

SAND2011-6624C

 SEG 2011

San Antonio

ExxonMobil

Upstream Research

Viscoelastic orthorhombic full wavefield inversion Development of multiparameter inversion methods

Gillian Royle

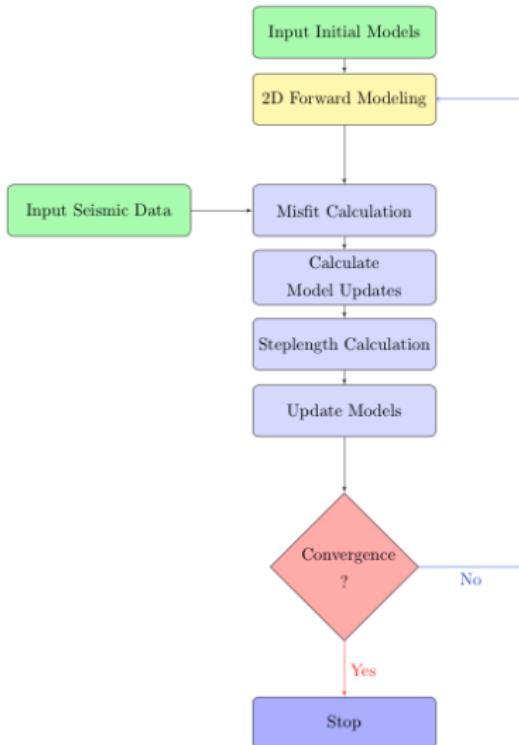
Society of Exploration Geophysicists Annual Meeting

Broadband Seismic Post Convention Workshop

3:30pm Friday September 23, 2011

- ▶ In full wavefield inversion, seismic data are used to reconstruct physical parameters of the earth
 - wave velocities
 - attenuation
 - anisotropy
 - density
 - permeability, porosity
- ▶ Adjoint-based optimization minimizes the difference between measured and synthesized seismic data
- ▶ Industry challenges desire inversion results for a larger number of earth parameters
- ▶ Environments where attenuation is important: gas clouds, hydrate-bearing sediments, gas packets, fracture zones

Full wavefield inversion



- ▶ How attenuation relates to low frequencies
 - Q (quality factor): the number of wavelengths a wave can propagate before its amplitude decreases by $e^{-\pi}$
 - Attenuation is responsible for absorption and dispersion of the wavefield
 - Properly accounting for accurate attenuation reduces processing artifacts due to:
 - ▶ inaccurate filtering
 - ▶ erroneously attributing the change in frequency/phase/amplitude to another Earth model parameter
 - Viscoelastic inversion
 - ▶ cycle-skipping
 - ▶ low shear-wave velocities require low frequency wavefield modelling in order to satisfy stability constraints

- ▶ Viscoelastic full waveform inversion in isotropic and orthorhombic media
 - wave equation is not self-adjoint
 - inaccuracies exist in rheological models used to approximate attenuation (Q)
 - seismic data has low sensitivity to attenuation model changes
 - computationally demanding
- ▶ Formulation for full wavefield inversion
 - viscoelastic orthorhombic wave equation
 - adjoint wave equation
- ▶ Viscoelastic wavefield modelling
 - modelling a quasi frequency-independent Q
- ▶ Sensitivity analysis
- ▶ Full wavefield inversion example using a 2-D slice from the SEAM Phase I earth model without salt

Stress Tensor (Elastic):

$$\sigma_{ij} = \mathbf{c}_{ijkl}\epsilon_{kl}$$

where \mathbf{c}_{ijkl} is a fourth-order tensor containing the elastic moduli, and has the properties

$$\mathbf{c}_{ijkl}(\mathbf{x}, t)_{t<0} = 0$$

$$\mathbf{c}_{ijkl} = \mathbf{c}_{klij} = \mathbf{c}_{jikl} = \mathbf{c}_{ijlk}$$

Strain Tensor:

$$\begin{aligned}\epsilon_{kl} &= \frac{1}{2} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right) \\ &= \frac{1}{2} (u_{k,l} + u_{l,k})\end{aligned}$$

Stress Tensor (Viscoelastic):

$$\begin{aligned}\sigma_{ij}(t) &= \int_{-\infty}^{+\infty} \dot{\psi}_{ijkl}(\mathbf{x}, t - \tau) \epsilon_{kl} d\tau \\ &= \dot{\psi}_{ijkl} * \epsilon_{kl}\end{aligned}$$

The GMB-EK rheological model is used to model attenuation, which defines the viscoelastic modulus

$$M(\omega) = \mathbf{c}_{ijkl} \left[1 - \sum_{\ell=1}^n \alpha_{\ell} \frac{\omega_{\ell}}{\omega_{\ell} + i\omega} \right]$$

and the relaxation function

$$\begin{aligned} \psi(t) &= \mathcal{F}^{-1} \left\{ \frac{M(\omega)}{i\omega} \right\} \\ &= \mathbf{c}_{ijkl} \left[1 - \sum_{\ell=1}^n \alpha_{\ell} (1 - e^{-\omega_{\ell} t}) \right] H(t) \end{aligned}$$

where $H(t)$ is the Heaviside unit step-function. The viscoelastic stress-strain relationship simplifies to

$$\sigma_{ij}(t) = \mathbf{c}_{ijkl} \epsilon_{kl}(t) - \mathbf{c}_{ijkl} \sum_{\ell=1}^n \alpha_{\ell} \omega_{\ell} \left[e^{-\omega_{\ell} t} * \epsilon_{kl}(t) \right]$$

where n is the number of memory variables.

Denoting material-independent functions

$$\phi_\ell(t) = \omega_\ell e^{-\omega_\ell t} * \epsilon_{kl}(t),$$

the viscoelastic stress-strain relationship simplifies to

$$\sigma_{ij}(t) = \mathbf{c}_{ijkl}\epsilon_{kl}(t) - \mathbf{c}_{ijkl} \sum_{\ell}^n \alpha_{\ell} \phi_{\ell}(t)$$

2D Elastic stress-strain relation:

$$\begin{pmatrix} \sigma_{xx} \\ \sigma_{zz} \\ \sigma_{xz} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{13} & c_{15} \\ c_{13} & c_{33} & c_{35} \\ c_{15} & c_{35} & c_{55} \end{pmatrix} \begin{pmatrix} \epsilon_{x,x} \\ \epsilon_{z,z} \\ \epsilon_{x,z} \end{pmatrix}$$

2D Viscoelastic stress-strain relation:

$$\begin{pmatrix} \sigma_{xx} \\ \sigma_{zz} \\ \sigma_{xz} \end{pmatrix} = \begin{pmatrix} \dot{\psi}_{11} & \dot{\psi}_{13} & \dot{\psi}_{15} \\ \dot{\psi}_{13} & \dot{\psi}_{33} & \dot{\psi}_{35} \\ \dot{\psi}_{15} & \dot{\psi}_{35} & \dot{\psi}_{55} \end{pmatrix} * \begin{pmatrix} \epsilon_{x,x} - \sum_i \alpha_i \phi_i \\ \epsilon_{z,z} - \sum_i \alpha_i \phi_i \\ \epsilon_{x,z} - \sum_i \alpha_i \phi_i \end{pmatrix}$$

Isotropic (2D): Requires 2 unique c_{ij} 's

$$c_{11} = c_{33}$$

$$c_{33} = (\lambda + 2\mu) = \pi$$

$$c_{55} = \mu$$

$$c_{13} = \lambda = (c_{33} - 2c_{55})$$

$$c_{15} = c_{35} = 0$$

VTI (2D): Requires 4 unique c_{ij} 's

$$c_{11} = c_{33} * (1 + 2\varepsilon)$$

$$c_{33} = (\lambda + 2\mu) = \pi$$

$$c_{55} = \mu$$

$$c_{13} = \sqrt{(c_{33} - c_{55})^2 + [2\delta c_{33}(c_{33} - c_{55})]}$$

$$c_{15} = c_{35} = 0$$

2D Isotropic Viscoelastic Equations

Stresses:

$$t_{xx} = c_{33}(u_{x,x} + u_{z,z}) - 2c_{55}u_{z,z} + \sum_{i=1}^n \phi_{xx_i}$$

$$t_{zz} = c_{33}(u_{x,x} + u_{z,z}) - 2c_{55}u_{x,x} + \sum_{i=1}^n \phi_{zz_i}$$

$$t_{xz} = c_{55}(u_{z,x} + u_{x,z}) + \sum_{i=1}^n \phi_{xz_i}$$

$$\eta_i = \omega_i e^{-\omega_i t}$$

Memory variables:

$$\phi_{xx_i} = c_{33}\alpha_i^{33} [\eta_i(t) * (u_{x,x} + u_{z,z})] - 2c_{55}\alpha_i^{55} [\eta_i(t) * u_{z,z}]$$

$$\phi_{zz_i} = c_{33}\alpha_i^{33} [\eta_i(t) * (u_{x,x} + u_{z,z})] - 2c_{55}\alpha_i^{55} [\eta_i(t) * u_{x,x}]$$

$$\phi_{xz_i} = c_{55}\alpha_i^{55} [\eta_i(t) * (u_{z,x} + u_{x,z})]$$

2D VTI Viscoelastic Equations

Stresses:

$$t_{xx} = c_{11}u_{x,x} + c_{13}u_{z,z} + \sum_{i=1}^n \phi_{xx_i}$$

$$t_{zz} = c_{13}u_{x,x} + c_{33}u_{z,z} + \sum_{i=1}^n \phi_{zz_i}$$

$$t_{xz} = c_{55}(u_{z,x} + u_{x,z}) + \sum_{i=1}^n \phi_{xz_i}$$

Memory variables:

$$\phi_{xx_i} = c_{11}\alpha_i^{11}[\eta_i(t) * u_{x,x}] + c_{13}\alpha_i^{13}[\eta_i(t) * u_{z,z}]$$

$$\phi_{zz_i} = c_{13}\alpha_i^{13}[\eta_i(t) * u_{x,x}] + c_{33}\alpha_i^{33}[\eta_i(t) * u_{z,z}]$$

$$\phi_{xz_i} = c_{55}\alpha_i^{55}[\eta_i(t) * (u_{z,x} + u_{x,z})]$$

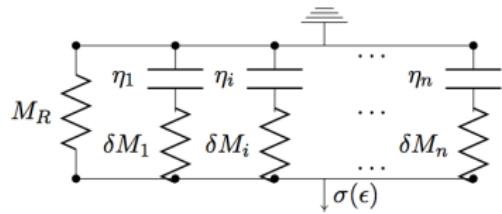
Q^{-1} is defined

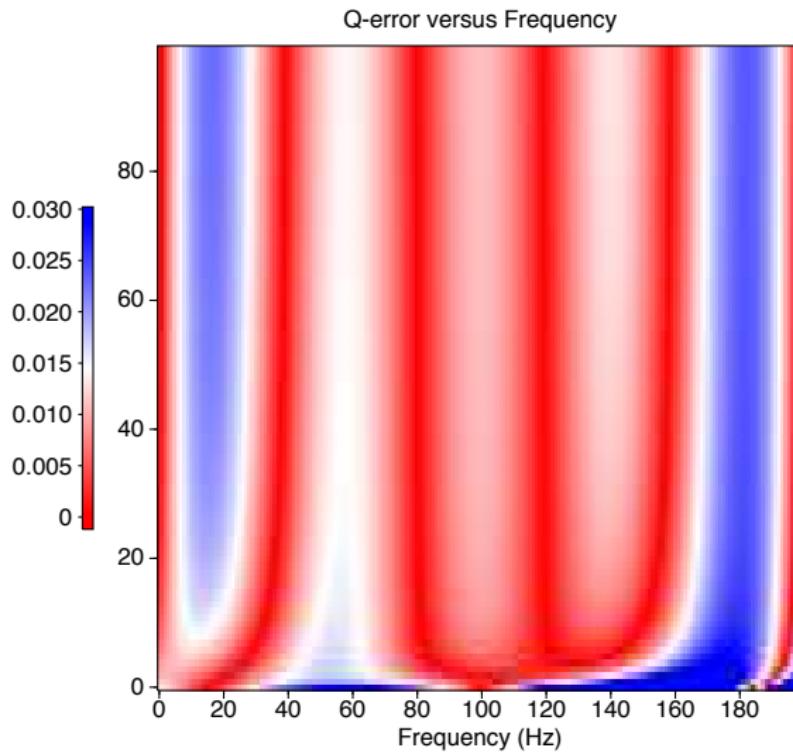
$$Q^{-1}(\omega) = \sum_{i=1}^n \alpha_i \left[\frac{\omega_i \omega + \omega_i^2 Q^{-1}(\omega)}{\omega_i^2 + \omega^2} \right]$$

$$\mathbf{A} = \frac{\omega_i \omega + \omega_i^2 Q^{-1}(\omega)}{\omega_i^2 + \omega^2}$$

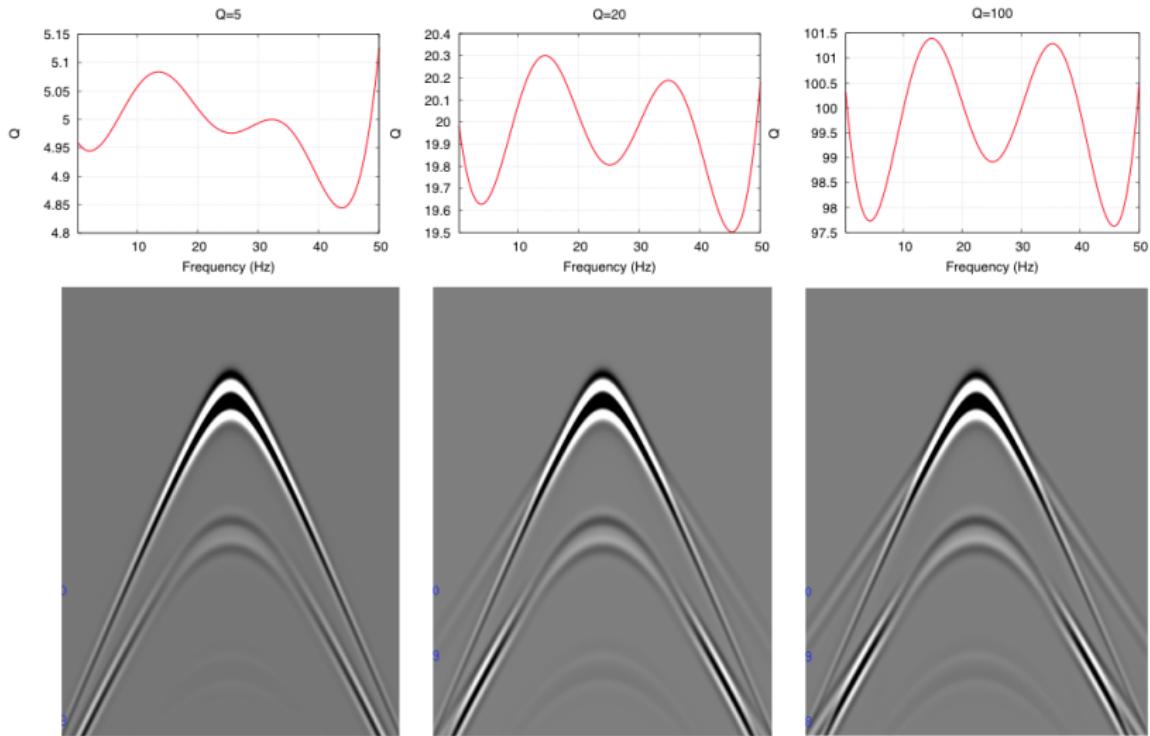
$$Q^{-1}(\omega) = \mathbf{A} \alpha$$

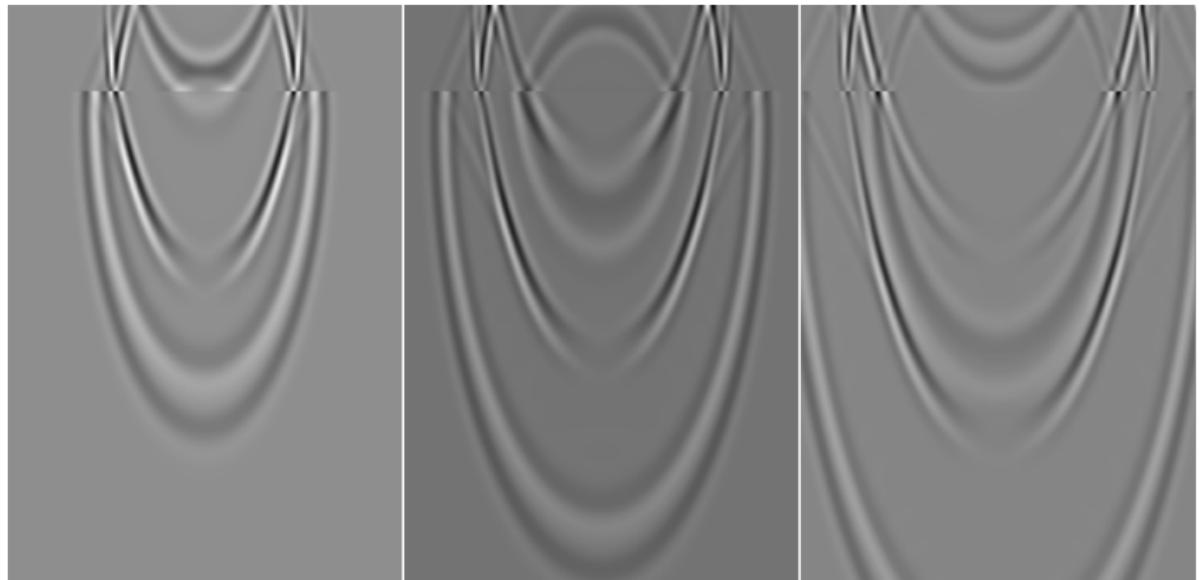
$$\alpha = [\mathbf{A}^T \mathbf{A}]^{-1} \mathbf{A}^T Q^{-1}$$





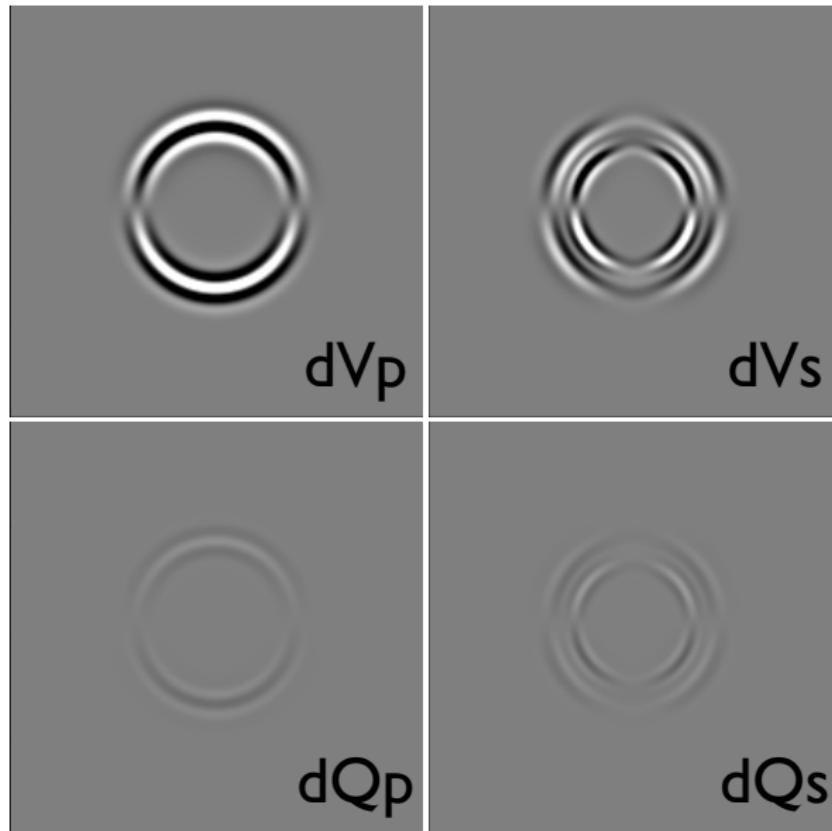
Modelling attenuation





- ▶ The inversion is driven by differences between the measured and synthesized seismic data
- ▶ What happens when the seismic data does not "feel" a change in the subsurface
- ▶ How does this impact:
 - inversion performance/convergence
 - compute time
 - accuracy
 - resolution
 - what is the utility of multi-parameter inversion

Data Sensitivity to Model Perturbations



Sensitivity of seismic data to Earth model perturbations

- ▶ Model updates are derived from the adjoint wave equation
- ▶ Apply model gradient terms for C_{33} , C_{55} , Q_{33} (Q_p), and Q_{55} (Q_s) models
- ▶ Experience shows that attenuation is not easily inverted for at depth
- ▶ Select a shallow model in order to have results to interpret
- ▶ Invert for Earth models that the seismic data has higher sensitivity towards (velocities)
- ▶ Invert for attenuation models following an initial inversion of velocities, maintaining the Q-models fixed
- ▶ Use an L2 norm for the velocity inversion
- ▶ Use a L1 norm for the attenuation inversion

For viscoelastic inversion, invert for 4 parameters:

$$\mathbf{g}_{c_{33}} = - \sum_{shots} \int_0^t dt \left[\overleftarrow{\epsilon}_{ij} (\delta_{ij} \delta_{kl}) \overrightarrow{\epsilon}_{kl} \right] = - \sum_{shots} \int_0^t dt \left[\overleftarrow{\epsilon}_{ii} \overrightarrow{\epsilon}_{kk} \right]$$

$$\mathbf{g}_{c_{55}} = - \sum_{shots} \int_0^t dt \left[\overleftarrow{\epsilon}_{ij} (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - 2\delta_{ij} \delta_{kl}) \overrightarrow{\epsilon}_{kl} \right]$$

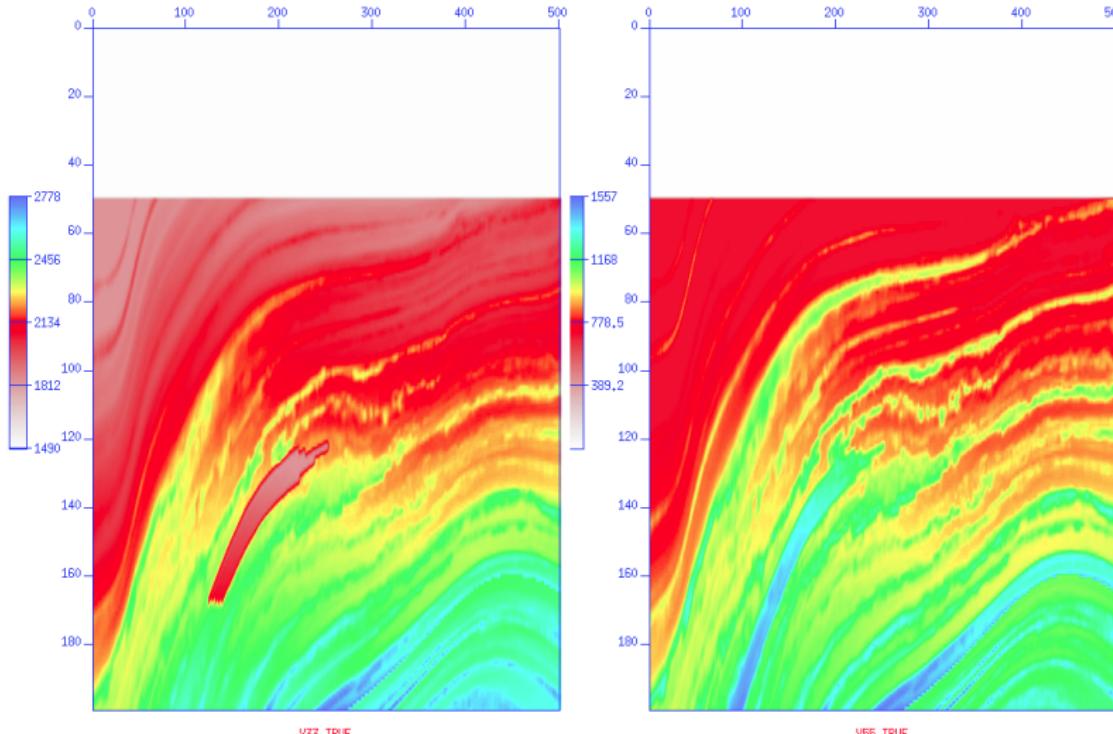
$$\mathbf{g}_{c_{33i}^C} = - \sum_{shots} \int_0^t dt \left[\overleftarrow{\epsilon}_{ij} (\delta_{ij} \delta_{kl}) [\eta_i * \overrightarrow{\epsilon}_{kl}] \right] = - \sum_{shots} \int_0^t dt \left[\overleftarrow{\epsilon}_{ii} [\eta_i * \overrightarrow{\epsilon}_{kk}] \right]$$

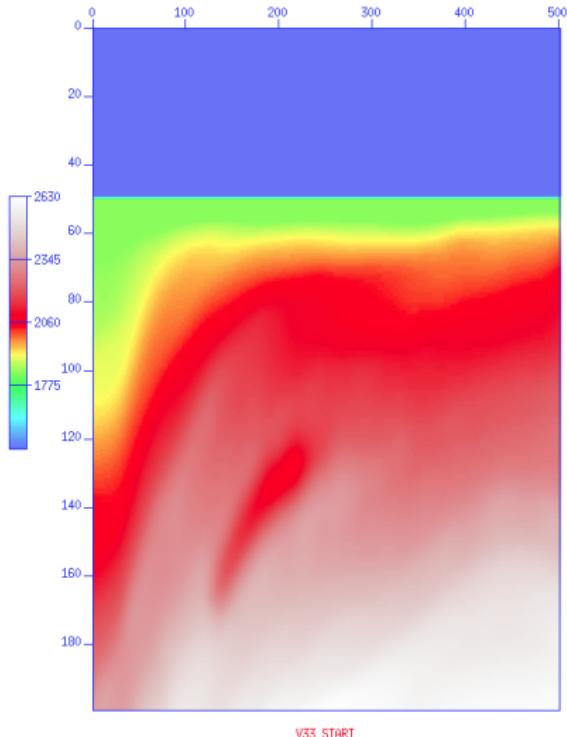
$$\mathbf{g}_{c_{55i}^C} = - \sum_{shots} \int_0^t dt \left[\overleftarrow{\epsilon}_{ij} (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - 2\delta_{ij} \delta_{kl}) [\eta_i * \overrightarrow{\epsilon}_{kl}] \right]$$

where the superscript C denotes the modulus coupled with the modulus ratio α_i , such that

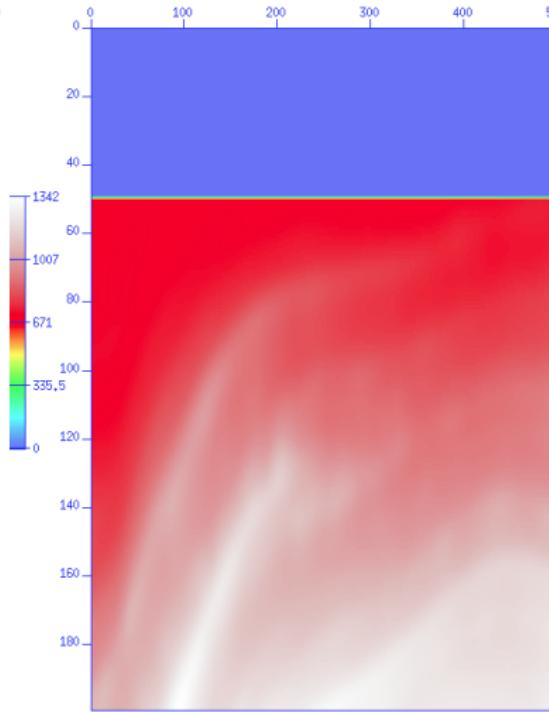
$$c_{33i}^C = c_{33} \alpha_i^{33}$$

$$c_{55i}^C = c_{55} \alpha_i^{55}$$

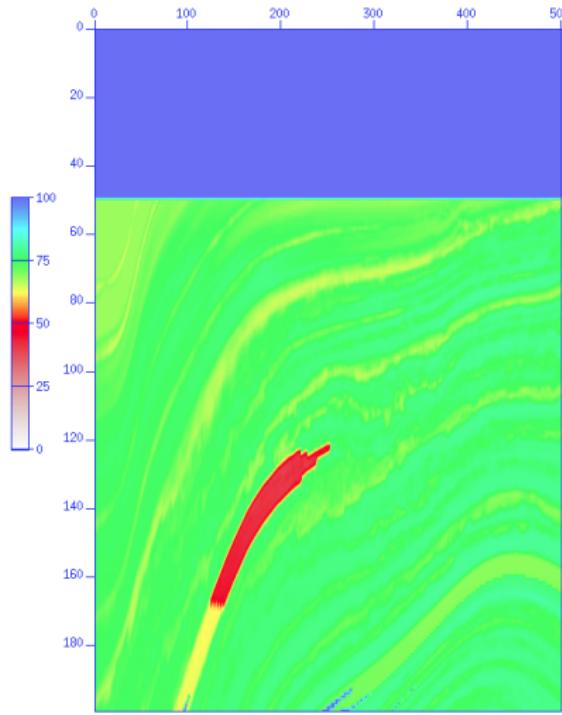
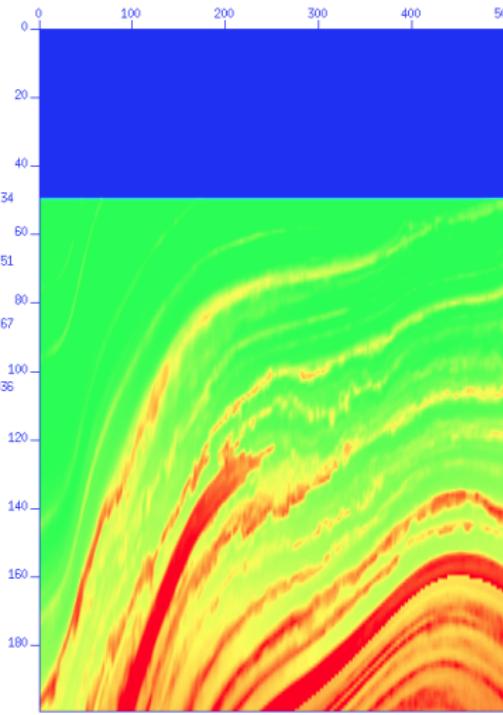


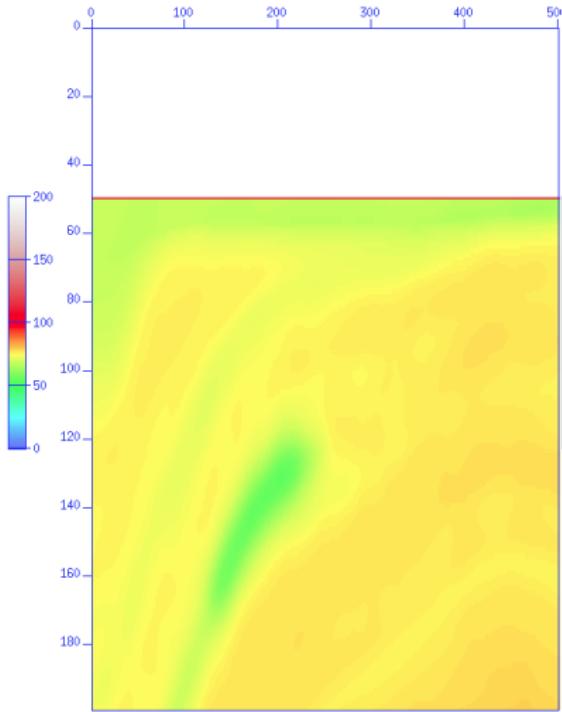


V33 START

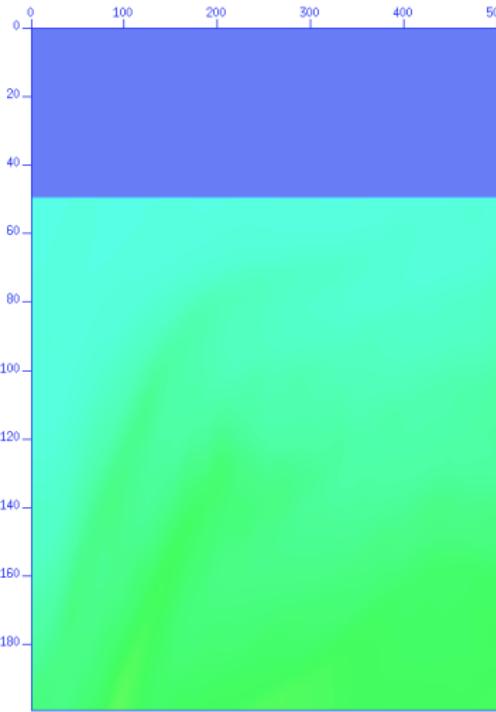


V55 START

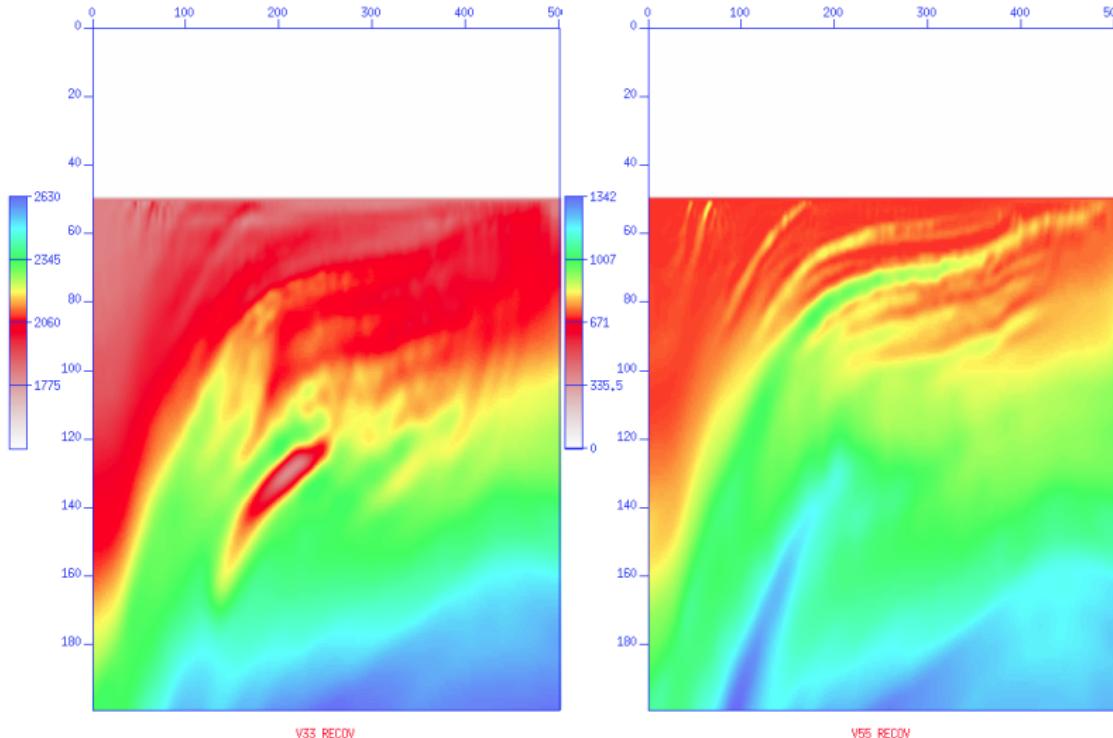


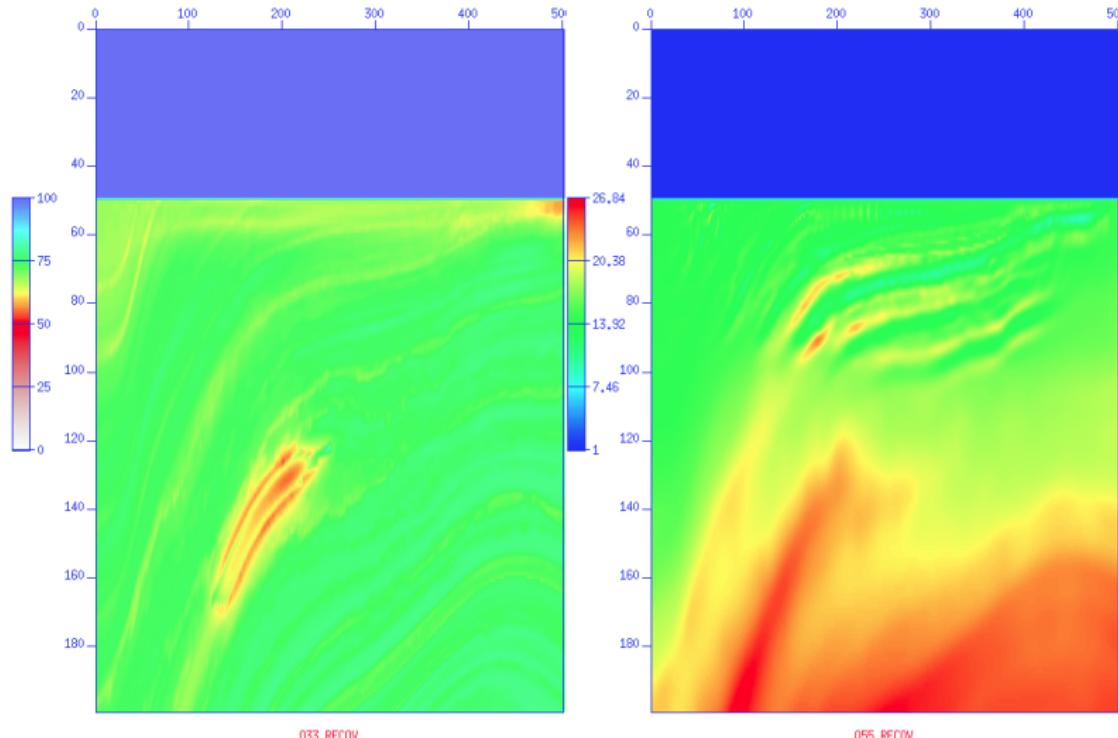


033 START



055 START





- ▶ Evaluate the range of applicability of this approach
- ▶ Evaluate if viscoelastic (isotropic or orthorhombic) inversion is realistic/feasible at this time
- ▶ Development of efficient code: understanding what short-cuts may be made, what constraints can be implemented:
 - Understanding the mechanism
 - Development of preconditioners and regularizations for multiparameter (multi-scale) inversion
 - Resolution analysis