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Introduction

» Datasets, particularly in the social sciences,
are notoriously incomplete

» Standard estimation techniques do not
account for this missingness

» Our resulting models are likely incorrect = we
make the wrong conclusions!
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Example: Nuclear Detection

Architecture Index

» Ranks countries’ social/political /security
aspects for detecting and deterring threats to

nuclear security
» Example: all countries in the world for 2008

Variable % Missing
Military expenditure (% GDP) 35
GDP per capita (US$) 10
GDP growth (annual %) 11
Total 37
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Assumptions about Missingness

» Missing Completely at Random (MCAR)
> Only analyze complete cases

- What we know and what we are missing are
completely independent

o Generally appropriate if less than 5% missing

» Missing at Random (MAR)

- Missing data and observed data are related through
some other information

- We can explain what we are missing with the
information we have
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Problems with Assuming MCAR

» Most stats software packages omit
observations with missing information from
the estimation model

» Discards a vast amount of information
o Almost 40% in our example!

» Introduces bias to the extent that the
observed cases differ systematically from
missing cases and inefficiency from loss of
information
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Ad Hoc Methods

» Listwise deletion
o Qur estimates are incorrect
- Wrong magnitudes, signs, significance,
standard error; non-representative sample

» Mean, median, mode substitution
o Qur estimates are incorrect

- Distorts covariance = biased estimates toward
Zero

- Treats “guesses” as if they were real data

- Does not account for uncertainty
Sandia
National
Laboratories




Multiple Imputation (Ml)

» Ml is the state of the art technique for
handling missing data in the social sciences

» MI handles missing data in advance of
modeling

» Run M>1 Monte Carlo simulations of
complete data
o Results in M plausible but different versions of

complete data
o Analyze the results
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MI: Technical Details

» Standard errors are averaged,

- Equation contains elements that reflect
the uncertainty due to missing data

» Ml estimates are
o Consistent, normal, efficient and valid

» As M increases, Ml estimates become

more efficient
oM >=5 & <=10 is standard practice
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MIl: Optimizing the Technique
» Auxiliary Variables are KEY!
- Variables not included in the final

estimation model that are used in the
imputation model

- Based on theory and lags and leads
o Ensures that data is MAR

o Include more, rather than less (~20)

(M)
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MI: Pros and Cons

» Most (only) ‘sound’ statistical method for
handling missing data

» Can create high correlations among variables

» Can lead to nonsensical predictions
o Negative military expenditure

> This gets less likely as auxiliary information
Improves

» No clear guideline for how much missing data

IS too much missing data
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Ml in STATA

. ice milex-gro, m(5) clear persist

#missing
values Freq. Percent

0 141 o4. 38
1 33 25.11
2 1 0.46
22 10.053

Total 219 100. 00

variable | Ccommand | Prediction equation

milex | regress | gdp gro
gdp [No missing data in estimation sample]
gro | regress | milex gdp

Imputing
[note: imputed dataset now loaded in memory]
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MI: Technical Details Appendix

» M| estimates are generated using the Markov
Chain Monte Carlo (MCMC) algorithm based
on linear regression

» Predicted values based on regression (logit,
etc.) and random draws made from a
simulated error distribution

o Errors are added to the predicted value

» Values with no missing data remain the same
in each M dataset
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