

LA-UR- 11-06252

Approved for public release;
distribution is unlimited.

Title: TCG-XIV Complex System Health Assessment Research:
Improving Reliability Estimates with Environmental Data and
Pareto Fronts for Multiple Objective Resource Allocation
Optimization

Author(s): Christine Anderson-Cook

Intended for: Joint Munitions Program All TCG Meeting
November 2011

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

TCG-XIV Complex System Health Assessment Research: Improving Reliability Estimates with Environmental Data and Pareto Fronts for Multiple Objective Resource Allocation Optimization

Christine Anderson-Cook

Abstract

In this presentation intended for the general Joint Munitions Program audience, an overview of the project will be given. In addition, technical highlights from the past year will be discussed. Two case studies are presented which consider improving reliability for complex systems by incorporating environmental summaries, as well as selecting a best new set of data to collect to maximally improve prediction at the system and sub-system levels.

UNCLASSIFIED
LA-UR 11-

TCG-XIV Complex System Health Assessment Research: Improving Reliability Estimates with Environmental Data and Pareto Fronts for Multiple Objective Resource Allocation Optimization

Christine Anderson-Cook, Ph.D.

LANL

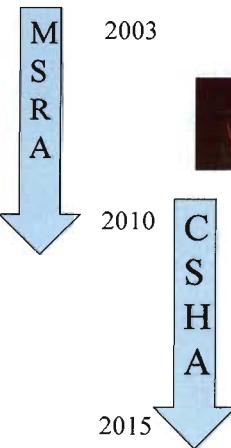
candcook@lanl.gov

November 2011

UNCLASSIFIED

Los Alamos
NATIONAL LABORATORY
EST. 1943

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

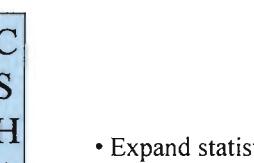

TAC, Aug. 16-17, 2006.srb

Joint DoD/DOE Munitions Technology Development Program

NISA

UNCLASSIFIED

History of LANL Projects in TCG-XIV



2003

Developing statistical tools to combine multiple data sources into a single analysis for system reliability estimation

2010

SRFYDO

2015

- Expand statistical methodology and tools to incorporate more data types (Environmental and handling)
- Broaden definition from reliability to system health
- Provide tools to directly assist with decision-making for management of stockpiles

Los Alamos
NATIONAL LABORATORY
EST. 1943

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

UNCLASSIFIED

Joint DoD/DOE Munitions Technology Development Program

Slide 1

NISA

UNCLASSIFIED

Complex System Health Assessment (TCG XIV)

- Goal/Objective: Provide a suite of methods and tools for assessing and managing the health of complex systems using a variety of different data types.
- Approach:
 1. Combining environmental and condition-based measures with engineering mechanisms for individual components to help manage stockpiles of complex system using a cost-benefit framework.
 2. Enhance and expand the methods and tools developed as part of the Reliability Assessment methods (developed in Munitions Stockpile Reliability Assessment project 2003-2010) for system modeling and statistical health assessment.
 3. Incorporate newly developed Prognostics and Health Management (PHM) methodology into system reliability modeling and analysis methods and tools.
 4. Transition methods and tools to DoD and DOE systems.
- Project timeline: Started 2010, projected ending 2015

Operated by the Los Alamos National Security, LLC for the DOE/NSA

UNCLASSIFIED

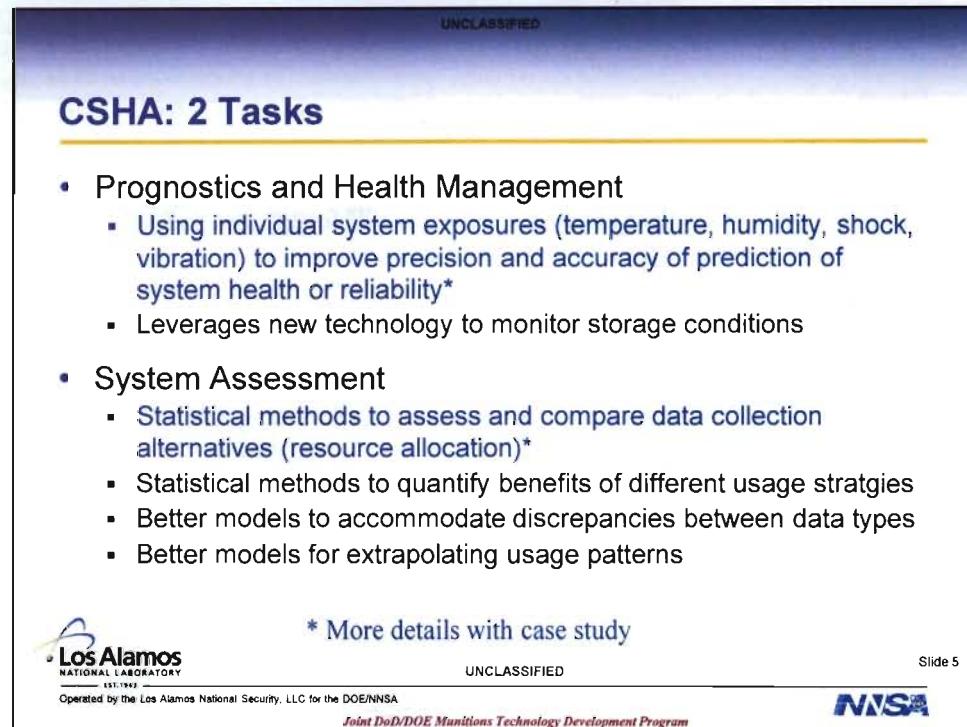
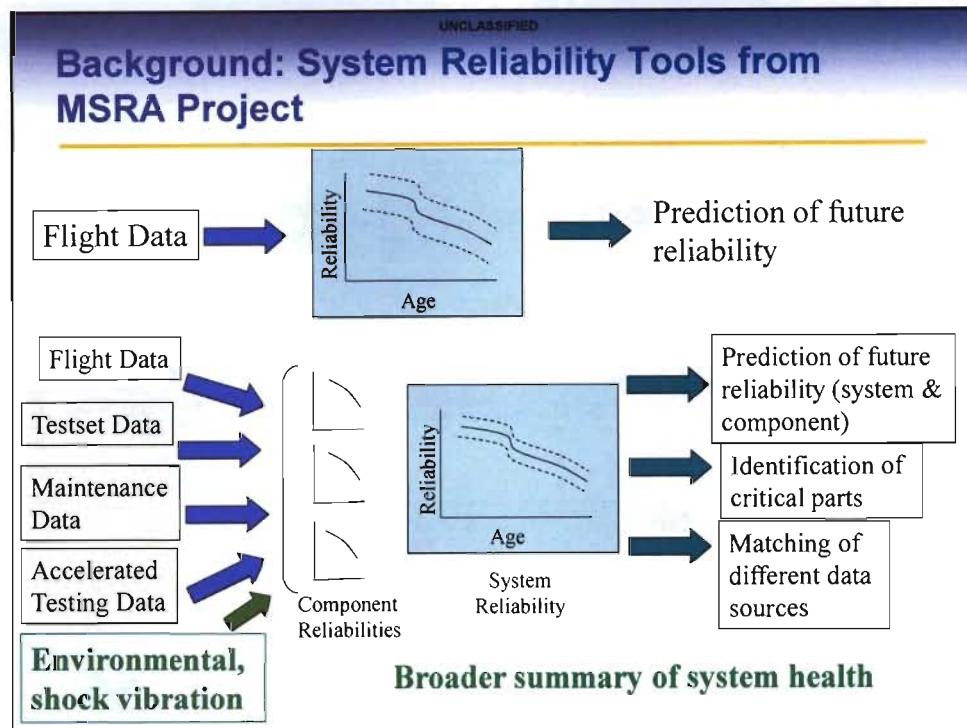
Slide 2

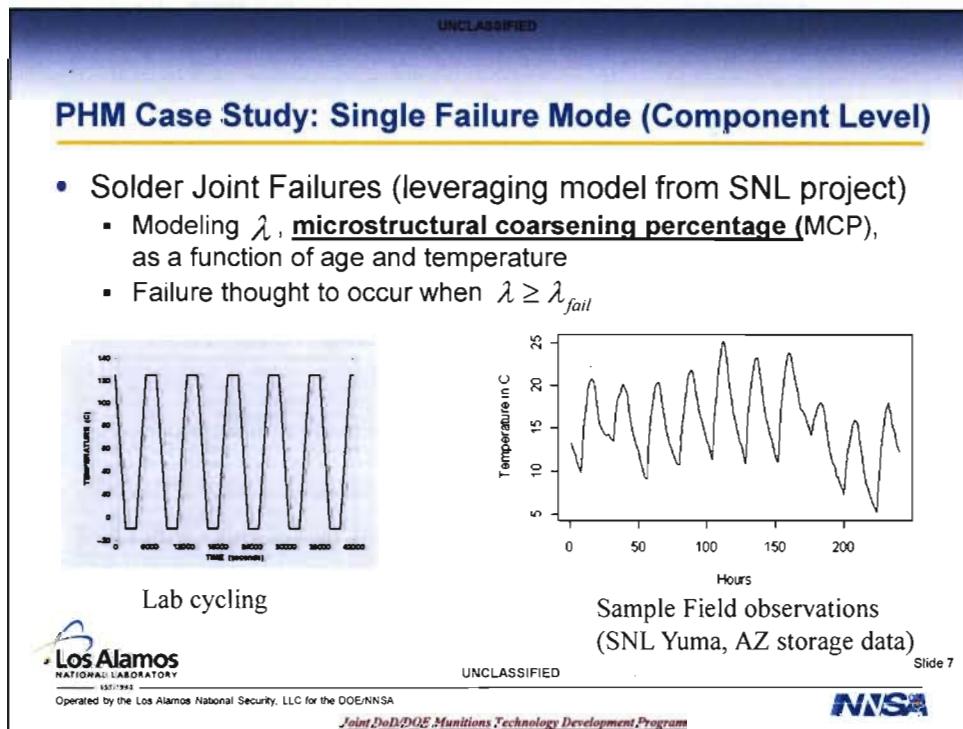
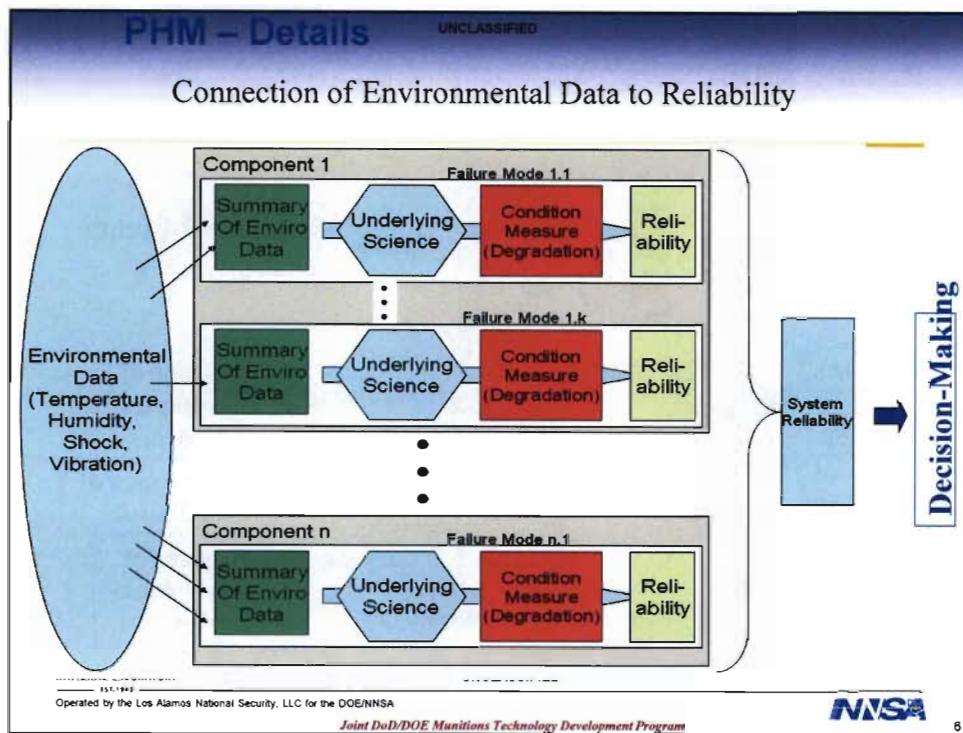
Joint DoD/DOE Munitions Technology Development Program

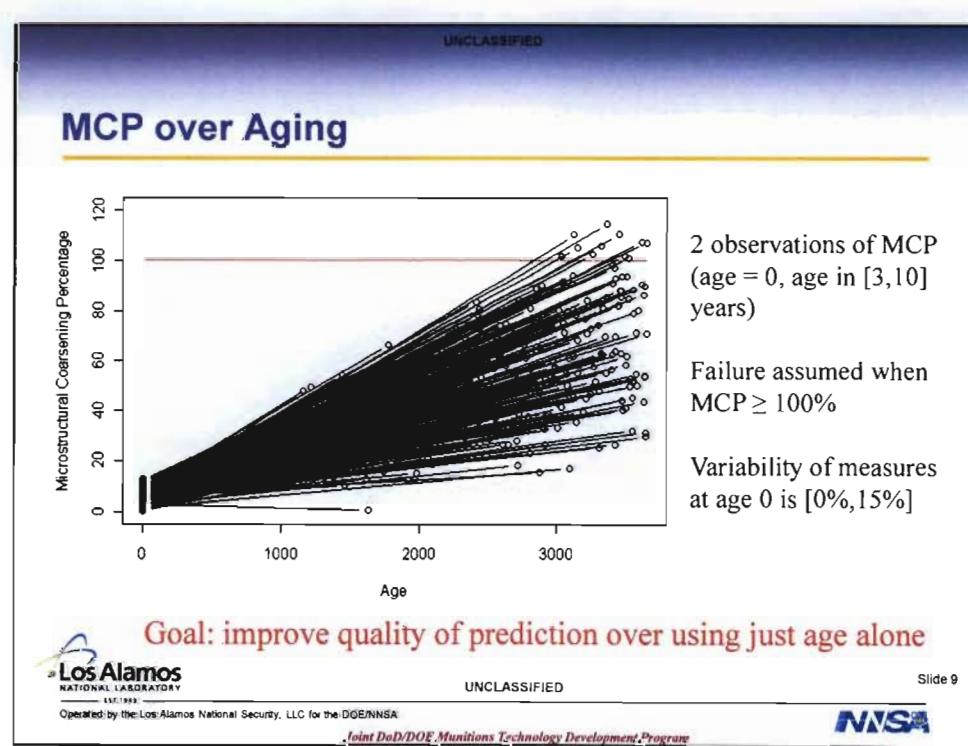
UNCLASSIFIED

Outline

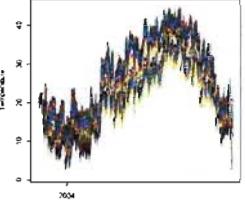
- Background
- Case study 1 – incorporating environmental data to improve reliability estimate
- Case study 2 – selecting a best resource allocation strategy based on multiple objectives
- Plan for remainder of FY12



Operated by the Los Alamos National Security, LLC for the DOE/NSA



UNCLASSIFIED


Slide 3

Joint DoD/DOE Munitions Technology Development Program

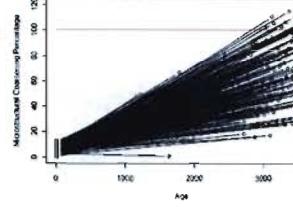


UNCLASSIFIED

Statistical Approach

Daily / Hourly Data

Numerical Summaries



Build many possible models to predict condition based response

Prediction model:

- Time to failure
- condition value

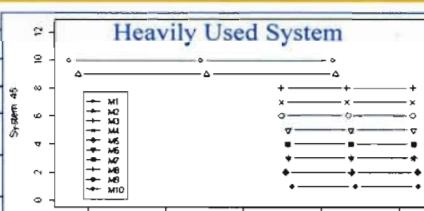
Model selection (based on good prediction)

Model Terms

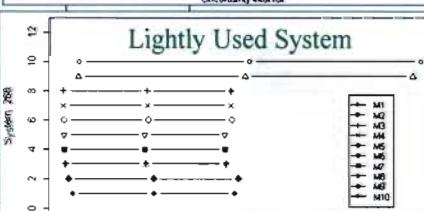
Rank	IC Value	Posterior Probability	Model Terms
1	1725.56	0.1188	$Age + Age \times DTMean + Age \times DTAmp$
2	1726.01	0.1172	$Age + Age \times DTamp + Age \times DTamp$
3	1728.40	0.9220	$Age + Corr + Age \times DTMean + Age \times DTamp$
4	1729.37	0.4217	$Age + Corr + Age \times DTMean + Age \times DTamp$
5	1729.48	0.9213	$Age + Age \times DTMean + Age \times DTamp + Age \times DTMean$
6	1729.49	0.9215	$Age + Age \times DTMean + Age \times DTamp + Age \times DTMean$
7	1729.42	0.9213	$Age + Age \times DTMean + Age \times DTamp + Age \times DTMean$
8	1729.42	0.9213	$Age + Age \times DTMean + Age \times DTamp + Age \times DTMean$

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Slide 10


NISA

Joint DoD/DOE Munitions Technology Development Program


UNCLASSIFIED

Comparison to Non-Environmental Data

Heavily Used System

Lightly Used System

Age + IntMCp + "Age x DTMean" + "Age x DTamp"

Age x DTamp

System 45

System 208

Uncertainty Interval

Uncertainty Interval

Unclassified

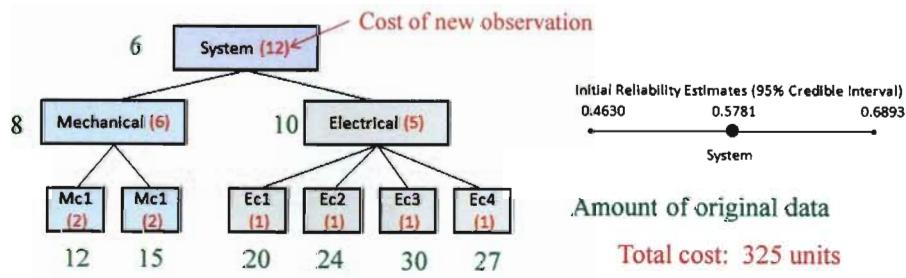
Unclassified

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

e 11

NISA

Joint DoD/DOE Munitions Technology Development Program


Summary of Results

- Underlying degradation model guided choice of summaries of environmental data to explore
- When compared to just age alone, including temperature average and amplitude summaries led to a reduction in uncertainty for predicting
 - MCP value
 - Time until anticipated failure
- Long term goal:
 - Improve precision of reliability estimate with environmental data based model of component failure modes
 - Make data collection / storage efficient for individual monitors (eg. If failure mode model only uses "age", "average temperature", "average temperature amplitude" then data stored is minimal)

System Reliability Case Study: What new data to collect?

- Given the results of an existing reliability analysis based on multiple sources of data, what new data should we collect to **maximally improve** our estimation?

- What new data should we collect?
- What basis should we use for choosing?
- How do we justify what is best for our goals?

UNCLASSIFIED

Goal of New Data Collection for our Example

- Engineers would like to improve the precision of estimation for the following 3 quantities:
 - System reliability estimate
 - Mechanical Sub-system
 - Electrical Sub-system
- Focus on the width of the credible interval:

Goal: Reduce the width of each of these 3 intervals as much as possible

Baseline:

Initial Reliability Estimates (95% Credible Interval)			
Mechanical	0.7678	0.8737	0.9519
Width: 0.1841			
Electrical	0.5510	0.6617	0.7687
Width: 0.2177			
System	0.4630	0.5781	0.6893
Width: 0.2263			

Initial Reliability Estimates (95% Credible Interval)

Width: 0.1841

Width: 0.2177

Width: 0.2263

Los Alamos
NATIONAL LABORATORY

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Slide 14

NASA

Joint DoD/DOE Munitions Technology Development Program

UNCLASSIFIED

Allocations Possible

25 possible allocations:

- All have same total cost
- Good variety of where data are collected

Results	Mc1	Mc2	Ec1	Ec2	Ec3	Ec4	Mechanical	Electronic	System	Alloc. #
0 0 0 0 0 0 0 0 0 10 1	0	0	0	0	0	0	0	0	10	1
0 0 0 0 0 0 20 0 0 0 2	0	0	0	0	0	0	20	0	0	2
0 0 0 0 0 0 0 24 0 0 3	0	0	0	0	0	0	0	24	0	3
0 0 0 0 0 0 10 0 5 0 4	0	0	0	0	0	0	10	0	5	4
0 0 0 0 0 0 0 12 5 0 5	0	0	0	0	0	0	0	12	5	5
0 0 0 0 0 0 10 12 0 0 6	0	0	0	0	0	0	10	12	0	6
15 15 0 0 0 0 0 0 5 0 7	15	15	0	0	0	0	0	0	5	7
0 0 15 15 15 15 0 0 5 0 8	0	0	15	15	15	15	0	0	5	8
8 7 0 0 0 0 0 5 0 5 9	8	7	0	0	0	0	0	5	0	5
0 0 9 8 6 7 0 0 5 0 10	0	0	9	8	6	7	0	0	5	10
0 0 9 8 6 7 0 6 5 0 11	0	0	9	8	6	7	0	6	5	11
8 7 0 0 0 0 0 0 6 5 12	8	7	0	0	0	0	0	6	5	12
8 7 9 8 6 7 0 0 5 0 13	8	7	9	8	6	7	0	0	5	13
16 14 0 0 0 0 0 10 0 0 14	16	14	0	0	0	0	0	10	0	14
8 7 9 8 6 7 10 0 0 0 15	8	7	9	8	6	7	10	0	0	15
0 0 18 16 12 14 0 12 0 0 16	0	0	18	16	12	14	0	12	0	16
8 7 9 8 6 7 0 12 0 0 17	8	7	9	8	6	7	0	12	0	17
8 7 0 0 0 0 5 12 0 0 18	8	7	0	0	0	0	5	12	0	18
0 0 9 8 6 7 5 12 0 0 19	0	0	9	8	6	7	5	12	0	19
0 0 9 8 6 7 10 6 0 0 20	0	0	9	8	6	7	10	6	0	20
8 7 0 0 0 0 10 6 0 0 21	8	7	0	0	0	0	10	6	0	21
30 30 0 0 0 0 0 0 0 0 22	30	30	0	0	0	0	0	0	0	22
0 0 30 30 30 30 0 0 0 0 23	0	0	30	30	30	30	0	0	0	23
15 15 15 15 15 15 0 0 0 0 24	15	15	15	15	15	15	0	0	0	24
17 13 18 16 12 14 0 0 0 0 25	17	13	18	16	12	14	0	0	0	25

Initial Reliability Estimates (95% Credible Interval)

Width: 0.1841

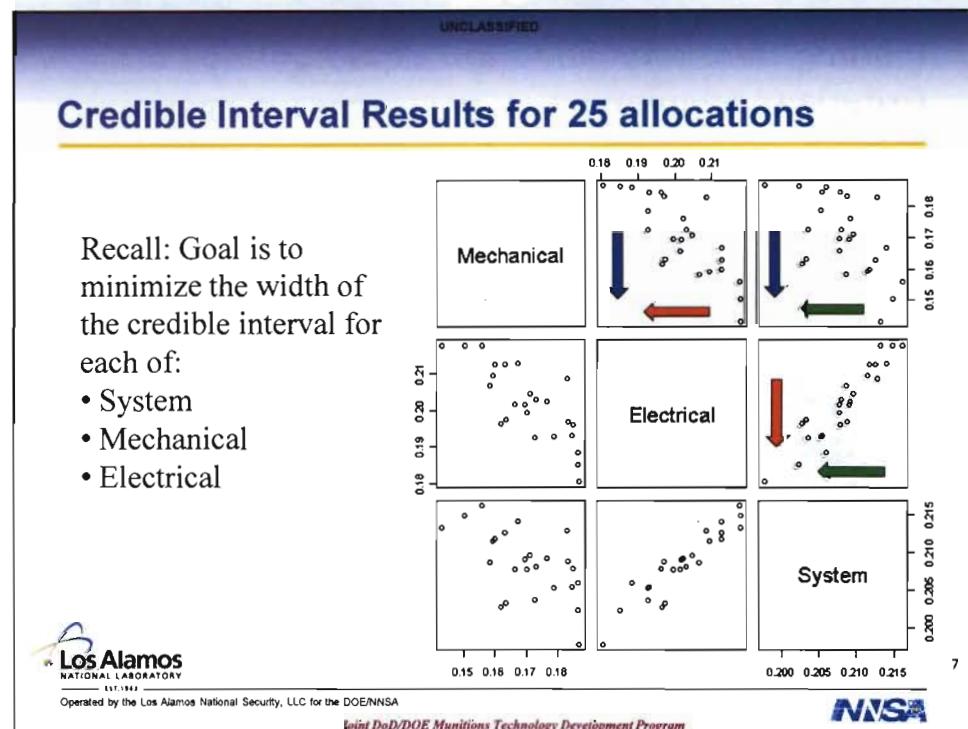
Width: 0.2177

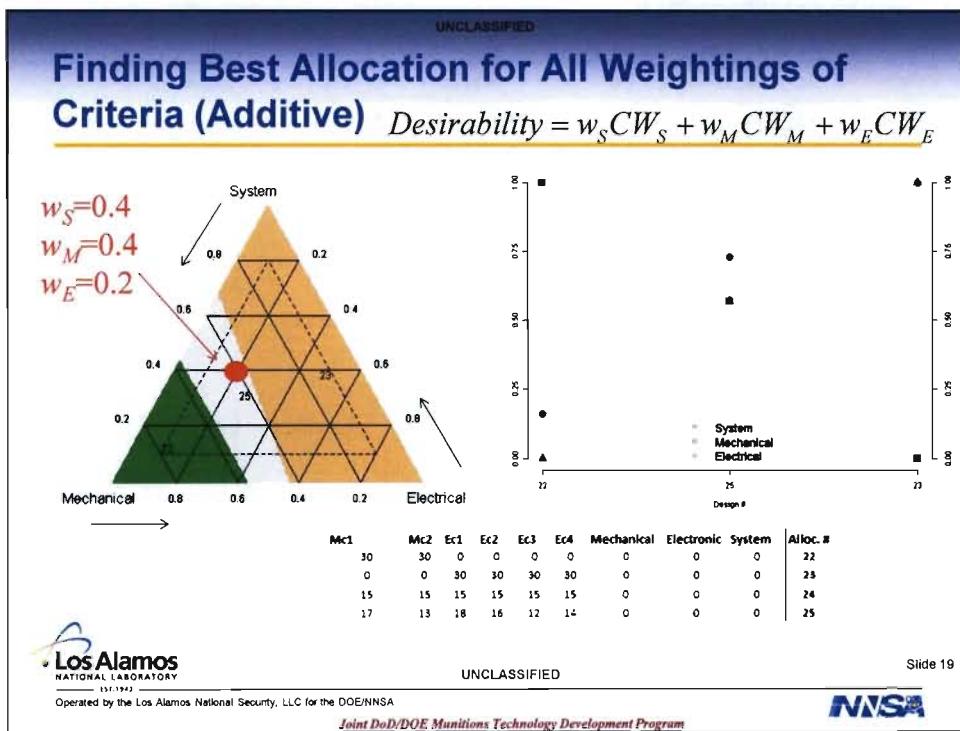
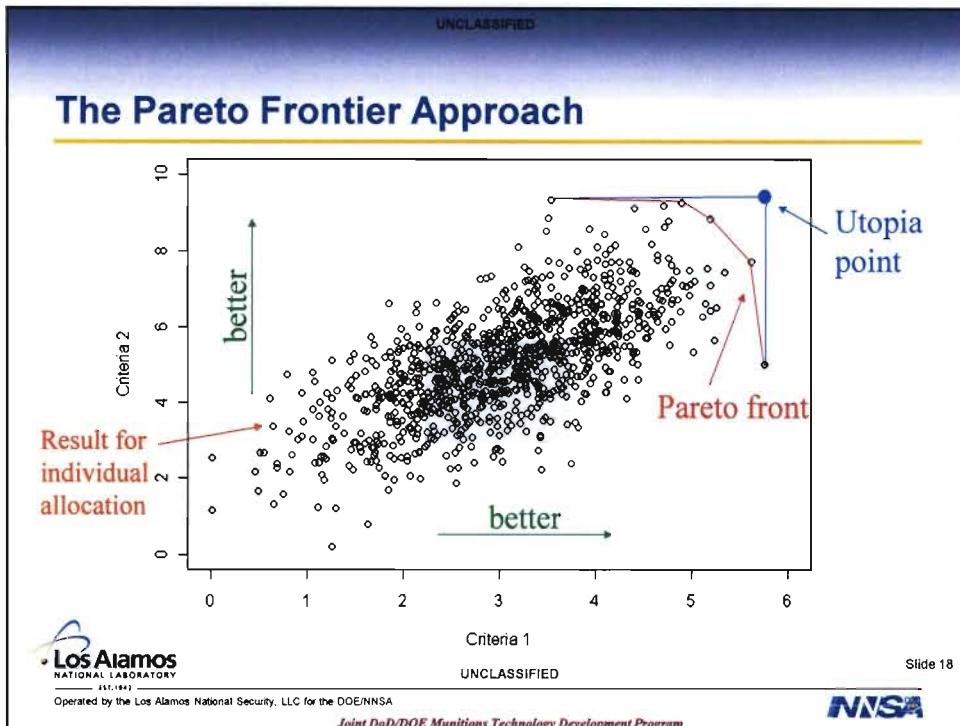
Width: 0.2263

Los Alamos
NATIONAL LABORATORY

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Joint DoD/DOE Munitions Technology Development Program


UNCLASSIFIED



Initial:
0.1841 0.2177 0.2263

Results of Analysis for 25 Allocations

Mc1	Mc2	Ec1	Ec2	Ec3	Ec4	Mechanical	Electronic	System	Alloc. #	Mechanical	Electrical	System
0	0	0	0	0	0	0	0	10	1	0.182896	0.208562	0.212798
0	0	0	0	0	0	20	0	0	2	0.155939	0.217593	0.216135
0	0	0	0	0	0	0	24	0	3	0.186184	0.188425	0.205978
0	0	0	0	0	0	10	0	5	4	0.167084	0.212652	0.213953
0	0	0	0	0	0	0	12	5	5	0.183102	0.196996	0.208728
0	0	0	0	0	0	10	12	0	6	0.169521	0.201595	0.208982
15	15	0	0	0	0	0	0	5	7	0.160029	0.212583	0.211654
0	0	15	15	15	15	0	0	5	8	0.184335	0.193014	0.20547
8	7	0	0	0	0	5	0	5	9	0.163004	0.212495	0.212505
0	0	9	8	6	7	5	0	5	10	0.176321	0.202387	0.209188
0	0	9	8	6	7	0	6	5	11	0.184579	0.196233	0.207769
8	7	0	0	0	0	0	6	5	12	0.171135	0.204599	0.20955
8	7	9	8	6	7	0	0	5	13	0.172838	0.202965	0.208023
16	14	0	0	0	0	10	0	0	14	0.150264	0.217789	0.214795
8	7	9	8	6	7	10	0	0	15	0.158434	0.206712	0.20864
0	0	18	16	12	14	0	12	0	16	0.186341	0.185205	0.202329
8	7	9	8	6	7	0	12	0	17	0.17274	0.192642	0.203601
8	7	0	0	0	0	5	12	0	18	0.166135	0.201575	0.207661
0	0	9	8	6	7	5	12	0	19	0.178806	0.19274	0.205274
0	0	9	8	6	7	10	6	0	20	0.169961	0.199462	0.207632
8	7	0	0	0	0	10	6	0	21	0.159256	0.209364	0.211409
30	30	0	0	0	0	0	0	0	22	0.143072	0.217661	0.213209
0	0	30	30	30	30	0	0	0	23	0.186722	0.18047	0.19775
15	15	15	15	15	15	0	0	0	24	0.163415	0.197407	0.203219
17	13	18	16	12	14	0	0	0	25	0.161928	0.196507	0.20274

Slide 16

UNCLASSIFIED

Summary of Results

- Uses methodology to evaluate anticipated improvement in prediction before data are collected
- Pareto method can divide allocations into 2 categories
 - Eliminate from further consideration – not ideal under any scenario
 - Candidates for further study – best for some scenario
- Graphical summaries allow for choice of best allocation to suit decision-maker's priorities
- Can expand to do a search for best allocation possible

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

UNCLASSIFIED

Slide 20

Joint DoD/DOE Munitions Technology Development Program

UNCLASSIFIED

Update & Plan Forward – PHM & SA

- Prognostics and Health Management
 - Currently working on EXCEL tool to take raw data from individual systems and convert into system level summaries to be used as input to statistical analysis
 - Develop generalized methodology for incorporating environmental data to model general component level failure modes
 - REAL DATA WANTED (candcook@lanl.gov)
- System Assessment
 - Case study to demonstrate Pareto front optimization for management of stockpile (order of which units to use when)

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

UNCLASSIFIED

Slide 21

Joint DoD/DOE Munitions Technology Development Program

References

- Anderson-Cook, C.M. (2011) "Using Individual System Temperature and Humidity Storage Data to Improve Precision and Accuracy of Solder Joint Condition-Based Reliability Estimates – A Case Study" LANL Tech Report, LAUR 11-05046 (34 pages)
- Anderson-Cook, C.M., Chapman, J., Lu, L. (2011) "Selecting a Best Allocation of New Data for Improving Estimation Precision of System and Sub-System Reliability using Pareto Fronts: A Demonstration" LANL Technical Report, LAUR 11-05479 (25 pages)
- Anderson-Cook, C.M., Huzurbazar, A.V., Graves, T.L., Hamada, M.S., Kelly, E., Klamann, R., Lawrence, E., Morzinski, J., Vander Wiel, S., Wilson, A. (2011) "Summary of Statistical Reliability Methods and Tools Development as part of the Enhanced Surveillance Campaign (ESC) and Joint Munitions Program (JMP)" LANL Technical Report, LAUR 11-01703 (376 pages)
- Chapman, J., Morris, M., Anderson-Cook, C.M. (2011) "A Computationally Efficient Strategy for Evaluating the Estimation Improvement for Candidates in a Resource Allocation Study" LANL Technical Report LA-UR 10-04501
- Pintar, A., Anderson-Cook, C.M., Wu, H. (2011a) "Model Selection for Good Estimation and Prediction Over a User-Specified Covariate Distribution for Linear Models Under the Frequentist Paradigm" LANL Technical Report LA-UR 11-04729
- Pintar, A., Anderson-Cook, C.M., Wu, H. (2011b) "Prediction-Based Model Selection for Bayesian Multiple Regression Models" LANL Technical Report LA-UR 11-04735