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The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the
United States dedicated to materials research. It has operated for sixteen years, and in that time has had a
very prolific record concerning the development of new target and moderator systems for pulsed spallation
sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed
by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam
power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power
which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium
target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power.

The development of new target and moderator systems is by no means stagnant at IPNS. We are presently
considering numerous enhancements to the target and moderators that offer prospects for increasing the use-
ful neutron production by substantial factors. Many of these enhancements could be combined, although their
combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program
of study concerning these improvements and their possible combination and implementation. Moreover, any
improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

1 Enhancements In Progress

A number of enhancements to IPNS neutron production are already in progress. Design choices for
these enhancements have largely been made, and engineering questions are all that remain to be answered,
whether by experiment or calculation. These enhancements are relatively well-defined, with clearly demon-
strable benefits. They include a re-designed booster target, based on experience with the booster target used
from 1988-1991, re-designed solid methane moderators for use with the booster target, a moderator-reflector
assembly designed for rapid moderator replacement, and experimental studies of minor moderator modifica-
tions.

1.1 New Booster Target

IPNS has operated with a depleted uranium target from 1981-1988 and since 1992. For three years,
1988~1991, we operated with a booster target composed of the same alloy of a-phase uranium enriched to
77% 235U, and of the same physical design as the depleted target. This subcritical target had a multiplication
factor keg of approximately 0.80, and resulted in neutron production of about two and one-half times the
production rate with the depleted uranium target.
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Nonlinear Programming with Feedforward Neural Networks
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Abstract

We provide a practical and effective method for solving
constrained optimization problems by successively training
a multilayer feedforward neural network in a coupled
neural-network/objective-function representation.
Nonlinear programming problems are easily mapped into
this representation which has a simpler and more
transparent method of solution than optimization performed
with Hopfield-like networks and poses very mild
requirements on the functions appearing in the problem.
Simulation results are illustrated and compared with an off-
the-shelf optimization tool.

Introduction

The Hopfield network and variations of this type of neural
networks have been frequently considered as candidates for
solving optimization problems, such as combinatorial
optimization [1], linear programming problems [2], and
nonlinear programming problems [3]. This is usually
achieved by designing Hopfield-like networks whose
energy function mimics a cost function which embodies the
optimization problem to be solved. Hence, the solution to
the optimization problem is obtained by attaining the lowest
energy state of the network.

Here, we propose a new method based on the widely used
multilayer feedforward neural networks (FNNs), also
known as the multilayer perceptron, for solving nonlinear
mathematical programming problems. The method of
solution for the proposed approach is simpler and more
transparent than the existing Hopfield-like approaches and
unlike the method in [3] poses very mild requirements on
the functions appearing in the problem.

Earl E. Feldman
Argonne National Laboratory
Reactor Analysis Division
9700 S. Cass Avenue
feldman@ra.anl.gov

The Nonlinear Programming Problem

Consider the general mathematical program (P)! of the form:
minimize f{x) )
subject to inequality and equality constraints,

&) 20, p=12,..P (¥)

hx)=0, q=1,2,....Q 3
where the objective function f to be minimized and the
constraints gi,....gp, and hy,...,hq, can be linear or nonlinear
functions of the N-dimensional vector x.

A vector x is called a feasible solution to (P) iff x satisfies
the P+Q constraints of (P). The collection of suchx is called
the feasible set and x* is the feasible solution which yields
the minimum £ i.e., the solution to (P).

The Neural Network Formulation

In the proposed FNN formulation, the solution to (P) is
obtained by transforming this constrained optimization
program into a series of unconstrained optimization
programs (P*), Eq. (4), which are solved for a sequence of £,
(k=1,2,...,K). In Eq. (4), w is the M-dimensional weight
vector of a FINN where x is a function of w, f; is a selected
feasible value of f, and p is a positive number used to vary
the weight of the constraint terms. At each optimization we
seek the vector x, which minimizes F,(w) for a given f,

!(P) and other capital letters when enclosed in parentheses
represent mathematical programs.

B v e S ¥ o e § 54 S g MR £ %) AT Yy o ek e A0




K —
Feedforward Neural
A, (p=1,....P) =P
p ¢=L-P) Network (FNN)
Bq q=1,...,Q) ~——pp]

x
Endly
jective
: Function [~ flx,)
. fx)
_—>
N

Fig. 1. Coupled neural-network/objective-function representation

such that at the end of the sequence of optimizations x =
x*, That is, the solution for (P’) at k=K is the solution for
(P). Through this procedure we iterate on f and try to find
its smallest value which has feasible x.

Q
minimize {Fk(w) = % {f - ff +% 2} (R
Z

, @
" _g. Y. {min[0,g(x)] }2}

p=l

The first term on the right side of Eq. (4) assures that x,
yields the desired f, the second term accounts for the
equality constraints and the third term accounts for the
inequality constraints. Note that if x satisfies an inequality
constraint of (P), the corresponding element of the third
term becomes zero and if x is a feasible solution to (P), then
the second and third terms become zero.

This formulation is somewhat of a combination of the
exterior penalty function method [4] with the least-squares
method [5]. As in the exterior penalty function method, for
each equality constraint and for each inequality constraint
(except for two-sided bounding inequality constraints of
single variables, which are directly accounted for as
described later) of the program (P), there is a corresponding
termin the objective function F, of program (P*). However,
unlike the penalty function method, the first term of F,
consists of the square of the difference {f, - fx)}, as
opposed to just fx), and the minimum of F, is zero. In this
sense, the form of F is similar to the objective function of
the least-squares method which minimizes the squares of the
differences between the observed values and their respective
predicted values.

Here we cast the minimization of F,(w) for each f, as the
training of the FNN in the coupled neural-network/
objective-function representation illustrated in Fig. 1. In
this representation, the left box consists of a FNN with M

weights w and the right box consists of the objective function

fix) of (P), which perhaps could be represented by a trained
neural network. Training consists of determining the weights
w that for a given input to the FNN the network provides
outputs x,, (n=1,...,N), which minimize F,(w) in Eq. (4).

In addition to f;, the other inputs to the FNN are the constant
terms A, and B, that appear in the constraints g,, (p=1,...,P),
and h,, (q=1,...,Q). For example, for the equality constraint
x*+x-5=0, the number 5 would be used as an input. If a
constraint does not have a constant term, then zero should be
used as input such that there are a total of P+Q+1 inputs to
the FNN. In theory, this set of inputs is not necessary
because they already appear in Eq. (4). However, simulation
results indicate that inputing these values instead of dummy
values improves training.

Because each one of the N output nodes of the FNN
corresponds to one independent variable x,, (n=1,...,N), two-
sided bounding inequality constrains on each variable x, can
be directly treated through the proper selection of the
mapping function of the output nodes and proper
normalization. For example, if a<x, <b, where a and b are
scalars, then the n-th output node could be mapped by a
sigmoid function with the range [a,b] normalized to the range
[0,1] of the sigmoid function. Each two-sided constraint
could, of course, be separated into two one-sided constraints
and treated in the third term in Eq. (4). This would require,
however, the addition of two more elements per two-sided
constraint. The FNN formulation eliminates this need and
when these are the only types of constraints in the problem
the last two terms in Eq. (4) vanish, greatly simplifying the
minimization of F.

In this neural network formulation, the solution to (P) is
obtained as follows. We start by selecting an interval
Jowsfx*)<f,, that includes the solution to (P). In most
engineering problems at least one of the bounds of the
interval is directly obtained from the physical constraints on
the solution. Then, we start to solve the unconstrained
optimization in Eq. (4) for a sequence of f,....f....fx, such




that at each optimization step of the sequence f, is selected
to reduce by half the interval [f,,.f,,] according to the
bisection method [6]. The sequence proceeds until the
interval has been reduced to within a prespecified distance
&, with f{lx*) contained in the interval.

For each optimization step of the sequence we train the
FNN in Fig. 1 with the selected f, and the constants A,
(p=1,..P), and B, (g=1,...,Q), which are kept fixed for the
entire sequence. If the training is successful, i.e., if weights
w can be found that minimize F,(w) for the current f,, then
x, » provided as the output of the FNN, is a feasible solution
to (P). If the training is not successful we select another
value for f; according to the bisection method and continue
the procedure. By repeating this procedure for additional
value of f, we obtain the smallest f, f,_, within a
prespecified tolerance, for which the training of the FNN
converges. Corresponding to f, we obtain x = x*, the
solution to (P). This can be confirmed by showing that x;{
satisfies the Karush-Kuhn-Tucker necessary conditions for
local optimality of nonlinear constrained functions to within
a certain tolerance [7].

Our method differs from most nonlinear programming
approaches because here we solve the inverse problem. That
is, we select a value of fix), f,, and try to obtain the
corresponding feasible x, if it exits. Hence, our iterative
procedure is based on a search for the smallest f{x) with
feasible x, {x*), along the monotonicly decreasing fline, as
opposed to a direct search for x* in the N-dimensional x-
space. This precludes the search from becoming trapped at a
local minimum in the x-space. However, the approach is not
completely free of local minima trapping because the training
of the FNN may not converge even when f>f=flx*).
Therefore, whenever a training session is not successful the
network should be retrained with the same inputs but with a
different selection of the initial weights and a different
number of nodes in the hidden layers to ensure that the
unsuccessful training is not due to local minima in the w-
space.

In that sense, we might be transferring the potential trapping
in the N-dimensional x-space to a potential trapping in the
M-dimensional w-space of the network weights. The search
in the N-dimensional x-space is constrained while the search
in the M-dimensional w-space is not, although, in general,
M>>N.

The use of the FNN in our formulation is also quite different
from its common use. Instead of providing a set of input-
output pairs and having the network learn their underlying
relationships, we provide only inputs and for each training
session the same input is presented repeatedly to the network.
We are not interested in the generalization capabilities of

FNNG, but rather are using the neural network representation
in Fig. 1 to minimize F,.

The proposed approach poses very mild requirements on the
functions appearing in the problem. We assume that the
nonlinear programming problem has the following
properties:

1. The functions fx), &), and h(x) all have
continuous first derivatives.

2. flx)is continuous in an interval of non-zero length
flx*)<flx)<f,, and there must be a corresponding
feasible x for each value of f{x) in the interval.

3. N=2Q+1,asopposed to N > Q for conventional
methods, because an extra degree of freedom is
needed for the f; search.

Neural Network Training

The unconstrained minimization of F,(w) in Eq. (4) is solved
iteratively based on calculations of the gradient VF,(w) using
a conjugate gradient version of the backpropagation
algorithm [8]. The method of conjugate gradient expedites
the training process and dynamically optimizes the learning
parameter and the momentum parameter of the
backpropagation algorithm.

As in other versions of the backpropagation algorithm, the
components of VF,(w) are computed recursively by starting
at the nodes in the output layer of the FNN and working
backward to the nodes in the input layer. A component of
VF,(w) corresponding to the weight w;~ connecting the i-th
node in the (£1)-th layer to the j-th node in the £th layer is
given by

oF,

P Q
- ® ® ol e
i G IR D IR A ®)
awji p=1 q=1

where y,.”'“ denotes the activation of the i-th node in the (&
I)-th layer and to simplify the notation we suppress the
subscript k in the 8s and y. If the 4k layer is the output
layer L, then

87 =~ f]%® - 3™ £
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where the N elements of x; are equal to the N elements of
yj"" and f}’(x o) is the partial derivative of fx) with respect
to the j-th element of x (or the j-th output node of the FNN,
y}"“) ). If the function fx) is represented by a multilayer
FNN, then f/(x ) is the partial derivative of this network’s
output with respect to its inputs. For any node in a
subsequent hidden layer, i.e., 1<i<L,

m

"l'l

®_ o ® @D @D

8j =Y (1')’,' )Z 8jm Woi
m=1

® _ .o O L e oD

85 =% (=3 X 8" wey, 0
m=1
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8 =¥ (- )X% Sm Wmj
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where J,,, denotes the number of nodes in the (+1)-th layer.

This algorithm is very similar to the standard version of the
backpropagation algorithm used to compute 9F/ &vjf.” for
stand-alone FNNs. The major differences are the presence
of three 8s, as opposed to only one, corresponding to the
three terms in Eq. (4), and the extra term _)j.’(x » in Eq. (6).

Simulations

To demonstrate the performance of the proposed FNN
approach, some examples of an emissions control problem
[9] with different types of constraints are presented. The
problem consists of finding the optimal flow rate of four
natural gas injectors x,, (n=1,2,3,4), located above the
primary combustion zone of a coal-fired power plant such
that the downstream oxides of nitrogen (NQO,) emissions are
minimized. A trained multilayer FNN is used to represent
the nonlinear functional relationship fix) between the
injected gas and the NO, emissions.

A. Inequality Constraints

Consider the following nonlinear program:

minimize {NO, = fix;,x,,%;.x,) } ®)
subject to
34.90 < x, < 72.12, (n=1,2,3,4) ©
3
110- Z}xn 20. (10)

A three-layer FNN with a 2-6-4 architecture was used. The
two nodes in the input layer correspond to a selected value
for NO, and 110, respectively, and the four nodes in the
output layer correspond to the gas flow rate of the four
injectors.

Table 1 compares the solutions to this program obtained by
the FNN method and an off-the-shelf optimization tool [10].
The deviation of the optimal NO, was less than 0.3% and the
maximum deviation of x, was less than 2.0%. This is a
rather difficult optimization problem for some methods
because the optimal solution is on the boundary of the
feasible region prescribed by Eq. (10). Similar comparisons
were obtained in other simulations where we changed the
sign of the inequality and the value of the constant term in

Eq. (10).

Table 1. Comparison of the FNN results with an off-the-
shelf optimization tool for a case of inequality constraints

NO, x ) X3 X4
FNN 0415 3546 3541 39.04 7185
Tool 0414 35.26 34.90 39.81 72.12

B. Eguality and Inequality Constraints

Consider next the same program above with the inequality
constraint in Eq. (10) replaced by the equality constraint

N=4
175-3 x, =0. (1n
n=1

Employing the same FNN architecture as in the previous
case and with the constant term in the constraint, 175, used
as an input we obtained the results illustrated in Table 2.
The FNN results compare well with results obtained with an
off-the-shelf optimization tool. Both attained the same
minimum value for NO, and the maximum deviation on x,
was less than 1%. Similar comparisons were obtained in
other simulations where we changed the value of the constant
term in Eq. (11).

Table 2. Comparison of the FNN results with an off-the-
shelf optimization tool for a case of equality and inequality
constraints

NO, X X X3 X,
FNN 0431 3495 3498 3523 69.89
Tool 0431 3490 3490 3490 70.30




Conclusions

We propose a new methodology for solving nonlinear
programming problems. The approach is to transform an
original constrained optimization problem in the N-
dimensional x-space into a sequence of unconstrained
optimization problems in a larger M-dimensional weight-
space of a multilayer feedforward neural network.
Although M>>N, the difficulty in solving an optimization
problem in the larger weight space is more than offset by
the simplicity of solving an unconstrained optimization
problem, as opposed to a constrained one, in the smaller x-
space.

The constraints of the original problem are handled
indirectly through the transformation of the original
function f{x) into a modified function which incorporates
each equality constraint and each inequality constraint into
an additional term of the function. Two-sided bounding
inequality constraints of single variables are directly treated
through proper selection of the mapping function of output
nodes of the neural network and proper normalization.

In contrast to most optimization approaches, the optimal
solution is not obtained through searches in the x-space.
Instead, we directly search for the smallest f(x) along the
monotonic f{x) line and indirectly obtain the corresponding
x (as the output of a feedforward neural network) by
training the network. Hence, the method of solution is not
dependent on the form of f{x) on x, and therefore, should be
less sensitive to local minima, and poses very mild
requirements on the functions appearing in the problem.

The examples provided serve to illustrate that the results of
the proposed method compare well with those of other
optimization techniques. In future research we shall
demonstrate the capability of the proposed method to
converge to the global minimum even when the f{x) surface
contains many local minima. In general, the existence of
these local minima are problematic for optimization
methods.

The proposed method should also be quite appealing in
problems involving two-sided bounding inequality
constraints on single variables. Unlike most approaches,
these constraints are directly satisfied through the proper
selection of the mapping function of the network output
nodes and proper normalization.

The proposed method is simpler and more transparent than
existing neural network approaches for solving nonlinear
programming problems. However, it requires the solution
of a sequence of optimizations. This iterative procedure

will be avoided in future research by modifying the first term
in Eq. (4), [y - fx)], to fix), and directly solving the
unconstrained optimization problem much like the exterior
penalty function method.
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