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Introduction to the problem

� In full wavefield inversion, seismic data are used to reconstruct physical

parameters of the earth

• wave velocities

• attenuation

• anisotropy

• density

• permeability, porosity

� Adjoint-based optimization minimizes the difference between measured and

synthesized seismic data

� Industry challenges desire inversion results for a larger number of earth

parameters

� Environments where attenuation is important: gas clouds, hydrate-bearing

sediments, gas packets, fracture zones
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Full wavefield inversion
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Introduction to the problem

� How attenuation relates to low frequencies

• Q (quality factor): the number of wavelengths a wave can propagate

before its amplitude decreases by e−π

• Attenuation is responsible for absorption and dispersion of the

wavefield

• Properly accounting for accurate attenuation reduces processing

artifacts due to:

� inaccurate filtering

� erroneously attributing the change in frequency/phase/amplitude to

another Earth model parameter

• Viscoelastic inversion

� cycle-skipping

� low shear-wave velocities require low frequency wavefield modelling in

order to satisfy stability constraints
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Outline

� Viscoelastic full waveform inversion in isotropic and orthorhombic media

• wave equation is not self-adjoint

• inaccuracies exist in rheological models used to approximate

attenuation (Q)

• seismic data has low sensitivity to attenuation model changes

• computationally demanding

� Formulation for full wavefield inversion

• viscoelastic orthorhombic wave equation

• adjoint wave equation

� Viscoelastic wavefield modelling

• modelling a quasi frequency-independent Q

� Sensitivity analysis

� Full wavefield inversion example using a 2-D slice from the SEAM Phase I

earth model without salt
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Stress-strain relations

Stress Tensor (Elastic):

σij = cijkl�kl

where cijkl is a fourth-order tensor containing the elastic moduli, and has the

properties

cijkl(x, t)t<0 = 0

cijkl = cklij = cjikl = cijlk

Strain Tensor:
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Stress Tensor (Viscoelastic):

σij(t) =

Z
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−∞
ψ̇ijkl(x, t− τ)�kldτ

= ψ̇ijkl ∗ �kl
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Viscoelastic Modelling

The GMB-EK rheological model is used to model attenuation, which defines the

viscoelastic modulus

M(ω) = cijkl

h
1−

nX

�=1
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ω� + iω
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and the relaxation function

ψ(t) = F−1

n
M(ω)

iω

o
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h
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)

i
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where H(t) is the Heaviside unit step-function. The viscoelastic stress-strain

relationship simplifies to

σij(t) = cijkl�kl(t)− cijkl

nX

�=1

α�ω�

h
e
−ω�t ∗ �kl(t)

i

where n is the number of memory variables.
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Viscoelastic Modelling

Denoting material-independent functions

φ�(t) = ω�e
−ω�t ∗ �kl(t),

the viscoelastic stress-strain relationship simplifies to

σij(t) = cijkl�kl(t)− cijkl

nX

�

α�φ�(t)

2D Elastic stress-strain relation:
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2D Viscoelastic stress-strain relation:
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(Visco)elastic Modulus

Isotropic (2D): Requires 2 unique cij ’s

c11 = c33

c33 = (λ + 2µ) = π

c55 = µ

c13 = λ = (c33 − 2c55)

c15 = c35 = 0

VTI (2D): Requires 4 unique cij ’s

c11 = c33 ∗ (1 + 2ε)

c33 = (λ + 2µ) = π

c55 = µ

c13 =

p
(c33 − c55)

2 + [2δc33(c33 − c55)]

c15 = c35 = 0
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2D Isotropic Viscoelastic Equations

Stresses:

txx = c33(ux,x + uz,z)− 2c55uz,z +

nX

i=1

φxxi

tzz = c33(ux,x + uz,z)− 2c55ux,x +

nX

i=1

φzzi
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2D VTI Viscoelastic Equations

Stresses:

txx = c11ux,x + c13uz,z +

nX
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Modelling attenuation

Q−1
is defined

Q−1
(ω) =
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Modelling attenuation
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Modelling attenuation
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2D Viscoelastic VTI Wavefield Propagation
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Data Sensitivity to Model Perturbations

� The inversion is driven by differences between the measured and

synthesized seismic data

� What happens when the seismic data does not ”feel” a change in the

subsurface

� How does this impact:

• inversion performance/convergence

• compute time

• accuracy

• resolution

• what is the utility of multi-parameter inversion
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Data Sensitivity to Model Perturbations
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Sensitivity of seismic data to Earth model perturbations
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Viscoelastic (isotropic) inversion

� Model updates are derived from the adjoint wave equation

� Apply model gradient terms for C33, C55, Q33 (Qp), and Q55 (Qs)

models

� Experience shows that attenuation is not easily inverted for at depth

� Select a shallow model in order to have results to interpret

� Invert for Earth models that the seismic data has higher sensitivity

towards (velocities)

� Invert for attenuation models following an initial inversion of velocities,

maintaining the Q-models fixed

� Use and L2 norm for the velocity inversion

� Use a L1 norm for the attenuation inversion
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Continuous gradient formulae

For viscoelastic inversion, invert for 4 parameters:

gc33
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where the superscript C denotes the modulus coupled with the modulus ratio αi, such

that
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SEAM I FWI

20



SEAM I FWI
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SEAM I FWI
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SEAM I FWI
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SEAM I FWI
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SEAM I FWI
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Discussion

� Evaluate the range of applicability of this approach

� Evaluate if viscoelastic (isotropic or orthorhombic) inversion is
realistic/feasible at this time

� Development of efficient code: understanding what short-cuts may
be made, what constraints can be implemented:

• Understanding the mechanism

• Development of preconditioners and regularizations for

multiparameter (multi-scale) inversion

• Resolution analysis
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