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Overview ki

= We are interested in matrix computations to analyze large
graphs on distributed-memory supercomputers
= |n particular, eigensolvers

= Qur focusis on SpMV, a kernel in iterative methods

We present results of various data distribution strategies for
distributed-memory computing on scale-free graphs.

= 1D vs 2D matrix layout

= Use of graph and hypergraph partitioners

We present a new method combining (hyper)graph partitions
with 2D distributions, and show its benefit for scale-free
graphs.
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Background

= Large graphs/networks
are pervasive

= WWW, social networks
= Often scale-free

= Power-law degree distr.
= Small diameter

= Very different from PDE
discretizations

= Need to adapt scientific

computing methods and

tools? BGP graph (credit: Ross Richardson, Fan Chung)
http://math.ucsd.edu/~fan/graphs/gallery
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Matrix Computations: SpMV is key W&

= Linear algebra is a useful analysis tool for graphs
= Both adjacency matrix and graph Laplacian are of interest
= Spectral analysis using extreme eigenpairs
= SpMV is core kernel in iterative methods

= Sparse matvec (SpMV) is bottleneck for scale-free graphs on
large distributed-memory computers
= High-degree vertices cause lots of communication

= Some processors need to communicate with almost all other
= Using conventional data distributions
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Partitioning

Graph partitioning generally reduces communication for
SpMV
= Hypergraph model exactly models communication volume (Catalyurek
& Aykanat, 2000)
Graph partitioners are widely regarded as ineffective on
scale-free graphs

= Software tools (e.g., Metis, Scotch, Zoltan) were designed for meshes
and PDE discretizations

= Not optimized for scale-free graphs
= Focus has been on communication volume
" We wish to reduce both #messages and communication volume
Partitioning strategy depends on type of distribution
= 1D (vertex-based) vs. 2D (edge-based)
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1D and 2D Matrix Distributions

We view graphs as sparse matrices. I
= 1D (vertex) distribution:
= Entire rows (or columns) of matrix assigned to a
processor I

= Same mapping used for vectors 1D row-wise matrix
distribution; 6 processes

= Required in most software

= 2D (edge) distribution:

= Cartesian layout limits #messages per process to

0(p)

Long used in parallel dense solvers (Scalapack)

Beneficial also for sparse matrices (Fox et al. ‘88,
Lewis & van de Geijn ‘93, Hendrickson et al. "95) I

’ . 2D matrix
Yoo et al. (SC'11) demonstrated benefit over 1D yistribution; 6 processes

layouts for eigensolves on scale-free graphs
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Benefit of 2D Matrix Distribution

= During matrix-vector
multiplication, communication
occurs only along rows or
columns of processors.
= Expand (vertical):
Vector entries x; sent to

column processors to compute
local product y? = AP x

= Fold (horizontal):
Local products y? summed along

FOW Processors; y = 2.yP

= |n 1D, fold is not needed, but
expand may be all-to-all.
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Benefit of 2D Matrix Distribution

= During matrix-vector
multiplication, communication
occurs only along rows or
columns of processors.
= Expand (vertical):
Vector entries Xj sent to

column processors to compute
local product y? = AP x

= Fold (horizontal):
Local products y?» summed along

FOW pProcessors; y = 2.yP

= |n 1D, fold is not needed, but
expand may be all-to-all.




Trilinos Computational
Science Toolkit

= Heroux et al., Sandia

Trilinos Capabilities:
= Scalable Linear & Eigen Solvers
= Discretizations, Meshes & Load Balancing
= Nonlinear, Transient & Optimization Solvers
= Software Engineering Technologies & Integration

Trilinos features:
= Block-based data structures and algorithms
= Block-based linear and eigen solvers use “multivector” data structures.
= Toolkit/package-based design
= Packages can be combined, but not all of Trilinos is needed to get work done.

In this project, we use Trilinos’...
Distributed Matrix/Vector classes Epetra and Epetra64
Eigensolver package Anasazi
Linear solver package Belos
Preconditioning package Ifpack
Utilities package Teuchos (e.g., communicators, parameters, ref-counted pointers)




Trilinos: Petra Object Model

Maps describe the
distribution of global IDs for
rows/columns/vector entries
to processors.

Four maps needed in most
general case:

= Row map for matrix

= Column map for matrix

= Range map for vector

= Domain map for vector

Implemented in Epetra (and
Tpetra) packages

Allows 2D distributions!

Rank 3 (Blue)

Row Map = {4, 5, 8}
Column Map = {4, 5, 6, 7}
Range/Domain Map = {4,
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1D vs 2D Strong Scaling Experiments

Compare times for matrix-vector multiplication with 1D and 2D distributions
Hera cluster at LLNL (AMD quad-core, quad-socket Opteron processors

operating at 2.2/2.3 GHz)

Matrices from the University of Florida matrix collection
Symmetrized and largest connected component extracted

Name Description

Hollywood-2009 Hollywood movie actor network
(Boldi, Rosa, Santini, Vigna)

Wikipedia-20070206 Links between wikipedia pages
(Gleich)

Ljournal-2008 Livedournal social network
(Boldi, Rosa, Santini, Vigna)

Whb-edu Links between *.edu webpages
(Gleich)

Cit-Patents Citation network among US
patents (Hall, Jaffe, Trajtenberg)

Number of

Rows

1.1M

3.5M

5.6M

8.9M

3.8M

Sandia
m National
Laboratories

Number of

Nonzeros

113M

85M

99M

88M

33M




1D vs 2D Strong Scaling experiments

For each matrix:
Blue = Trilinos 1D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)
Red = Trilinos 2D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)

Times are normalized to the 1D 16-processor runtime for each matrix.
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Randomization

= Oninput, randomly permute matrix rows/columns
= Eliminates any inherent structure in input file (e.g., high degree nodes first)
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= Gives better balance in number of nonzeros per processor for 1D and 2D

= But can drastically increase communication volume

liveJournal matrix (4M rows; 73M nonzeros) on 1024 processes

Method

Imbalance in nonzeros
(Max/Avg per proc)

Max #
Messages
per SpMV

Comm. Vol.
per SpMV
(doubles)

100 SpMV
time (secs)

1D-Block

12.8

1023

34.5M

2.14

1D-Random

1.3

1023

55.3M

1.52

2D-Block

62

43.4M

0.95

2D-Random

64.2M




Advanced 2D Partitioning Methods @

The Cartesian 2D block distributions are simple to compute but
ignore the structure of the graph. Can we do better?

= Coarse-grain hypergraph (Catalyurek & Aykanat ‘01)
= Cartesian product, but expensive to compute
= Requires multiconstraint hypergraph partitioning

= Fine-grain hypergraph (Catalurek & Aykanat ’01:'-1. T

= Assign each nonzero separately, not Cartesian T . _-_ .
= Larger hypergraph, impractical for big problems %’é,%/ e, _
= Mondriaan (Vastenhouw & Bisseling ‘05) "j %,:f’“’o@%
= Recursive hypergraph partitioning _ 1-_ j:‘%,f%o’
= Only serial software available - %%; @“’%,:”64
al = o
B -
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New idea: Graph Partitioning + 2D ®&=.

Cartesian 2D block distributions limit #messages but ignore
structure of the graph.

(Hyper)Graph partitioning (e.g., Zoltan, ParMETIS, Scotch) balances
work (nonzeros per process) while attempting to minimize total
communication volume.

= Often thought to be ineffective on scale-free graphs
Our idea: Apply (hyper)graph partitioning and 2D distribution
together
= Compute vertex-based partition of graph using ParMETIS or Zoltan
= Apply 2D distribution to the resulting “coarse graph”

Advantages:
= Balance the number of nonzeros per process
= Exploit structure in the graph
to reduce communication volume
= Reduce the number of messages via 2D distribution
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2D Graph Partitioning (Figure)

= Partition original graph into  Generally, diagonal blocks
p parts of A" will be denser:

= Using standard (hyper)graph
partitioner
= Implicitly, let A" = PAPT

= Where P is permutation from
partitioning above

= Assign A’ to processes using
Cartesian 2D layout




2D-GP: Graph partitioning with 2D
Distribution
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1D-Block

1D-Random

2D-Block

2D-Random




Strong scaling
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Orkut social network
3.1M rows; 237M nonzeros
Max nonzeros/row = 33K

Patent citations network
3.8M rows; 37M nonzeros
Max nonzeros/row = 1K
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Performance Profile

= 10 matrices: 1.1M-67.5M rows; 36 M-1.6B nonzeros
= 2D-GP/HP best in all but one experiment

= Benefit of 2D greatest for large numbers of processes

All runs: 64-4096 prq

0.9

o

Fraction of problems
o o

o
()

1D-Block
—6— 1D-Random
—— 1D-GP/HP
—v— 2D-Block
—&— 2D-Random

—#— 2D-GP/HP
—

8 10

<
(%)

Relative Time to the best method




Weak Scaling

= R-MAT matrices (Chakrabarti et al., 2004) with Graph-500

parameters (a=0.57; b=c=0.19; d=0.05)

= rmat_22 on 256 procs
= 4.2M vertices
= 38M edges

= rmat_24 on 1024 procs
= 16.8M vertices
= 151M edges

= rmat_26 on 4096 procs
= 67.1M vertices
" 604M edges

= 2D-HP maintains best
weak scaling.
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Eigensolver Experiments LUl

rmat 26

= Anasazi Toolkit in Trilinos 100

= Baker, Hetmaniuk,
Lehoucq, Thornquist; ACM
TOMS 2009

= Block-based eigensolvers:
Solve AX = XA\ or AX = BXA
= Experiment:

= Find 10 largest eigenvalues
of Laplacian using Block
Krylov-Schur (BKS) solver

Solve Time(secs)
=

" rmat_26 matrix: 67.1M 1
rows; 604M nonzeros 64 256 1024 4096

= HP = Hype rgra ph Number of Processes

partitioning in Zoltan —-1D-Block -#-]D-Random —*-1D-HP
—<2D-Block ~@-2D-Random ——2D-HP
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Conclusions

= 2D distribution has clear benefit for scale-free graphs,
especially at high process counts.

» Reduces max number of messages per process

= 1D (hyper)graph partitioning is effective on scale-free graphs
for moderate number of processes
= Good load balance, low communication volume
= Combining 2D distribution with (hyper)graph partitioning
gives best results.
= Low number of messages, low communication volume, low imbalance
= Allows reuse of existing partitioning software
= SpMV times reduced up to 80% (but partitioning times higher)

= Future work:
= Compare to other “advanced” 2D partitioning methods.
= Evaluate for BFS and other graph algorithms.




Extra Slides
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Performance Profile

= 10 matrices: 1.1M-67.5M rows; 36 M-1.6B nonzeros
= 2D-GP/HP best in all but one experiment

= Benefit of 2D even greater for large numbers of processes

1

All experiments: 64-4096 procs Large runs only: 1024-4096 procs
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