

Lifecycle Management of Security Equipment and Infrastructure

Consuelo Silva
Sandia National Laboratories

November 2011

Discussion Overview

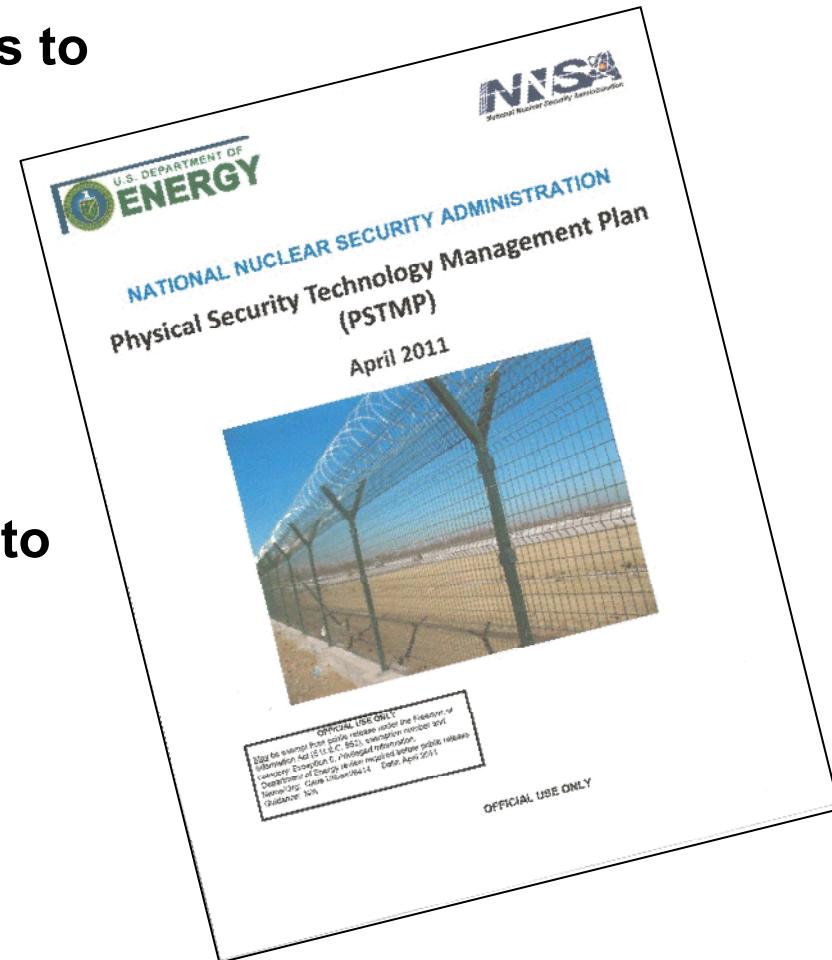
- **Defense Nuclear Security (DNS) Program systems challenges**
- **Security infrastructure elements**
- **Lifecycle management benefits**
- **Lifecycle management planning**
- **Developing the DNS lifecycle management program**
- **Conditions assessments**
- **Preventative maintenance**
- **Performance testing**
- **Sustainment**
- **Summary**

DNS Security System Challenges

- DNS security systems program suffered in the past – each site left to its own to manage the security systems portfolio
- Sites failed to invest in lifecycle replacement
 - Most sites had a “run to failure” approach for security systems
- Most sites did not have a comprehensive picture of the entire site-level security systems profile
- Security vulnerabilities associated with substandard systems were unknown
- Lifecycle planning was nonexistent
- NNSA inherited a large “mortgage” associated with the need to invest in complete replacement of security systems across all sites

Security Infrastructure Elements

- **Security infrastructure includes:**
 - Security posts – facility maintenance and repair
 - Perimeter intrusion detection and assessment systems
 - Command, control and communications systems
 - Primary and auxiliary power sources
 - Metal and explosive detection systems, x-ray machines and SNM monitors
 - Lighting systems
 - Fences, gates, doors and turnstiles
 - Interior intrusion detection systems
 - Biometric identification and badge reading systems
 - Protective forces equipment
 - Security vehicles


Lifecycle Management Benefits

- **Successful use of lifecycle management will:**
 - Identify current and future infrastructure needs
 - Identify potential problems, risks and constraints
 - Identify impacts of various courses of action
 - Influence preliminary designs for security facilities
 - Support strategic planning and budgeting for security infrastructure

Lifecycle Management Planning

- **Life-cycle management identifies costs to support security systems, including:**
 - **Planning**
 - **Operations**
 - **Testing and Maintenance**
 - **Replacement**
- **Understanding life-cycle costs is vital to strategic planning and budgeting**
 - **All costs are known and validated**
 - **Helps schedule expenditures**
 - **Identifies return on investment**

Developing the DNS Lifecycle Program

1-3 years

- Implement Process to Create Technology Management Plan
- Develop Complex-Wide NNSA & Site Relationships
- Collect Deployed Technology Data
- Conduct Technology Condition Assessments
- Security System Considerations Designed in from the Start

2-5 years

- Develop Complex-Wide Investment Strategies
- Make Complex-Wide Technology Deployment Decisions
- Create Budget Calls that include Lifecycle Components
- Security System Considerations Designed in from the Start

Out-years

- Maintain Lifecycle Budgeting for Technology Investments
- Implement Full Technology Standardization
- Maintain Complex-Centric Perspective
- Sustain Deployed Technology

Condition Assessment for Installed Systems

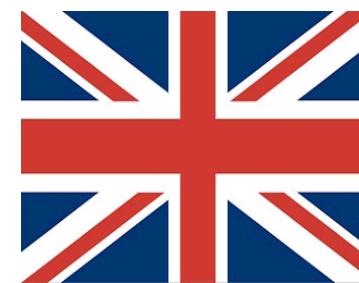
- **Development of a comprehensive listing of security infrastructure “elements” provides the foundation**
 - Databases using “standard” descriptors is key to collecting useful data
- **Use of vendor data is often not useful in predicting replacement frequency needs**
 - Deployed operational conditions and maintenance attention drives repair and replacement needs
- **Data-mining repair frequency can help identify systems in need of lifecycle replacement**
- **Comprehensive analysis and risk ranking is required to prioritize replacement schedules**


Security Systems Maintenance

- Both preventive and corrective maintenance activities are vital to assuring high system effectiveness
 - Preventative maintenance is required to assure that critical security systems operate per requirements
 - Corrective actions are high priority for identified equipment
 - Compensatory measures are required until repairs are complete, performance is tested and the system/item is back in service

Performance Testing Program

- Testing can provide useful reliability and performance data to guide lifecycle replacement decisions
- Validation of security functions involves:
 - Operability testing
 - Performance testing reliability for:
 - New systems
 - Maintenance
 - Protective Force changes in operations
- Use of “two-person” testing capability to mitigate “insider” concerns


Sustainment of the Lifecycle Program

- Program sustainment has many related activities
 - Identification of appropriate requirements to meet operational requirements and security needs
 - Adequate and sustained funding is critical
 - Needs must be prioritized by balancing risk and available funding
 - Preventive and scheduled maintenance increases physical security systems life span and reduces life cycle infrastructure costs

Summary

- **Security systems provide a critical capability for nuclear security operations and must meet the highest possible reliability standards**
- **Lifecycle replacement programs require a comprehensive understanding of the installed systems and a formal management approach to ensure they meet the required performance standards**
- **DNS has developed and is implementing the Physical Security Technology Management plan that identifies, analyzes, plans for, funds, and replaces security infrastructure**

QUESTIONS?