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Hydrogen interaction with materials is 

relevant to: 

• Tritium storage 

• Hydrogen energy infrastructure 

• Magnetic fusion energy 

 

In this talk, I will discuss: 

– Tritium retention in metals 

– Experimental motivation 

– Continuum-scale bubble model 

The basic physics governing how hydrogen 

behaves in different materials can be applied 

to a wide range of systems. 

Overview 
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Magnetic fusion energy program couples with other  

hydrogen research at Sandia 

Basic concept: 

Same as 

hydrogen bomb 

 

ITER: 

international 

fusion project 

(€ 15 billion) 

 

Key issue: 

Trapped tritium 
ITER baseline design 

We leverage Sandia tritium 

and GTS expertise for 

fusion: 

• Simulate neutron damage 

• Understand tritium trapping 

• Model bubble growth 

Common interest benefits 

the science behind GTS: 

• Fosters collaboration 

• Provides access to 

international expertise 

• Outside funding to enhance 

capabilities 

Interior view showing plasma discharge 
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Experimental motivation:  

Understanding tritium retention in metals 

Unique features 

• Only high-flux tritium plasma 
generator in the world 

• Handles neutron irradiated 
samples 

• Plasma-driven permeation 

• Tritium surface/depth profiling 

Experiment History: 

• Developed at SNL, later moved to 
INL (2002). 

• Implant high concentrations of tritium 

into materials 

• Study tritium trapping and 

permeation 

• Joint experiment between Sandia and 

Idaho National Laboratory (INL) 
Plasma column created by a reflex-arc discharge 

TPE glove box 
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Thermal desorption spectroscopy enables us to 

measure the total tritium inventory 

Install 

target 

Remove 

sample 

Post-exposure analyses 

Thermal desorption 

spectroscopy 
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TPE contributes to understanding tritium  

retention at high concentrations 
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Tritium inventory as a function of ion beam fluence. 

Retention measurements:  Used to 

predict tritium accumulation in reactors 

TPE 

Retention variation with 

temperature: 
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• Existing models over-predict 

retention 

• Extrapolations to higher 

fluence questionable 

What materials science are we 

missing? 
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profilometery reveals that small  

hydrogen bubbles have grown 

(a)147 ºC

W08a

1.2

0.8

0.4

0.0

(b)173 ºC

W08b

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

(d)449 ºC

W08c

5

4

3

2

1

0

-1

-2

(c)385 ºC

W08d

4

3

2

1

0

-1

(f)704 ºC

W08f

3

2

1

0

height

(mm)

height

(mm)
height

(mm)

height

(mm)

height

(mm)

561 ºC (e)

W08e

8

6

4

2

0

-2

height

(mm)

• Difficult to keep hydrogen in solution in W. 

• Precipitation of H2 in bubbles preferred. 

• Trapping by bubbles inhibits permeation. 

• Standard models (TMAP7, DIFFUSE) don’t account for 

bubble growth and precipitation. 

Note:  

Each panel 

depicts a  

500 μm × 500 

μm area. 
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Hydrogen precipitate growth in tungsten: 

experimental findings 
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Bubble growth mechanisms: 

•  Crack propagation  

•  Dislocation loop punching 

•  Vacancy clustering 

Focused ion beam (FIB) results: 

•  Profiled PLANSEE W previously exposed 

in TPE:  

•70 eV D+ ions 

•Φ=1.1×1018 cm-2s-1 

•F=8.7×1021 cm-2 

•T=385 °C.  

•Large blister in (b) enlarged by crack 

growth. 

•  Small blister in (c) has grown by 

dislocation  loop punching.  

•  FIB profile of re-crystallized tungsten  

exposed under similar conditions shown in 

(d).  Image from [Lindig et al., Phys. Scr. 

(2009).]  Growth mechanism also appear to 

be due to dislocation loop punching. 
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Continuum-scale finite difference model  

enables simulations of bubble growth 

Motivation for further model development: 

•  DFT, MD, and Kinetic Monte Carlo reveal key nucleation and growth 

mechanisms. 

• Incorporate insight into continuum approach to model experimental 

environment 

• Existing continuum models (TMAP, DIFFUSE) exclude important physics 

(e.g. precipitation) 

Precipitation affects hydrogen diffusion in metals [W.R. Wampler, Nucl. 

Fusion (2009)] 

We leverage metal tritides expertise at Sandia from 3He bubble growth 

models [D.F. Cowgill, Fusion Sci. & Technol. (2005)] 

Altered to simulate hydrogen bubbles: 

• Different nucleation process [Henricksson Appl. Phys. Lett. (2008).] 

Use experiments to refine model. 
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Diffusion and trapping were modeled  

using a continuum-scale approach 

Diffusion: 

Basic 1-D diffusion equation assuming uniform 

temperature. 

 

Point defects: 

Point defects modeled as 1.4 eV saturable traps (not 

permitted to serve as nucleation sites for bubbles.)  

Used approach of Ogorodnikova [J. Nucl. Mater. 

2009] to address trapping and release: 

 

δ = inverse trap saturability; Nt = trap density; Ct = H 
concentration in traps.   

Trapping by bubbles: 

Modeled using a simple approach developed by Mills 

[J. Appl. Phys. (1959)]. 
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Bubble growth by loop punching 

Loop punching condition: 

pLP ≥ 2γ/rb+μb/rb  

γ = surface energy    rb = bubble radius 

b = Burgers vector     μ = shear stress 

Plot above shows the pLP for W.  For small 
bubbles, pLP is >10 GPa.  Need equation of 
state to calculate H2 per bubble from loop 
punching stress. 
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Internal pressure within bubbles can exceed 1 GPa 
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 ideal gas
 Shimizu (1981)
 Loubeyre (1996)
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H2 solidifies

(a) (b)

H2 equation of state (EOS): 

Very high pressures (>1 Gpa) expected 

within small hydrogen bubbles.   

At 25 °C, H2 solidifies at p=5.7 GPa, 

forming an hexagonal close-packed 

molecular solid.   

•  Over the range of pressures of 

interest for this work, we found Tkacz’s 

[J. Alloys & Compounds (2002)] EOS to 

provide the best fit: 

 

 

•  San Marchi’s simplified EOS is also 

quite accurate at lower pressures: 
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Equilibrium conditions dictate  

when the bubbles will grow 
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Calculation of equilibrium pressure: 

When will the precipitate gas be in equilibrium with 

the hydrogen in solution?   

 Equate the chemical potentials of the gas phase 

and solution.   

 Account the non-ideal behavior of the gas in 

bubbles by incorporating hydrogen fugacity: 

 

 The equilibrium concentration is then given by the 

following expression: 

 

So and Hs are solubility parameters from Frauenfelder 

[J. Vac. Sci. & Tech., 1969]. 

Equilibrium conditions predict when 
precipitation is favorable. 

 
p
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Continuum-scale approach enables rapid  

solution of diffusion equation 

Assume: 

(a)Point defects saturable, do not behave as bubble nucleation 

sites. 

(b)Array of evenly-spaced sperhical bubbles. 

(c)Bubble diameter smaller than inter-bubble spacings 

(d)Slow thermal ramp (quasi-equilibrium is satisfied.) 

Array of evenly-

spaced spherical 

bubbles. 
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Basis for finite difference model: 

need to integrate three coupled PDE’s 

Governing equation (1-D diffusion w / 2 sink terms): 

 

 

 

Flow into or out of the bubbles determined by local eq. conc. 

 

 

 

Concentration at bubble surface determined by Sievert’s Law: 

 

 

 

Fugacity (requires aforementioned EOS):  

𝜕𝑢(𝑥, 𝑡) 𝜕𝑡 = 𝐷 𝑡 𝜕2𝑢 𝑥, 𝑡 𝜕𝑥2 − 𝑞𝑇(𝑥, 𝑡) − 𝑞𝐵(𝑥, 𝑡) 

𝑞𝐵 = 𝜕𝑢𝐵(𝑥, 𝑡) 𝜕𝑡 = 4𝜋𝐷 𝑡 𝑟𝐵 𝑥, 𝑡 𝑁𝐵(𝑥) 𝑢 𝑥, 𝑡 − 𝑢𝑒𝑞 (𝑥, 𝑡)  

𝑢𝑒𝑞  𝑥, 𝑡 =  𝑓𝑆0exp(−𝐸𝑠/𝑅𝑇) 

ln 𝑓 𝑝  =   𝑣(𝑝, 𝑇) 𝑅𝑇 − 1 𝑝  𝑑𝑝
𝑝

0

 

𝑞𝑇 = 𝜕𝑢𝑇(𝑥, 𝑡) 𝜕𝑡  
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Simulated bubble sizes consistent  

with experimental findings 
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Nt=4×10-5 W-1 

Nb=10-12 W-1  

F=1018 D/cm2-s, calculated near-

surface conc. at the end of range from 

F=Du/r.  

r=2.5 nm for 100 eV D+ ions 

300 K 500 K 

• Assumed a pre-existing concentration of 

nucleation sites (eventually growing into 

bubbles.) 

• Traps fill first, followed by bubble growth. 

• Using realistic input conditions, depth 

profiles consistent with experimental 

findings. 
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We have studied…. 

• Tritium trapping in metals 

– TPE used to implant a large amount of hydrogen 

– Observed hydrogen bubble growth in tungsten 

• Hydrogen bubble growth 

– Successfully adapted metal tritides code 

– Model accurately predicts bubble growth conditions 

– Further work: 

• Implementation of fast DAE solver 

• Modeling of thermal desorption from precipitates 

• Experiments to validate the model predictions 

• Application to high-temperature hydrogen attack. 

Concluding remarks 
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