

Multiple Imputation for Missing Data

Kimberly Proctor
Strategic Studies, Org. 249

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

**Sandia
National
Laboratories**

Introduction

- ▶ Datasets, particularly in the social sciences, are notoriously incomplete
- ▶ Standard estimation techniques do not account for this missingness
- ▶ Our resulting models are likely incorrect = we make the wrong conclusions!

Sandia
National
Laboratories

Example: Nuclear Detection Architecture Index

- ▶ Ranks countries' social/political/security aspects for detecting and deterring threats to nuclear security
- ▶ Example: all countries in the world for 2008

Variable	% Missing
Military expenditure (% GDP)	35
GDP per capita (US\$)	10
GDP growth (annual %)	11
Total	37

Sandia
National
Laboratories

Assumptions about Missingness

- ▶ Missing Completely at Random (MCAR)
 - Only analyze complete cases
 - What we know and what we are missing are completely independent
 - Generally appropriate if less than 5% missing
- ▶ Missing at Random (MAR)
 - Missing data and observed data are related through some other information
 - We can explain what we are missing with the information we have

Sandia
National
Laboratories

Problems with Assuming MCAR

- ▶ Most stats software packages omit observations with missing information from the estimation model
- ▶ Discards a vast amount of information
 - Almost 40% in our example!
- ▶ Introduces bias to the extent that the observed cases differ systematically from missing cases and inefficiency from loss of information

Sandia
National
Laboratories

Ad Hoc Methods

- ▶ Listwise deletion
 - Our estimates are incorrect
 - Wrong magnitudes, signs, significance, standard error; non-representative sample
- ▶ Mean, median, mode substitution
 - Our estimates are incorrect
 - Distorts covariance = biased estimates toward zero
 - Treats “guesses” as if they were real data
 - Does not account for uncertainty

Sandia
National
Laboratories

Multiple Imputation (MI)

- ▶ MI is the state of the art technique for handling missing data in the social sciences
- ▶ MI handles missing data in advance of modeling
- ▶ Run $M > 1$ Monte Carlo simulations of complete data
 - Results in M plausible but different versions of complete data
 - Analyze the results
 - Average parameters across the datasets

Sandia
National
Laboratories

MI: Technical Details

- ▶ Standard errors are averaged,
 - Equation contains elements that reflect the uncertainty due to missing data
- ▶ MI estimates are
 - Consistent, normal, efficient and valid
- ▶ As M increases, MI estimates become more efficient
 - $M \geq 5 \text{ & } \leq 10$ is standard practice

Sandia
National
Laboratories

MI: Optimizing the Technique

- ▶ Auxiliary Variables are KEY!
 - Variables not included in the final estimation model that are used in the imputation model
 - Based on theory and lags and leads
 - Ensures that data is MAR
 - Include more, rather than less (~20)

Sandia
National
Laboratories

MI: Pros and Cons

- ▶ Most (only) ‘sound’ statistical method for handling missing data
- ▶ Can create high correlations among variables
- ▶ Can lead to nonsensical predictions
 - Negative military expenditure
 - This gets less likely as auxiliary information improves
- ▶ No clear guideline for how much missing data is too much missing data

Sandia
National
Laboratories

MI in STATA

```
. ice milex-gro, m(5) clear persist
```

#missing values	Freq.	Percent	Cum.
0	141	64.38	64.38
1	55	25.11	89.50
2	1	0.46	89.95
.	22	10.05	100.00
Total	219	100.00	

variable	Command	Prediction equation
milex	regress	gdp gro
gdp		[No missing data in estimation sample]
gro	regress	milex gdp

Imputing1.....2.....3.....4.....5
[note: imputed dataset now loaded in memory]

warning: imputed dataset has not (yet) been saved to a file

Sandia
National
Laboratories

	year	cname	milex	gdp	gro	_mi	_mj	
9	2008	Albania	1.97151	4076.4	7.7	2	2	
10	2008	Albania	1.97151	4076.4	7.7	2	3	
11	2008	Albania	1.97151	4076.4	7.7	2	4	
12	2008	Albania	1.97151	4076.4	7.7	2	5	
13	2008	Algeria	3.02494	4966.57	2.4	3	0	
14	2008	Algeria	3.02494	4966.57	2.4	3	1	
15	2008	Algeria	3.02494	4966.57	2.4	3	2	
16	2008	Algeria	3.02494	4966.57	2.4	3	3	
17	2008	Algeria	3.02494	4966.57	2.4	3	4	
18	2008	Algeria	3.02494	4966.57	2.4	3	5	
19	2008	Andorra	.	44952.4	3.57074	5	0	
20	2008	Andorra	.702315	44952.4	3.57074	5	1	
21	2008	Andorra	3.61675	44952.4	3.57074	5	2	
22	2008	Andorra	.186436	44952.4	3.57074	5	3	
23	2008	Andorra	2.31893	44952.4	3.57074	5	4	
24	2008	Andorra	.042755	44952.4	3.57074	5	5	
25	2008	Angola	2.87967	4666.74	13.8	6	0	
26	2008	Angola	2.87967	4666.74	13.8	6	1	
27	2008	Angola	2.87967	4666.74	13.8	6	2	
28	2008	Angola	2.87967	4666.74	13.8	6	3	
29	2008	Angola	2.87967	4666.74	13.8	6	4	
30	2008	Angola	2.87967	4666.74	13.8	6	5	
31	2008	Antigua and Barbuda	.	13850.1	.172689	7	0	
32	2008	Antigua and Barbuda	2.13729	13850.1	.172689	7	1	
33	2008	Antigua and Barbuda	.963058	13850.1	.172689	7	2	
34	2008	Antigua and Barbuda	3.68883	13850.1	.172689	7	3	
35	2008	Antigua and Barbuda	3.49828	13850.1	.172689	7	4	
36	2008	Antigua and Barbuda	.0875	13850.1	.172689	7	5	

References

- ▶ Collins, Linda M., Joseph L. Schafer, and Chi-Ming Kam. 2001. A Comparison of Inclusive and Restrictive Strategies in Modern Missing Data Procedures. *Psychological Methods* 64330–351.
- ▶ Honaker, James, and Gary King. 2010. What to Do About Missing Values in Time-Series Cross-Section Data. *American Journal of Political Science* 54 (2):561–581.
- ▶ King, Gary, James Honaker, Anne Joseph, and Kenneth Scheve. 2001. Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation. *The American Political Science Review* 95 (1):49–69.
- ▶ Little, Roderick J. A. 1988. A Test of Missing Completely at Random for Multivariate Data with Missing Values. *Journal of the American Statistical Association* 83 (404):1198–1202.
- ▶ ———. 1992. Regression with Missing X's: A Review. *Journal of the American Statistical Association* 87 (December):1227–37.
- ▶ Little, Roderick J. A, and Donald B. Rubin. 2002. *Statistical Analysis with Missing Data*. New York.

Sandia
National
Laboratories

- ▶ Rubin, Donald B. 1987. *Multiple Imputation for Nonresponse in Surveys*. Edited by V. Barnett, R. A. Bradley, J. S. Hunter, D. G. Kendall, A. F. M. Smith, S. M. Stigler and G. S. Watson, *Wiley Series in Probability and Mathematical Statistics*. New York: John Wiley & Sons.
- ▶ ———. 1996. Multiple Imputation after 18+ Years. *Journal of the American Statistical Association* 91 (434):473–489.
- ▶ Rubin, Donald B., and Roderick J. A Little. 1987. *Statistical Analysis with Missing Data*. Edited by V. Barnett, R. A. Bradley, J. S. Hunter, D. G. Kendall, R. G. Miller, A. F. M. Smith, S. M. Stigler and G. S. Watson, *Wiley Series in Probability and Mathematical Statistics*. New York: John Wiley & Sons.
- ▶ Schafer, Joseph L. 1997. *Analysis of Incomplete Multivariate Data*. New York: Chapman & Hall.

Sandia
National
Laboratories

MI: Technical Details Appendix

- ▶ MI estimates are generated using the Markov Chain Monte Carlo (MCMC) algorithm based on linear regression
- ▶ Predicted values based on regression (logit, etc.) and random draws made from a simulated error distribution
 - Errors are added to the predicted value
- ▶ Values with no missing data remain the same in each M dataset

Sandia
National
Laboratories