COMNF-95094.35-- |

BNL-62213

ELEMENTARY EXCITATIONS AND PHASE TRANSITIONS IN CRYSTALS
S. M. SHAPIRO, Brookhaven National Laboratory, Upton, NY 11973 USA

L. INTRODUCTION

The unique method of measuring elementary excitations in solids over
a wide range of energy and momentum transfers is inelastic scattering of
neutrons. Elementary excitations are defined as a correlated motion of atoms
or spins in a solid which include phonons, magnons, rotons, or crystal field
excitations. These excitations play a fundamental role in a wide variety of
structural and magnetic phase transitions and provide the information in
understanding the underlying microscopic mechanism of the transformation.
Below, I shall review some of the relevant aspects of neutron scattering
formalism related to inelastic neutron scattering and demonstrate how it has
been applied to the study of phase transitions in crystals. I shall give two
examples of structural phase transitions where the phonons are the
elementary excitations and studies in a conventional superconductor where

the phonon linewidths are a measure of the electron-phonon coupling
responsible for the pairing.

II. NEUTRON SCATTERING
An inelastic neutron scattering experiment measures the neutron
intensity scattered by a sample as a function of momentum (Q) and energy

(ho) transferred to the sample(l). Energy and momentum conservation

s governs the scattering process:

Q=k;i- k¢
ho =Ei-Ef= h2/2mp(k;2 - ke2) (1)

Where ki) and Ej) are the initial (final) momenta and energy of the
neutron and the mp; is the neutron mass..

The observed intensity of the scattered neutrons is proportional to the
convolution of the scattering function, S(Q,w), and the instrumental
resolution function:

1(Qo0) = 1/NEL [5(Q.0) ® RQ-Qo i) do @

For a three axis instrument the four dimensional resolution function, R(Q,»)
is well known and a very important part of determining the true cross section
from the observed intensity(1). The scattering function contains the
information about the positions and motions of the atoms and their spins
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and is essentially the Fourier transform of a densiiy-density correlation
function:

S(Q.@) = [{pop_gJedt 3)

where pQ is a density operator which can be either a spin or atomic density.
Since most systems studied are in equilibrium, we can employ the

fluctuation-dissipation theory which relates the fluctuation properties of a
system, which is 5(Q,w), to the response of the system to an external time-

dependent perturbation which is the dynamical susceptibility:
S(Qw) =1/ (n(w) + 1) 1" (Q w) @

(n(w) +1) = [1-exp(-2@/kT)] is the thermal occupation factor which has the

. limits (n(w) +1) ~1 for A® >> kT and (n(w) +1) ~ n{(w) ~ kT/ ho for Aw<<kT.

Let us now consider separately the case for phonons and magnons. For
phonons, the density operator is a time dependent atomic displacement, u;(t)
and the correlation function of Eq. (3) for harmonic phonons is:

<PQP-Q> - < Q- ui(0) Q- uj(t) > (5)

Using a normal mode expansion for the atomic displacements which is
worked out in many textbooks(2), the scattering function becomes.

_(ni(mj(q))+1/2 +1/2)

@ | Fa(Q) |25 (Bi-Egthai(q) 8(Qiq)

6)

where Q=t1+q,and tisa reciprocal lattice vector and q is the wave vector of
the phonon within a Brillouin zone, The inelastic phonon structure factor is:

bd .
FQ = ) ——=(Q&a(q) elQreW ?)
zd Vg @ e

where the sum is over d atoms in a unit cell and &'s are unit vectors in the
direction of the atomic displacements about their equilibrium positions for a
particular phonon mode. Wy is the Debye-Waller factor.

The frequency wj(q) is determined by the potential seen by each atom
which governs many of the properties of the solid such as sound propagation,
specific heat, thermal expansion, conductivity, melting and

S(Q,w)
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superconductivity, if present. Certain vibrational modes, as will be discussed,
play a very fundamental role.

For magnetic excitations, the magnetic moment of the neutron couples
with the unpaired spins in the solid. For this case the correlation function
becomes a spin-spin correlation function:

<pQp-Q> = <Si(0) (1) > €))

and the fluctuation dissipation theorem relates the scattering function to the
imaginary part of the magnetic dynamical susceptibility. Applying the
Kramers-Kronig relationship, the real part of the susceptibility becomes:

¥ Q) =1/zfy" (Qu) do/w ©)

In the limit Q — 0, x"(Q) is the laboratory measured magnetic susceptibility
which is, for the case of non-interacting spins of magnitude S:

Xo= 1/2(gup)? S(s;l)/kT (10)

where g is the Lande g-factor.

The scattering function for magnetic scattering can be written:

S(Q,0) = (n(e) + 1) S(S+1) ’%’%F(Qm) (11

The quantity F(Q,w) is a normalized spectral shape function and is used to

describe the excitation. Usually a Lorentzian centered around ®»=0 or w=w(q) is
used to describe critical scattering or scattering from spin waves. The
variation of spin waves give a measure of the exchange interactions in the
solid. For a Heisenberg ferromagnet with exchange integrals Jji arising due to
electrostatic interactions between the unpaired electrons on atom i and i', the
spin wave energy is:

o(q) = 25[J(0) - J(g)] (12)

with
J(@ = Y i exp(iq-(ri-ri"))) (13)
i 1

In a ferromagnet, for small q, the dispersion relation is
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o(q) = Dg? (14)

where D=2JSa?, is the magnetic stiffness with a being the distance between
magnetic atoms.

III. PHASE TRANSITIONS

There are many types of phase transitions that occur in nature which
include gas-to-liquid, liquid-to-solid, solid-to-solid, superconducting-to-
normal, metal-to-insulator, order-to-disorder, and so on. The Landau theory
of phase transitions is the universal starting point to describe all these
transitions. This phenomenological theory relies on the assumption that the
thermodynamic energy can be expanded as a Taylor series about the critical
point. The Helmholtz free energy(3) can be written in terms of an order

parameter, N

F(Tn)=Fp+1/2a(TMm2+1/4bnd +1/6 nb+ ... (15)

where all the temperature dependence is placed in the coefficient of the
quadratic term and has the form

a(T) = ap (T-T) (16)

where T is the transition temperature. The order parameter has the

F{n)-Fy
)
.
T>Te
— 7
T=T.
n
T<T¢
Mo *7o
! 1

U ’

Fig. 1 Plot of free energy function (Eq. (15)) for three different temperatures
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properties 1 =0 for T>T. and N =7 for T<T. In real systems the order
parameter could be a magnetization, a spontaneous polarization for a
ferroelectric systems, a density for liquid gas systems, or an atomic
displacement. The Landau theory does not give the correct answers to many
of the measured properties of phase transitions such as the critical exponents,
but it does provide excellent insight into the nature of the transition. Figure 1
is a plot of Eq. (15) for various temperatures. For T>Tc, the free energy is

parabolic with a minimum at 1=0. For T<Tc the coefficient of the quadratic
term is negative so F(n) initially decreases with 1 and then begins to increase
as the higher order terms come into play. This gives two minima at Mo

corresponding to two different domains of the order parameter. For the well
known ferromagnetic case, these correspond to a spin-up or a spin-down

configuration. In a structural phase transition, 1 corresponds to an atomic
displacement to either side of the high temperature equilibrium position. At

T=T,, the free energy is very flat near n=0 and fluctuations of the order
parameter are very large. This is the well known critical fluctuation or
opalescence near the transition temperature. The curvature of the free
energy, or its second derivative is related to the thermodynamic force and
gives the frequency of the fluctuations which varies as:

@2T) ~ (T-T¢) (17)

This critical slowing down is the "soft" mode of the system and the frequency
goes to zero as T-Tc. The soft mode theory of structural phase transitions
was proposed by Cochran and Anderson) nearly four decades ago and has
been ovserved in many structural phase transitions over the years®). It
states that the displacements associated with a particular lattice vibrational
mode are precisely the atomic displacements needed to transform from the
higher symmetry to the lower symmetry phase. The low temperature
structure looks identical to a snap shot of the atoms participating in the soft
mode. The frequency of this mode goes to zero at T, since the restoring
forces for this mode become zero. The crystal becomes unstable and
transforms into the new phase.

Below, I shall give some examples of structural transformations where
a particular lattice mode becomes unstable, or nearly so, at the transition
temperature.

IV. SrTiO3

The most extensively class of materials studied are those with the

perovskite structure with chemical formula: ABX3. The cell is built up of
octahedra of X atoms with B atoms at the center. The soft modes associated
with the structural phase transitions occurring in these materials correspond
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to rotations of octraheda about axes passing through the vertices of the
octahedra.

One of the most investigated systems is SrTiO3 and Fig. 2 gives a
summary of the work done over a 25 year period. The top panel (Fig. 2a)
shows the inelastic neutron spectrum taken near T.. The inelastic peak at

O=0e follows the temperature dependence(®) of Eq (17) to within a few

degrees of T.. The narrow peak at @=0 is the "central peak" whose intensity
diverges as T. is approached(?). The origin of the central peak is still not
clear, but it is sample dependent and appears to be related to defect
concentration in the imperfect crystal®. Figure 2b shows the result of an x-
ray diffraction study(® of the phase transition in SrTiOs. Because of the much
higher energy of x-rays, the energy integral Eq. (6) is measured so no
information about the energy scale is obtained. The observed g-scan shows a
two component spectrum: a broad feature, reflecting the energy integration

over both the phonon and the central peak, and a much narrow part whose
presence was unexpected. The half-width of each peak corresponds to an
inverse correlation length and this spectrum reveals the problem of the two
length scales observed in many magnetic and structural transition by x-ray
diffraction measurements. The bottom panel is an attempt to measure the
narrow component(19) in a different sample of $rTiO;. Clearly, only the
broader peak is present. This is the dilemma posed by recent experiments on
structural and magnetic phase transitions: What is the origin of the narrow
component? The answer is not fully known but the important observation
that the narrow component is readily seen in X-ray experiments and not in a
neutron experiment suggests that the narrow component originates in the
near surface, or outer skin of the specimen, since the neutron penetrates
much more deeply into the sample than an X-ray beam. This was confirmed
by a clever neutron experiment on Tb where a spectra similar to Fig. 2b was
observed, but at very small scattering angles(!). In this case the sample was
translated through a very narrow beam and the diffracted intensity showed
an enhancement of the narrow component in the outer 200 microns of the
sample. A neutron experiment of this sort is impossible in SrTiOs, but a
synchrotron x-ray experiment was performed using very short wavelength x-
rays(12). This experiment also revealed that when the beam passed through
the edge of the crystal, the narrow component was enhanced. We chose
another method to characterize the narrow component. A large sample of

SrTiO3 was cut into thin slices(10), Figure 3 shows a high resolution neutron
diffraction pattern on a bulk sample of SrTiO3 (top) and a thinly sliced sample
(bottom). On the thinly sliced sample the narrow component is observed
whereas in the bulk, only the broad component is present. Since the thinly
sliced sample has more near surface volume relative to the bulk, the narrow
component is visible.

The origin of the narrow component is not fully known, but it has
been suggested that strains in the near surface area, which have a relatively
long range, couple quadratically to the square of the order parameter(13). If
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this is so, then the transition temperature can be modified and the narrow
component reflects that the near surface area has already transformed. These
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Fig.2 (a) Inelastic neutron-scattering Fig. 3 Neutron diffrtaction peak profiles
spectrum of SrTiO3 from Ref. 7. clearly for SA-Bulk crystal and thin AC crystals
showing soft phonon and central peak. (b) taken under indentical spectrometer
X-ray profile measured in Ref. 9 showing conditions. Only the narrow component is
two-length scales. (c) High resolution observed in the thin AC crystal. (Ref. 10)

elastic neutron diffraction scan showing
only broad component (Ref. 10).

strains can be extrinsic due to some defects due to the termination of the
surface, or may be an intrinsic effect due to different phonon displacements in

the near surface region. More theoretical work is needed to explain the
feature.
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V. MARTENSITIC TRANSFORMATIONS

Martensitic transformations can be defined as first order structural
transformations that are displacive, diffusionless where shear strains play a
dominant role. Since they are first order, the free energy described in Fig. 1
does not describe the phonon softening in these systems. The Landau free
energy of Eq. (14) can be modified by making the fourth order term negative.
The potential at T=T, is not flat as in Fig. 1b, but at T there are equal minima

at N=0 and =11, so there is a temperature region where there is a coexistence
of the low temperature and high temperature phases. Since the potential
wells never become flat, there is not a complete softening of phonon in a first
order transition. Nevertheless, there has been extensive neutron studies of
systems exhibiting Martensitic transformations which show substantial
phonon softening that are precursors to the transformation. Some systems
show remarkable softening and others show very little. Below I shall discuss
two systems, Ni-Al(14) and NipMnGa(15) that exhibit substantial phonon
softening.

The alloy NixAlj.x exhibit Martensitic transformations for 60<x<65
atomic %. The structure is ordered bcc which is a CsCl-type structure with Ni
atoms in the center of a cube and Al atoms on the corners. The excess Ni is
distributed randomly over the corner Al sites. NipMnGa is a compound with
the fcc Heusler structure. It can be viewed as composed of 8 bee type cells with
Ni atoms at the center and the corners have an ordered arrangement of Mn
and Ga. The lattice parameter of NipMnGa (5.822A) is nearly twice that of
NixAlyx (2.86A).

The lattice dynamics of these two systems has been studied(1415). In

both system the [{{0] transverse acoustic mode has an anomalous low energy
and exhibits a very strong temperature dependence. This branch corresponds,

in the limit {—>0 to the elastic constant C'=1/2(C11-C12). The atomic
displacements of this branch are a sliding of {110} planes along the
perpendicular [1-10] direction. Depending upon the repeat distance of the
shear, there is a modulation of the cubic lattice. Figure 4 shows the
temperature dependence of this branch for the two different systems. Similar
behavior exists in that the dispersion curve shows a pronounced softening

around the wavevector {=1/6 for NiAl and {=1/3 for NipMnGa. (These wave
vectors are identical if we measure relative to the bee unit in NioMnGa.) In
addition to the dynamical precursors to the phase transition, there is also
some elastic diffuse scattering centered at the same wavevector as the phonon
anomalies as shown in the lower portions of Fig. 4. Electron diffraction
studies of the same two materials shows similar diffuse scattering. This
scattering can be imaged and real space pictures of the atomic structure are
obtained with atomic scale resolution. Both for NiyAlj.x and NipMnGa the
cubic system has regions or embryos of low temperature structure imbedded
in the cubic matrix. These distortions give rise to the diffuse scattering and
the size of these regions are about 1.2 nm which corresponds to the inverse q
width of the elastic diffuse scattering.
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Fig. 4. Left: NixAl1_x (x=62.5): Temperature dependence of the dispersion curve of the [{{0] -
TAz mode and the elastic scattering observed in the [{{0] direction (Ref. 14). Right: NipMnGa:
Temperature dependece of the anomaly in the [({0]-TA2 branch and the temperature evolution
of the elastic scattering along the same [{{0] direction. (Ref 15).

The softening is more pronounced in NipMnGa as shown in Fig. 5
where ®w2(T) is plotted for the two systems as a function of temperature. They
both show a linear temperature dependence. NiMnGa extrapolates to
To=250K which is slightly higher than the Martensitic transition temperature
(TM=220K). An intermediate phase is predicted from these results to be
present in the temperature range T1>T>TM where the fcc structure is
dynamically unstable. The dramatic increase in the intensity of the elastic
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The upturn in the soft mode frequence for Ni;MnGa signals an intermediate phase present
between T7 and TM, the Martensitic transition temperature

diffuse scattering and the increase of the soft mode frequency below T1~260 K

confirmed this speculation. Below Tj ~ 260 K the elastic peaks at { ~ 0.33
correspond to Bragg scattering in this new phase. This contrasts with known
structure of the Martensite phase were there is a five-layer modulation and

corresponds to new Bragg peaks at {~0.4 which do appear below Ty.
The behavior of the soft mode in Ni-Al extrapolates to a temperature
To=-40K which is well below Tyy=80K. The softening is less complete and the

new Bragg peaks that appear at {~1/7 are very close to the value {~1/6 of the
phonon anomaly. There does not appear to be any intermediate or
premartensitic phase in Ni-Al although a reinvestigation is warranted.

VI. SUPERCONDUCTIVITY:

I would like to review some older neutron experiments on
conventional superconductors which provide a direct measurement of the
electron-phonon coupling. These experiments were performed on systems
where the mechanism for the superconductivity is understood via the BCS
theory and the Cooper pairing is due to the electron phonon (e-p) interaction.
The experiments should be looked at again in light of the "new" high T.
compounds where the mechanism for the superconductivity is still being
investigated. In addition, the experiments described below exploit several of
the subtleties of the triple axis instruments and represent the type of
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experiments that will be performed on the intense neutron sources in the
future.

Within the BCS theory of superconductivity, the McMillan electron
phonon coupling parameter, A, can be written as(16:

@

2
A= Jﬁ‘—%li@dm a8)

0
a2(w) is the average electron-phonon interaction and F(o) is the phonon
density of states. The integration is over the phonon frequencies. Allen(17)

has shown the A is related to phonon linewidth (2I) which is measured in the
neutron scattering experiment by:

2r=2nN(O)ho?hq (19)

where Aq is the contribution to A from the phonon with wave vector q and
N(0) is the density of electronic states at the Fermi surface.

The first measurement(18) of the e-p contribution was performed on
Nb3Sn which was, prior to 1987, a high-Tc material with a strong e-p
interaction. A subsequent experiment(19) was performed on single crystals of
Nb which has T.=9.2K. Fig. 6 shows the inelastic spectra for a transverse

phonon propagating along the [{{0] direction for two different temperatures.
A change in linewidth is small but easily seen by comparing the peak

intensities. Since the thermal population factor (n(w)+1) should decrease
with temperature, the increase in the peak intensities at lower temperature
naturally implies a narrowing of the peak. This small change of linewidth
was only measurable because there is perfect focusing of the three axis
resolution function. This means that the slope of the neutron resolution
function is the same as the slope of the dispersion curve for this phonon.

Figure 7 shows the temperature dependence of 2I" for three different phonons

with energies relative to the superconducting gap given by the inset in the
figure. For the phonons, A and B, the energy at low temperatures is below
the gap and the extra linewidth disappears. This is physically understood
since this phonon has an energy less than the superconducting gap and does
not have enough energy to break up the Cooper pairs. Therefore, this channel

of decay is quenched. As the temperature increases to where hog=2A(T), the
linewidth increases and even reaches a value greater than the normal state.
This behavior was predicted(20), via the BCS theory, for the low frequency
sound waves measured in an ultrasonic experiment.
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With neutrons, much higher frequency sound is measured and some
subtleties of the theory was measurable only in the neutron experiment.

A similar measurement was performed recently on the '214' high-T.
superconductor(2l). No temperature dependence changes of the linewidth
were observed near the transition temperature which is consistent with a
known low electronic density of states at the Fermi surface, N(0). If one used

the calculated value of N(0), A would have to very large (A~20) in order to
give a measurable energy width.

superconductors, A is typically ~1.0.

For Nb and other conventional

20°°P (mev)
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VII. CONCLUSIONS

I have presented several cases where inelastic neutron scattering
experiments have played a very important role in understanding unusual
aspects of different types of phase transitions. It is most likely that this
powerful technique will continue to play a dominant role in the future
studies, provided that old neutron sources are refurbished and new, more
powerful sources will be available in the future.
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