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Context for site selection, site
characterization, and integration with
performance assessment
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Waste Isolation Pilot Plant Chronology
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WIPP Facility Layout

Sealing System Compeanents
F T 1. Compacted earthen fill




WIPP Major Tests
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Underground Test Program

o Large-scale geomechanical and hydrological
testing

o Examination characterization of DRZ and seal

components

o Coupled natural, excavation- induced, disposal
room processes important




Small Scale Seals Performance Testing




Bedded Salt Attributes

o Salt can be mined easily
o Salt has a relatively high thermal conductivity

o Wide geographic distribution (many potential
sites)

o Salt is plastic *

o Salt is essentially impermeable *

o Fractures in salt are self healing *

o Salt has existed underground for millions of years

*

* Attributes of Natural Barrier
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Assessing Engineered Barriers

Environmental Protection Agency defines barriers
as “any material or structure that prevents or
substantially delays movement of water or
radionuclides toward the accessible environment”

Geology - the Most Important Barrier
Shaft Sealing System

Panel Closure System

Magnesium Oxide Engineered Barrier
Waste Package

Borehole Plugs
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WIPP Case Studies of Seal Systems

> Analysis




Case Study 1
Shaft Seal System



Shaft Seal Systems Analysis Process
Fluid Flow Analysis
| Consizzétions I anC}AS”UCFUVal
nalysis
Design Guidance I
Is Design OK? I

Performance
Evaluations




Material Specification

o Functions

o Material Characteristics

o Construction

o Performance Requirements

o Verification methods



Concrete Mixture Proportions

Ib/yd:

Portland cement 278
Class F fly ash 207
Expansive cement 134
Fine aggregate 1292
Coarse aggregate 1592
Sodium chloride 88

Water 225

Kg/m3 = (Ib/yd?®) * (0.59) Water: Cement ratio is
weight of water divided by all cementitious
materials



Sodium Bentonite Permeabillity Versus
Density
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Bentonite Density Versus Moisture
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Reconsolidated Salt Properties

’ Lab Testing b
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Panorama of the Compaction
Dynamic Pattern
Compaction Test Area




Permeabillity Versus Fractional
Density for WIPP Crushed Salt

)KX

~
~
~
~
~
~
~
~
~
~
%%

() +_h_ Tfj+

@ Brine (Brodsky, 1994) N X ac
. In Situ Dynamic o
Compaction
Gas Permeability: DCI;
Manometer (RSI)

’ Gas Permeability: DCI;
Flow meter (RSI)

i * Gas Permeability: DCII;
Flow meter (RSI)

&
E
-y
o
@
@
£
=
@
Q.

O Gas Permeability: DCII;
" Flow meter (RSI)

Current Test: DCCS3/2/2-1
(Not in Fit)

- |- - - Best Fit: log(k) Data

0.90 0.95
Dry Fractional Density




Brine Permeabillity Tests on Specimen
DCCS/3/3/3-1
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Specimen 1.D.: DCCS/3/3/3-1
Temperature = 25°C

Initial Fractional Density = 0.89
Hydrostatic Pressure = 1 MPa
Brine Inlet Pressure = 0.345 MPa
Brine Outlet Pressure = Vented
Test Started 27 Dec 96
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7] Burette Measurement

A Calculated Compaction Flow

@ Net Brine Inlet Flow = Burette-Compaction

,,
M

.E
48]
B

-

w

2
e
b
@
E
=
O
p—
Q
>
n
v
)
—_
Q.
=
Q
o

el |

il
™

20
Time (days)




Shaft Seals System Studies

Emplacment Technology

Shaft Seal System

Redbeds

Rustler
Formation

'

mpacted

-asphait

Salado
Formation




Fluid Flow Analysis of the Waste
Isolation Pilot Plant Shaft Seal
System



Model 1 - Brine Flow Down

Objectives

o To predict cumulative brine flow through the seal
system down to the salt column and the
repository

o To demonstrate the effectiveness of the
concrete-asphalt

Assumptions
o Single-phase saturated flow
o 50-year, open-shaft period prior to closure

o Far-field BC is hydrostatic consistent with highest
undisturbed Rustler head () i
|shoratories



Results
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Model 2 — Salt Column Performance

Objectives

o Predict the intrinsic permeability of the salt column component of the seal
system

o Demonstrate effectiveness of the salt column as a low permeability seal
within 200 years after closure

o Estimate gas migration from the repository horizon

Assumptions

o Two-phase flow (brine and hydrogen)

o 50-year, open-shaft period prior to closure

o Hydrostatic outer boundary condition relative to MB-139

Simulation Code

TOUGH28W is a multi-dimensional, multi-phase coupled fluid and heat
simulator for porous and fractured media. This Sandia version of the code
was developed from the LBL code TOUGH2
() i
National
Laboratovies



Model 2 - G

rd Bound
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Boundary Conditions

Repository Pressure {MPa)
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Model 3 — Brine Flow Under
Ambient Pressure Conditions

Objective

o To predict long-term brine flow through the seal system under ambient
vertical pressure conditions

Assumptions
o Single-phase saturated flow
o Calculation representative of times > 400 years closure

o Far-filed BC is non-hydrostatic consistent with undisturbed pressure for
the Rustler and Salado

o No-flow boundary at base of shaft

Simulation Code — Models 1 and 3

o SWIFT-II is a fully three-dimensional, finite-difference code that solves
the coupled equations for variable density flow and transport



Ambient Brine Flow
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~acllities Disposal Panel
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Option D Panel Closure System
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Possible Alternative Panel Closure
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Isolation & Containment Strategic
Choices for Seals & Backfill

Strategic Goals—Seals or backfill shall provide:

o

o

Limit hazardous constituents reaching regulatory boundaries (Isolation)
Restrict groundwater flow through the sealing system (Isolation)

Use materials possessing mechanical and chemical compatibility
(Feasibility)

Protect against structural failure of system components (Design)
Limit subsidence and prevent accidental entry (Design)

Utilize available construction methods and materials (Feasibility)



Feasibility

Isolation & Containment Strategic
Choices for Seals & Backfill (concluded)

Bases

= Concept of
operations
dictates size,
shape &
arrangement

= Barrier
capability
achieved by
independent
elements
(redundancy)

= Multiple
elements

= Differing
materials

= Design review

= Quality
assurance

= Materials

= Available off-the-shelf no new
technology required

= Demonstrate-proof of principle
testing

= Scalable (lab/field)

= Suitable properties (density,
permeability)

= Conductivity, durability

= Analogy, practice, experience
= Construction

= Industry Standard

= Demonstration
= Performance

= Hydrologic properties

= Mechanical properties

= Special accommodations
(swelling, desiccation)

«

AN

« Results of

LTT&M/Science
program verify these
bases for the safety

case

< Modeling

e Continued
evaluation via
performance
confirmation




Shaft Seal System Conclusions

o The WIPP shaft seal system effectively limits fluid
flow within the seal system.

o The salt column becomes an effective barrier to
gas and brine migration by 100 years after
closure.

o Long-term flow rates within the seal system are
imited.

o Reference to available reports

o SAND97-1287 Shaft Seal System Parameters
Document

o SAND96-1326/1 Shaft Seal Design Report @m
Lahorstories



summary

o Several barriers engineered for WIPP

o No performance credit for waste package
o MgO engineered barrier (assurance)

o Panel closure performance implication

o Shaft seal system

o It’s the geology



