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Catalysis in Nanotechnology
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Chemical Transformations for Fuel Cells Exploiting those Consequences



Scaling of Chem|cal Locomotlon
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* Inertia important .
« Body forces (gravity)
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Catalysis and Asymmetry



Gradient-Based Motion

External Fields?
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Many types of fields:
(magnetic, chemical, thermal, electric)

Energy applied from external source
Ensemble behavior of all particles

Self-generated FieldsP
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Catalytically generated fields:
(chemical, thermal, electric)

Energy harvested locally
Particles move independently
Catalysis and asymmetry

a J. L. Anderson, Ann. Rev. Fluid. Mech. 1989, 21, 61-99. ® W. F. Paxton, T. E. Mallouk, A. Sen, Chem.—Eur. J. 2005, 11, 6462-6470.



A Catalytic Motor

— — Steel pin

e o R i
2H,056q) = 2H,0) + Oy

How small can we make these?

R. F. Ismagilov, A. Schwartz, N. Bowden, G. M. Whitesides, Angew. Chem. Int. Ed. 2002, 114, 674-676.



Miniaturizing Catalytic Motors

Aluminum Oxide Ag-filled Pores Au/Pt Nanorods Free Nanorods
Membrane

Optical Microscope / 500x

TEM / 2500x

| ~2 um >
W. E. Paxton, et al. J. Am. Chem. Soc. 2004, 126, 13424-13431.



Diffusion vs. Catalytic Motors

2 H,0, 2H,0+0,
- O
370 nm Pt
¥
¢ ~2 um »|
Glass
Pt/Au rods in H,O (DlI) Pt/Au rods in 3% H,0,

W. F. Paxton, et al. J. Am. Chem. Soc. 2004, 126, 13424-13431.



Catalysis and Asymmetry




H,O, Concentration Effect

Average Axial
H,O,  Speed Velocity
(%) (um/s) cos(®) (um/s)
5 8 0.8 6.6
3 8 0.8 6.6
1.5 6 0.7 3.8
0.3 5 0.6 3.4
0.03 4 0.2 0.9
0 3 0.01 0.0

W. F. Paxton, et al. J. Am. Chem. Soc. 2004, 126, 13424-13431.
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Why Do They Swim?

Bubble Propulsion?

@ 1 2~2(aq)
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No bubbles near motors
Predicts motion in wrong direction

Diffusiophoresis?ab /
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Pushes particle to . O, gradient acts on end
lower concentration region Predicted motion:
aM. M. Lin, D. C. Prieve, J. Colloid Interface Sci. 1983, 95, 327-339. — toward gold (to low C)
b J. L. Anderson, Ann. Rev. Fluid. Mech. 1989, 21, 61-99. — speed <4 nm/s

¢W. F. Paxton, T. E. Mallouk, A. Sen, Chem.—Eur. J. 2005, 11, 6462-6470.



Electrokinetic Phenomena
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W. F. Paxton, T. E. Mallouk, A. Sen, Chem.—Eur. J. 2005, 11, 6462-6470.



Electrokinetic Mechanisma.b

H 2H,0 o)

\ |
OnPt: H,0, = O, + 2H* + 2e v — ceE
On Au: H202 + 2Ht + 2 — HZO IL[

a

W. E. Paxton, T. E. Mallouk, A. Sen, Chem.—Eur. J. 2005, 11, 6462-6470.
b\W. F. Paxton, et al. J. Am. Chem. Soc. 2006, 128, 14881-14888.



Measuring Current in Small Systems

 Pt/Au motor

 Interdigitated Array \insulator
» baseline: <0.00001 A/m?
« water: ~0.00001 A/m?
« 0.6% H,0,: 0.27 A/m?
+ 3% H,0,: 0.53 A/m? H0, sol'n

* Predicted Electric Field (E=J/o)
« J=0.53A/m?
e 6=4.1uS/cm
« E=13.1V/cm

W. F. Paxton, et al. J. Am. Chem. Soc. 2006, 128, 14881-14888.



Rod Speed vs. Conductivity

v="—K1 As conductivity
H increases,
velocity should
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slowing due to increased conductivity

W. F. Paxton, et al. J. Am. Chem. Soc. 2006, 128, 14881-14888.

PtAu rods / 3% H,0,
¢ +

PtAu rods / 3% H,0, / 3 mM NaNO,




From Motors to Micropumps

B = e Suspended motor

Motor moves itself.
<= fluid * Immobilized motor
IS moves surrounding
fluid.

Micropump



Catalytic Fluid Pumping

Au

—

» Motion depends on particle charge ()

in

— 1 * Insulator shuts motion “off”
H"&) Strongly suggests
— electrokinetics

T. R. Kline, W. F. Paxton, Y. Wang, D. Velegol, T. E. Mallouk, A. Sen, J. Am. Chem. Soc., 2005, 127, 17150 -17151.



Microelectrode Experiments

* O, gradient:
motion independent of switch.

 Electrokinetics:
“off” = diffusion only
“on” = linear motion

H,0O, sol'n
+ gold rods




Catalytically Induced Electrokinetics

V :J%+%p

obs

(
Vopbs ~ \é/w_é/p)

out of focus

P 4

Electroosmosis
dominates when

Vobs ‘gw‘ > ‘é/p‘

W. F. Paxton, et al. J. Am. Chem. Soc. 2006, 128, 14881-14888.

| -60mV | >|-40 mV |



Electric Field and Motility Comparison

Applied electric field (E = 18 V/cm)

J |
Self-generated field (E = 13 V/cm)
Gold particles (I = 1-2 um; d = 400 nm)

W. E. Paxton, et al. 3. Am. Chem. Soc. 2006, 128, 14881-14888.



Tracer Speed vs. E-Field
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W. F. Paxton, et al. J. Am. Chem. Soc. 2006, 128, 14881-14888.



And Then What Happened?

« H*

« fluid flow

W. F. Paxtont al. Chem. Eur. J. 2005, 11, 6462-6470.

Langmuir 2006, 22, 10451-10456.

No
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T. R. Kline, W. F. Paxton,
Angew. Chem. Int. Ed. 200
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S. Sundararajan et al. Nano Lett. 2008, 8, 1271-1276. Y. Wang et al. J. Am. Chem. Soc. 2009, 131, 9926-9927.



Catalytically Induced Electrokinetics

« Motors to power nanoscale machines

Pt/Au particles in H,O, solutions: smallest
autonomous non-biological motor

Motion due to catalytically-induced
electrokinetics

* Micropumps to pump fluid on chip

No moving parts Ui
Fluid/tracer velocity a function of electric field <= flui
(E=J/0) ﬁ

Energy supplied locally and chemically Micropump

 Motion due to bimetallic redox

chemistry:
Pt/Au rods in H,O, act as miniature fuel cells  €d-: = OX.
Rod speed a function of catalytic activity
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Now, you might say, “Who should do this and
why should they do it?” Well, | pointed

out a few of the economic applications, but |
know that the reason that you would do it
might be just for fun. But have some fun!




A Tale of Two Projects...

Autonomous Motion of Catalytic Nanorods

« H*
« fluid flow

-)-

Surface Functionalization Using Click Chemistry

Azide-Bearing Functionalized
Surface Surface
s

N-N  N-N

Molecular
Probe




