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OBJECTIVES AND SCOPE OF WORK
The main objectives of the project are to investigate the fundamental aspects of
particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant
studies on the applicability of hyperbaric filter systems and to develop process conditions
for dewatering of fine clean coal to less than 20 percent moisture.

The program consist of three phases, namely

Phase I - Model Development
Phase 11 - Laboratory Studies
Phase I - Field Testing

The Pennsylvania State University is leading efforts in Phase I, the University of
Kentucky in Phase I, and Consol Inc. in Phase III of the program. All three
organizations are involved in all the three phases of the program. The Pennsylvania
State University is developing a theoretical model for hyperbaric filtration systems,
whereas the University of Kentucky is conducting experimental studies to investigate
fundamental aspects of particle-liquid interaction and application of high pressure filter
in fine coal dewatering. The optimum filtration conditions identified in Phase I and II
will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable
hyperbaric filtration unit.

INTRODUCTION

Most of the coal presently used by the utility industry is cleaned at preparation

plants employing wet processes. Water, while being the mainstay of coal washing, is also

one of the least desirable components in the final product. Coarse coal (+3/4 inch) is

easily dewatered to a 3-4 percent moisture level using conventional vibrating screens and




centrifuges. However, the main problem of excess product moisture occurs in fine
(minus 28 mesh) coal and refuse. Even though fines may constitute only about 20
percent of a contemporary cleaning plant feed, they account for two-thirds of the product
surface moisture. This high surface moisture offsets many of the benefits of coal
cleaning, and can easily undercut the ongoing programs on recovery of fine clean from
refuse as well as producing an ultra-fine super clean coal fuel.

Currently, most of the coal preparation plants utilize vacuum disk or drum filter
technology for dewatering of the fine coal, providing dewatered product containing about
25 percent moisture. The coal industry would prefer to have a product moisture in the
range of 10 to 15 percent. Although the desired product quality can be obtained using
thermal dryer, there are problems associated with this technology such as high capital
costs and a source of air pollution.

In the present research project, an alternative to thermal drying, hyperbaric
filtration which has shown potential in lowering moisture content in fine coal to less than
20 percent level, is being investigated in detail. The project will develop fundamental
information on particle-liquid interaction during hyperbaric filtration and apply the

knowledge in developing optimum conditions for the pilot plant testing of the hyperbaric

filter system.




Phase I - Model Development

The model for cake formation in batch filtration, presented in the December 1994
quarterly progress report, can be applied directly to continuous filter systems. It is useful,
however, to make some minor modiﬁcation in order to present the relationships in terms

- of directly measurable quantities. The basic expression for batch filtration can be written:

t _ HwOCmyf + BwOm
mMyf  2AZp,Ap PwAAp

ey
where mys is the mass of liquid collected in the filtrate in time t; o and o4y, are defined, in
the usual way, as the specific cake resistance and filter mechanism resistance,
respectively; [, and p,, are respectively the liquid viscosity and density, A is the filter
area and Ap is the applied pressure. The concentration c is defined as the mass of solids
in the cake per unit mass of liquid in the filtrate. For the general case where some liquid

is retained in the cake and some solids pass into the filtrate, ¢ can be related to the feed

. solids concentration through a simple mass balance which leads to:

L _(es=er)1-M)
= T-cs-M)I—cy)

@

where ¢, is the mass fraction of solids in the feed, c¢ is the mass fraction in the filtrate and
M is the moisture content (mass fraction) in the filter cake.
In the case of continuous filtration, one complete cycle (revolution) is

mathematically equivalent to batch filtration for time

tf =53 (3)




whére 0 is the cake formation angle (radians) and N is the rotational speed
(revolutions/time). Since the solid and liquid flows occur over the entire cycle, however,
the flow rates refer to the cycle time.

T=1/N “)
rather than to the apparent filtration time t. Thus the rate of liquid flow to the filtrate is

Myf
T = My, N Q)

The solids throughput can be expressed as

— Mge — mg N
AT A

Ry (6

where R; is the solids throughput per unit area (mass/area - time), mg is the mass of (dry)

solids in the cake. From the definitionofc,

Mge = C Myf Q)
so that, from Equation 6,
Mwr _Rs ®
A cN

Substitution from Equations 3 and 8 in Equation 1 leads to

ApcOs _Ho Rs 4 HwOm
2rRs  2py N Pw

€))

Equation 9 provides a useful relationship between throughput R an& the process
variables Ap, c, Or and N.

The dewatering step can be roughly divided into two stages: displacement of bulk
liquid from the (initially) saturated cake followed by further, slow removal of residual

moisture during airflow through the cake. The fraction of the cycle which is taken up by
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the initial displacement can be estimated from the liquid flow rate at the end of the cake
formation stage. Thus, the displacement time t4 can be estimated from

tg = Ve / Qwa 10)
where V. is the volume of liquid in the saturated cake and Quq is t_he flowrate.

Ve =€V, ‘ (11)
where V. is the cake volume. A solids mass balance leads to

Veps(1—¢€) =cpy Vur (12)
where Vy is the volume of liquid passing into the filtrate during the cake formation stage.
Then,

€C Py Vuf
Vwe == 13
The filtrate volume Vs can be estimated from a simplified form (;f FEquatiori 1in

which the medium resistance O, is neglected. Thus,

Myf , 2Apt
Vuf =——=A,|———— 14
wi Pw Hw OC Pw 19

Assuming the liquid flowrate to be the same as at the end of the cake formation stage,

dv
Qwd =Quwf = ——d:vf ]t=tf (15)

where t; is the total cake formation time. Differentiating Equation 14,

[ Ap
V2Uy 0 pyts

Quws =A (16)

Combining Equations 10, 13, 14 and 16.




2ecpwts

tg =7 17

4 ="=e)p, an
Expressed as a displacement angle, Equation 17 becomes

_2ecpybs

% = 1=e)p,

(18)

Air consumption during the dewatering stage in the cycle is an important practical
consideration. Since both cake formation and dewatering involve fluid flow through the
porous cake, some correlation of throughput and air consumption is to be expected.
Approximate relationships can be obtained by extension of the basic filtration model.

Expressing the permeability of the moist cake to air relative to that to water by a

factor K, the air flow velocity can be written

ua=K-EEuW N ¢ )

Ha

where u,, is the velocity of water flowing through the same cake with the same applied

pressure, and {1, and 1, are the respective viscosities. By.definition,

so that, from Equations 3, 16 and 19
Hw TApN
u, =K 21
2 Ha \/uw oL Pyw Ot @b

The air flowrate relative to the total filter area is given by

Qa _ua(®, —64)

(22)

A~ 2%




where 0, is the effective dewatering angle, i.e., that angle in the cycle where the cake is

subjected to direct air pressure. It is convenient to express the air consumption relative to

solids throughput using
Qa
R, = (23)
a = RA
Neglecting the medium resistance during cake formation, R can be obtained from
Equation 9:
Apcpy NO
R, = \/ PCPw NUf 24
Lo O
Combining Equations 21, 22, 23 and 24,
Kitw
Ra=577—""6,-0 (25)
a ZCGwaua( a d) |
Finally, substitution from Equation 18 leads to
Kitw [ 6, 2epy |
Ry = i - J (26)
20whalclr  (1-€)ps

Equation 26 suggests a simple inverse relationship between the relative air consumption
R, and the cake formation angle 0;. It should be noted, however, that the relative
permeability K can be expected to vary with cake porosity and residual moisture content.
Equations 9 and 26 should be directly applicable to the evaluation of continuous
filter performance in terms of solids throughput and air consumption relative to operating
conditions and feed concentration. A preliminary evaluation of data given in the previous

report (December 1994) has been conducted. As a first step in the data evaluation, an

assessment of internal consistency and mass balance closure has been made.




A test of the balance of solids and liquid around the filter can be carried out by
comparing the directly measured feed solids concentration with a calculated value based
on throughput, cake moisture and solids loss to the filtrate. Some results of such
calculations, for the Bailey Mine froth flotation product, are shown in Figure 1. The
linear relationship indicates generally consistent results. However, the fact that the slope
of the line is slightly greater than its expected value of one suggests some consistent bias
in the measurements.

The relationship between solids throughput and measured cake thickness is also a

measure of data consistency. According to Equation 6, the mass of cake per unit area

should be:
mse _ Ry
A TN @n
and, from simple geometry
It follows that
R
L=o—32— 29
Nps(1-¢€) 29)

An example of results plotted according to Equation 29 is given in Figure 2. The

essentially linear relationship indicates that the data are not only consistent but that the

cake density is more or less constant. Based on the slope of the line and an assumed
specific gravity of 1.4 for the coal, the cake porosity is about 47.4%.

| An example of the correlation of data for solids throughput for a broad range qf

operating conditions is given in Figure 3. While there are a number of obvious outliers,
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Figure 1. Comparison of measured and calculated feed solids content for Bailey
Mine froth product.
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the results appear to be generally consistent with Equation 9. Further examination of this
correlation and of specific conditions which can be associated with departures from the
prediction is in progress.

A plot of relative air consumption, based on the relationship predicted by
Equation 26, is given in Figure 4. While there is considerable scatter in the data, which
may be due in part to variations in the permeability factor K with moisture content, the
correlation with Equation 26 is reasonable. The results certainly confirm the predicted
reduction in air consumption with increasing cake formation angle.

As pointed out in previous reports, the dewatering characteristics of filter cakes
are determined by details of the cake structure; especially the pore size distribution.
While the pore size distribution is obviously related to the particle size distribution and
the overall cake density, reliable, quantitative models remain to be developed. The test
~ results do, however, provide some insight into dewatering behavior.

Figure 5 is a plot of residual moisture content against air-flow through the cake.
The relatively poor correlation indicates that passing additional air through the cake does
not lead to significantly enhanced dewatering. A relationship between cake dewatering
and applied pressure gradient was demonstrated both theoretically and from laboratory
(batch) tests in the December 1994 report. A similar correlation for continuous filtration
is given in Figure 6. In each case increasing the gradient appears to reduce the residual
moisture content. The effect, however, is generally small compared to that due to

differences in particle (and pore) size. The potential advantages of maintaining a high

gradient by restricting cake thickness are clear. Equations 9, 26 and 29 provide a basis
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for the selection or operating conditions so as to maximize throughput while minimizing
cake thickness and air consumption.
Phase II - Laboratory Studies

In this quarterly report, additional dewatering data for the Pocahontas No. 3 clean
coal flotation concentrate obtained with addition of reagents are described.
Effect of Additives

Organic flocculants and surfactants are generally used as additives to enhance
filtration process. These reagents enhance the filtration process through the modification
of the colloidal chemistry properties of the fine coal slurry such as increasing particle
sizes, reducing surface tension and surface charge.
Flocculants

Polymeric flocculants are used in many operations for increasing the particle sizes.
The principal effect of flocculants is to form "bridges" from one particle to the next
(Ruethrwein and Wad, 1952). This mechanism requires that the flocculant chains be
adsorbed from solution onto one particle, and a physical bridge will form between the
particles when another particle comes close enough for the extended flocculant chains to
be adsorbed onto it. The chain length of flocculants which is directly proportional to the
flocculant molecular weight, is an important factor in a flocculation process. Another
important factor is the ionic characteristics of the flocculants which controls the
adsorption behavior of the flocculants on particles. The addition of flocculants increases
particle sizes as well as the filtrate viscosity. The increase of filtrate viscosity is

detrimental to the reduction of cake moisture.
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Figure 7 shows the effect of the dosage of various types of flocculants on the cake
moisture of the Pocahontas No. 3 coal. For all three kinds of flocculants (anionic,
cationic and non-ionic), there was an optimum dosage at which the cake moisture was
the lowest. Among the three flocculants investigated, non-ionic flocculant provided the
largest decrease in cake moisture. The optimum dosage of non-ionic flocculant was 80
g/t. The anionic flocculant was least effective and when the dosage was increased over
100 g/t, the cake moisture increased dramatically with increasing the dosage.

For comparison purpose, the effect of flocculants on cake moisture for the
Pittsburgh No. 8 coal is shown in Figure 8. Generally, the effect of flocculants was more
noticeable for the Pittsburgh No. 8 coal than for the Pocahontas No. 3 coal. The
addition of non-ionic flocculant reduced the cake moisture from 24 to 17.5 percent-at an
optimum dosage of 60 g/t. .

The relationship between the solution viscosity and flocculant concentration is
shown in Figure 9. It can be seen that the solution viscosity increased with flocculant
concentration. Thus, in the filtration process, high flocculant dosage lead to the high
viscosity of filtrate, which will result in the retention of high moisture on the coal surface.
Tt can also be observed that at the same flocculant concentration, the viscosity of anionic-
flocculant solution was higher than those of non-ionic and cationic flocculant solutions.
Also, the increase of anionic flocculant concentration caused the solution viscosity to

increase very sharply. Therefore, the effect of anionic flocculant on cake moisture was

more sensitive to the flocculant dosage in a filtration process.

17
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The effect of the addition of non-ionic flocculants of different molecular weights
on cake moisture is shown in Figure 10. The addition of 0.75 million molecular weight
flocculant did not reduce the cake moisture because its chain length is not long enough
to form suitable size flocs of the fine particles. The additions of 15 million molecular
weight and 4-6 million molecular weight flocculant produced the same moisture
reduction. However, the optimum dosage of the 15 million molecular weight flocculant
was smaller than that of the 4-6 million molecular weight flocculant. In addition, the cake
moisture was more sensitive to the dosage of 15 million molecular weight flocculant
because the solution of larger flocculant has much higher viscosity than the solution of
smaller flocculant. Figure 11 shows the relationships of solution viscosity and
concentration of flocculants with various molecular weights. It can be seen that the
viscosity of the solution of 15 million molecular flocculant is higher at the same
concentration and increases more sharply as flocculant concentration increases.

In the present study, it was observed that the flocculation conditioning time and
mixing rate had a negligible effect on cake moisture, as shown in Figure 12. In summary,
the effects of flocculants on the filter cake moisture for the Pittsburgh No. 8 coal and for
the Pocahontas No. 3 coal were different because they had different particle size
distributions. The decrease of cake moisture due to the addition of the flocculants was
about 7 percentage point for the Pittsburgh No.8 coal; however, it was only 1.5
percentage point for the Pocahontas No. 3 coal. The effect of flocculants on the
filtration process is affected not only by flocculant properties but also by coal surféce

properties and especially particle size.
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Surfactants

The general mechanism of enhanced dewatering by surfactants is to reduce the
liquid/air interfacial tension, leading to lower capillary retention forces and hence
increasing cake drainage under a given pressure drop across the cake.

The effect of surfactant dosage on cake moisture for the Pocahontas No. 3 coal is
presented in Figure 13. The addition of the anionic surfactant did not provide any
improvement in cake moisture reduction. The reasons may be: (1) the addition of
anionic surfactant caused much more foaming; (2) the zeta potential or surface charge on
coal surface was negative at the natural pH, which prohibits the- adsorption of anionic
surfactant onto the coal particle surface. The lowest cake moisture was obtained by
adding non-ionic surfactants. During the experiments, it was observed that non-ionic
surfactant caused the minimum foaming. Non-ionic surfactant reduced the cake moisture
from 11 to 9.7 percent at an optimum dosage of 800 g/t. Overall, surfactants did not
profoundly decrease the cake moisture for the Pocahontas No.3 coal.

Combined Use of Flocculants and Surfactants i

The effect of additives on the filtration rate for the Pocahontas No. 3 coal slurry is
shown in Figure 14. Note that the addition of flocculant provided very high filtration rate
due to the increase of particle size which improves the filter cake permeability. The
addition of surfactant increased the filtration rate only near the end of the filtration
process, which was also very small.

Flocculants and surfactants influence the different phases of a filtration process.

The status of the liquid and air phase during filtration are schematically represented in

25
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Figure 15. In phase a, b, c, only water passes through the channels in the cake.
Flocculants increase the particle size and therefore increase the diameters of the
channels or pores. Therefore, the addition of flocculants dramatically increases filtrate
flow rate from the very beginning of the process. After most of the water has drained
out of the cake, air begins to flow through the cake, as shown in phase d. The remaining
water still covers the surface of the solids and isolates the solids from air at the beginning
of phase d. As air continues to flow through the cake, the water covering on the surface
of solids is replaced by air, which determines the residual moisture of the cake. The
replacement is affected by several factors, such as diameters of the pores in the cake and
the surface tension of air-water interface. Therefore, the effect of surfactant in filtration
process can take place only in the phase d. The above analysis can help to understand
why flocculants and surfactants affect the different phases of a filtration process. |
Figure 16 shows the effect of combined use of flocculant and surfactant on the
filtration process. A combination of non-ionic flocculant and non-ionic surfactant
produced the best filtration result, decreasing the cake moisture to as low as 7.8 percent.
When the flocculants and surfactants, having the same ionic charge, are mixed together,
an electrostatic repulsion occurs between the flocculants and surfactants, which may
affect the adsorption of additives on the coal surface. When the additives with different
kinds of electric charges are used together, they will neutralize each other in the bulk
phase. The interaction between non-ionic flocculant/surfactant is weaker than that

between anionic/cationic flocculant/surfactant. This may be the reason why the combined
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Figure 15. State of Liquid and Air During Filtration (Wakeman, 1975a).
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use of non-ionic flocculant and non-ionic surfactant gave the largest reduction in cake
moisture.
Metal Ions

Addition of metal ions, such as copper and aluminum ions, have been reported to
have a beneficial effect on dewatering of fines (Parekh, 1979; Groppo, 1992). In this
study, no noticeable reduction in the cake moisture due to the addition of metal ions for
the Pocahontas No. 3 coal was observed, as shown in Figure 17. However, for the
Pittsburgh No.8 coal, the effect of metal ion addition on cake moisture was more
significant, as shown in Figure 18. Both copper and aluminum ions provided a 5
percentage point reduction in the cake moisture. The dosage of aluminum ion required
was less than that of copper ion because aluminum ion is tri-valent, while copper ion is
di-valent. Metal ions affect filtration processes mainly through changing electric charge
at the interfaces of liquids/solids. Groppo (1992) and Parekh (1979) reported that the
addition of metal ions at certain pH value coagulates fine particles. However, this is not
applicable to larger size particles. Thus, in the present case, the Pittsburgh No. 8 coal
having finer particle size was able to coagulate to larger size, providing lower filter cake
moisture.
Phase III - Pilot Scale Testing

The pilot scale testing with the Andritz Ruthner Inc. hyperbaric filter unit were
conducted at Consol Inc.’s two preparation plants, namely, Bailey mine (Pittsburgh No. 8)
and Buchanan mine (Pocahontas Né. 3). The Bailey mine is located in Green County

near Washington, PA and the Buchanan mine is located in Buchanan County near
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Figure 17.
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Figure 18.
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Mavisdale, VA. Tables 1 and 2 list the pilot scale tests conducted at Bailey and
Buchanan mines, respectively. As seen from the table that at Bailey 104 tests, and at
Buchanan 41 tests were conducted. Pilot scale test data for the Bailey mine were given
in last quarterly report and the Buchanan mine are listed in the appendix.

Figure 19 shows filter cake moisture, solids throughput, and air consumption at
various pressure for the Bailey mine (Pittsburgh No. 8) clean coal concentrate. Note,
that as expected filter cake moisture lowers with increasing pressuré. Using 4.2 bar (62
psi) filter cake with 22 percent moisture was obtained. Increasing pressure to 5.8 bar (85

psi) did not lower the moisture significantly. At 4.2 bar (62 psi) pressure, the solids
throughput and air consumption wre 128 Ib/hr-ft> and 130 scfm/tph.

Figure 20 shows filter cake moisture, solids throughput and air consumption with
respect to pressure for the Buchanan mine (Pocahontas No. 3) clean coal. It shows that
filter cake moisture of 15.2 percent is achieved using 2 bar (30 psi) pressure. Increasing
pressure to 5 bar (74 psi) moisture was lowered to 14.2 percent; at this pressure the
solids throughput and air consumption were 340 Ib/hr.ft? and 30 scfm/tph.

It is very surprising that with fine coal the air consumption was 130 scfm/tph
compared to 30 scfm/tph for the coarse coal. The baseline data for the Buchanan mine
clean coal slurry are summarized in Table 3.

FUTURE PLANS

A M. thesis on the dewatering topic will be finalized. One paper on the pilot

scale studies will be prepared for publication. The dewatering model will be refined and

finalized.
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Table 1. List of the pilot scale hyperbaric filter tests conducted at the
Consol Inc. Bailey Mine.

A. FILTER FEED MATERIAL*? (38 TESTS)

Experimental Design (15 Tests)
Anionic Floc (8 Tests)

Cationic Surfactant (6 Tests)
Wood Pulp (2 Tests)

i 2 i e

B. FROTH FLOTATION PRODUCT?® (54 TESTS)

Experimental Design (15 Tests)
Anionic Floc (5 Tests)

Coagulant (6 Tests)

Cationic Surfactant (5 Tests)

Anionic Surfactant (7 Tests)

Anionic Surfactant and Cu Ion (6 Tests)
Wood Pulp (5 Tests)

Pressure Variation (4 Tests)

Other (1 Test)

WONAN AW

C. CLASSIFIED FROTH FLOTATION PRODUCT (12 TESTS)

1. Size, Pressure, and Solids Content Variation
(6 Tests)

2. Anionic Floc (2 Tests)

3. Coagulant (4 Tests)

228x0 mesh
®100x0 mesh
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Table 2. List of Pilot Scale Tests Conducted at the Consol Inc. Buchanan
Mine

A. FILTER FEED (32 Tests)

Experimental Design (15 tests)

Anionic Flocculant (5 tests)

Cationic Surfactant (5 tests)

Anionic Surfactant (5 tests)

Anionic Surfactant and Cu? Ions (5 tests)
Other (1 test)

QP LN

B. CLASSIFIED FILTER FEED

1. Size, Pressure and Solid Content (5 tests)
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Figure 19.

Effect of applied pressure on filter cake moisture, solid
throughput and air consumption for the Bailey mine
Pittsburgh No. 8 clean coal slurry (cake thickness ~ 15 mm).
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Figure 20.

Effect of applied pressure on filter cake moisture, air
consumption and solid throughput for the Buchanan mine
Pocahontas No. 3 clean coal slurry slurry (cake thickness ~
15 mm).
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Table 3. Summary of baseline pilot scale hyperbaric filter tests conducted
at the Buchanan mine (Pocahontas No. 3).

% Moisture Throughput Air Consumption
Product in Filter Cake  Ib/hr.ft? scfm/tph
Filter feed 13-17 150-400 40-80
(28x0 mesh)
Classified feed 12-14 150-400 30-100
(28x100 mesh)
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