the travel times are very different. The second case demonstrates conditions in which the travel 
times are practically the same.  
 
The temperatures versus time are shown in Figure 10 for three simulations with the different 
reservoir temperatures. All the other parameters used in these simulations were the same. As it 
can be seen from this figure, the thermal breakthrough times, the time at which the temperatures 
first drop from the reservoir temperature, are very different – 6,600 days for Tres =1750C; 4,200 
days for Tres =2250C; and 3,400 days for Tres =2500C. As it can be seen from these data, the 
thermal breakthrough time is almost 2 times longer when reservoir temperature is 1750C 
compared to reservoir temperature of 2500C. The thermal breakthrough time is 1.24 times longer 
when reservoir temperature is 1750C compared to reservoir temperature of 2250C. 
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NOTE: All parameters are the same as in the base case, except the reservoir temperatures used in 
2 simulations.  
 

Figure 10. Temperature Drawdowns in the Production Well for Different Reservoir 
Temperatures 

 
The temperatures versus time are shown in Figure 11 for three simulations with the different 
effective porosities. All the other parameters used in these simulations were the same. . As it can 
be seen from this figure, the effective porosity within the range considered (0.004 to 0.04) has 
insignificant impact on the thermal breakthrough time and on the thermal drawdowns in the 
production well.  
 
These results can be explained by estimating velocity of the thermal front and corresponding 
thermal breakthrough times under the different reservoir temperatures and porosities taking into 
account temperature dependent density and viscosity of water.  
 
The thermal front velocity was estimated as: 

                                                R
uuT =

                                                             (5)    

                                                ε
lvu =

                                                              (6)                                                                                         
where vl is Darcy’s velocity, ε is effective porosity, and R is thermal retardation factor.  
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The Darcy’s velocity vl is calculated in FEHM as (Equation 8 in Zyvoloski, et al., 1997): 
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The thermal retardation factor R is defined as: 
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where ρl is the water density; ρl is the water specific heat capacity; ρr is the rock density; and cr is 
the rock specific heat capacity. Note that Equation 8 was derived based on assumptions such 
single phase flow, thermodynamic equilibrium between the rock and the fluid, incompressible 
rock, constant thermal properties of both the rock and the fluid, and neglecting thermal 
conduction. 
 
According to this estimation,  the thermal front velocity is about 2 times higher (the thermal 
breakthrough time is 2 times faster) in the reservoir with the initial temperature of 2500C than in 
the reservoir with the initial temperature of 1750C and 1.3 times faster than in the reservoir with 
the initial temperature of 2250C. This conclusion is consistent with the numerical simulation 
results shown in Figure 10.   
 
Note that the thermal retardation factor is almost the same for all three cases (around 64) because 
the product of ρl and cl does not change significantly with temperature (density decreases and 
specific heat increases). However, the thermal front velocity increases with temperature due to 
increase in seepage velocity. Also note that the thermal breakthrough time is significantly longer 
than the water breakthrough time.  
 
In the simulations with the different effective porosities the thermal breakthrough times are 
similar because lower porosity leads to increasing both, seepage velocity and retardation factor, 
as well as higher porosity leads to decreases in both of these parameter values. As a result, the 
ratio of seepage velocity and retardation factor only slightly changes from one reservoir porosity 
case to another.     
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NOTE: All parameters are the same as in the base case, except the effective porosities used in 2 
simulations.  
 

Figure 11. Temperature Drawdowns in the Production Well for Different Effective Porosities 
 
Summary 
 
The current work considered an approach that allows for converting multiple numerical reservoir 
simulations into the dimensionless type curves. Each curve represents a dimensionless 
temperature response of a homogeneous reservoir with a fixed effective permeability. This 
dimensionless curve can be converted into the actual temperature drawdowns during the 
operational period using the reservoir specific parameters and injection characteristics such as 
the reservoir thickness, reservoir temperature, well separation distance, injection temperature, 
and injection rate. It was shown that the reservoir porosity and the depth of the reservoir have 
insignificant effects on the temperature drawdowns in the production well. The dimensionless 
curves were generated for a 5-point injection scheme and thus are limited to this specific 
configuration. 
 
The approach was verified by using the dimensionless curves to predict temperature drawdown. 
The predicted drawdowns were then compared with the calculated drawdowns obtained from the 
corresponding numerical simulation.  
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Work is underway to consider the effects of heterogeneous reservoir permeability and porosity 
on the temperature drawdowns. The applicability of the dimensionless curve approach will be 
tested for the heterogeneous reservoir conditions. The goal is to account for heterogeneity via 
lumped parameters that can be incorporated in the dimensionless curve approach. 
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Appendix A: Example of a Calculation Using Gringarten’s Solution 
 
The example demonstrates a situation in which the applicability of the analytical solution for 
infinite parallel fractures may be limited.  
 
Figure A-1 shows the dimensionless type curves of Gringarten et al., (1975) for the different 
dimensionless fracture spacing. Let’s assume that the required dimensionless temperature at the 
end of the operational period is 0.6. This requirement can be met with 4 pairs of td-xed values as 
shown in Figure A-1 and summarized in Table A-1.  
 
Let’s assume the following parameters: reservoir thickness of 450 m, reservoir temperature of 
2000C, injection temperature of 600C, production rate of 360 kg/s, well separation distance of 
700 m.  
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NOTE:  This figure was reproduced from Figure 3 in Gringarten (1975). The red dashed lines 
were added to the original figure to illustrate the example calculation. 
 

Figure A-1. Dimensionless Temperature versus Dimensionless Time for the Different Fracture 
Spacing 

 
The half fracture spacing xe can be calculated for each td-xed  pair using Equations (1) and (3) and 
assuming tlag equal to 0. The number of fractures Nfr can be calculated from Equation (3). The 
values of xe and Nfr are provide in Table A-1. Note that 2xeNfr represents the length perpendicular 
to the fractures (L┴). As it can be seen from Table A-1, in the case of xed equal to 4 or greater, 
the length of the system (L┴>2,500 m) may be greater than a size of a typical reservoir.        
 

Table A-1. Calculated Half Fracture Spacing (xe), Number of Fractures (Nfr), and total Length 
Perpendicular to the Fracture Orientation (L┴) 

 
xed td xe, m Nfr L┴, m 
0.5 1 17 52 1764 
1 2 24 37 1762 
2 3.9 35 26 1807 
4 5.6 58 22 2517 
8 7 103 20 4032 

 
 
 
 


