SAND2011- 7103C

On Discovering the Compressive Sensing Matrix
From Few Signal/Measurement Pairs

Hyrum S. Anderson
Sandia National Laboratories
Albuquerque, NM 87185

Abstract—Recently, it has been shown that a randomly-
generated compressive sensing (CS) measurement matrix may
double as a long cryptographic key that provides a degree
of secrecy: an eavesdropper that inspects only the compressed
samples can learn almost nothing about the encoded sparse
vector. In practical CS applications, however, the measurement
matrix is often structured in order to simplify CS reconstruction,
and this structure effectively reduces the length of the cryp-
tographic key. This work addresses the scenario in which the
eavesdropper is allowed to observe a few signal/measurement
pairs, and investigates how many pairs must be observed in
order to exactly recover the CS measurement matrix. Two matrix
classes are studied that are common in practice: Toeplitz, and
Fourier measurement matrices.

I. INTRODUCTION

Compressive sensing (CS) has begun to receive attention
from an information-theoretic viewpoint [1]-[3]. In canonical
CS, one aims to estimate K -sparse x € RY from samples

y=0x, yeRM &cRM*N M <« N. (1)

Candes, Romberg and Tao [4] and Donoho [5] provided
conditions on @ that allow perfect recovery of x from only
M = O(K log N) measurements using a linear program:

min [|x]|; st y=dx. (2)

Importantly, Candes and Tao [6] showed that ® generated from
iid Gaussian draws allows recovery of x with high probability.
Recently cryptography researchers have addressed the secrecy
that ® provides when generated with iid Gaussian entries. In
[1], it was shown that if an eavesdropper observes y and knows
that x is K-sparse, then ® provides computational secrecy
(NP-hard discovery). Agrawal and Vishwanath demonstrated
Wolkowitz secrecy in the context of a wiretap channel [2],
while Reeves et al. study ®’s secrecy capacity [3].

Despite the secrecy results for randomly-generated @, cur-
rent research in compressive sensing is driving towards struc-
tured ® to improve reconstruction speed and ease of imple-
mentation. The structure imposed on ® reduces its secrecy
capacity to a degree which has yet to be investigated.

In this work, two important classes of structured matrices
are considered: Toeplitz [7] and random Fourier [4]. Rather
than a blind frontal attack as in [1]-[3], this work addresses
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a much less difficult scenario for discovering ®. Here, the
eavesdropper knows the general structure of ®, observes P
measurement vectors {y;}7, and obtains the first Q < P
source vectors {x; : y; = @Xz‘}?:l- Further, it is known
that the true {x;}f; live near a low-dimensional subspace,
such that the matrix X = [x; --- xp| can be decomposed
as X = L+ S, where L is low rank (eavesdropper knows
rank), and S is a sparse matrix (eavesdropper knows sparsity).
Such a decomposition is common for modeling video frames
with slowly-varying background in the columns of L, and
foreground represented in columns of S [8]. With these as-
sumptions, the following algorithm to discover ® is proposed:

Input: {y;}2,, {x;:y:= q)xi}?zl, structure of ®

Output: estimated measurement matrix o

Initialize: {ki}f):Q 41 as random draws from {x;}

(1) Estimate ® from {(x;,y:) 1. {(%i,¥i) Hg i1

(2) Solve (2) for {f(i}fiQH and fixed &

(3) Decompose X = [x1 - XQXQ41 -+ - Xp| into

X = L+ S+ G with noise matrix G [8] s.t. columns

j=1,...,Q of G are zero; reassian =L+S

(4) Tterate (1)-(3) until negligible change in P

Q
i=1+

This work investigates how large P and () must be to
recover ® using the above algorithm. It is demonstrated that
a structured CS measurement matrix ® can be discovered for
@ < P. Section II addresses the number P needed to recover
® for Toeplitz and Fourier CS measurement matrices. Section
III shows empirical results for Q.

II. SOLVING FOR ¢ FROM P INPUT/OUTPUT PAIRS
This section addresses step (1) of the proposed algorithm:
discovering ® for Toeplitz and Fourier measurement matrices
from P input/output pairs, where P is determined below.
A. Toeplitz measurement matrix

A Toeplitz measurement matrix

Pn . N 1
Pn+1 on SRR
P = ,
¢n+m—1 ¢n+m—2 d)m
is completely characterized by its first row r 2
T

#1]7 and column c 2 [Dnt+1 - Ongm—1]

[6n Gr—1 -+



(ignoring duplicate ¢,,). Given x; and y;, (1) may be re-
written as X =y;, where X, is the M x (N+M-1)

concatenation of a rectangular Hankel matrix (goes with r)
with a Toeplitz matrix (goes with c):

Tin T2 Ti,N 0 0 e 0
Ti2 x;3 -0 Ti1 0 0
Ti3 Ti 4 -0 Ti2 Ti1

i Tim+r - 0 Tinmo1 ®Tgm—2 0 Ty

To solve for r and c, stack P such equations together and
solve the constrained least squares problem
~ 2 ~
Xi Y1 Xi Y1
min — | s.t. =
rc c : c

Xp yp Xq Yo

Since each x; is a K-sparse vector, unless P is large
enough, some columns of the PM x (N + M — 1) matrix
in (3) may be entirely zero, and therefore uninformative about
entries of r or c. Determining P can be cast as a simple
generalization of the coupon collector’s problem by assuming
that for each x; the K non-zero elements are distributed
uniformly, and that {x;}!; are mutually independent draws.
In particular, denote by random variable 7' the number of
trials required for one to collect N coupons when collecting
K coupons per trial. It has been shown that T is sharply
concentrated around E[T] = KZn L2 19, Ch. 3], so that
p>X Zn 15 L suffices for our purposes. A stricter bound
based on vanlshlng probability may be derived from the
variance of T and Chebyshev’s inequality, but for brevity is
left to future work.

B. Random Fourier measurements

A CS Fourier measurement matrix may be written as
$ = EF, where F' is an N x N Fourier matrix and E is an
M x N matrix consisting of M randomly selected (without
replacement) rows of an N x N identity matrix. Thus, to
discover ® one needs only learn the ¢,j where E;; = 1,
for which there is exactly one per row.

Concatenate the rows of E into a sparse vector e € RMN,
Then, given x; and y;, rewrite (1) as F e = y,;, where F is
the M x M N constant-block diagonal matrix:

(Fx)T 0 e 0
0 (Fx)T -~ 0
0 0 (Fxi)T
Since e is an M-sparse vector in RM" one might employ ¢,

minimization as in (2) to find a sparse solution. However, the
problem is further constrained in that exactly M elements of e
are unity, and the remaining are zero. Thus [le[|; =), |e;| =

>; ei = M is a non-informative objective when including the
tighter constraints. Instead, solve for e (with matrix form F)

P
min Z |Ee —yil|? st Fre=yp, k=1,...,Q (4a)
i=Q+1
0<E;<1,E1=1,0<FET1<1 (@4b)

where (4b) promotes M -sparsity with a single 1 per row
of E. Defining F € RPMxMN 45 the matrix formed by
stacking EFi=1,...,P, atop one another, CS theory dictates
the number or matrix rows PM needed to recover e, which
depends on properties of F' [5]. Matrices with structure like £
have yet to be studied; and is a topic for future work. Instead,
we employ the empirical rule-of-thumb (#rows) > (#%ls)
[5], which implies P > %

ITII. EMPIRICAL () FOR DISCOVERING

A simulated dataset {x; € R} | is generated according
to the model x; = sg + s;, where Ky = |[|sgllo and K; =
Isillo, so that ||x;]lo0 < Ko + Ki. This model ensures that
X = L+ S, where L is a (sparse) rank-1 matrix, and S
is sparse. Each nonzero element of {s;}f , is drawn from a
standard normal distribution. The true measurement Toeplitz
or Fourier matrix ® is generated with M = Z rows. For step
(3) of the proposed method, GoDec [8] is trivially modified
to constrain IV; ; = 0,i = 1,...,M,j =1,...,Q. Figure 1
reports the probability of recovering ® as a function of @,
where recovery is successful if | ® — &z < 1073,
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Fig. 1.  Probability of recover for (left) Ko = 5, K7 = 5 and (right)

Ko = 3, K1 = 7, where probability is measured over 100 trials.
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