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OVERVIEW

Hydrogen interaction with materials is
relevant to:

« Tritium storage
* Hydrogen energy infrastructure
« Magnetic fusion energy

In this talk, | will discuss:
— Tritium retention in metals
— Experimental motivation
— Continuum-scale bubble model

The basic physics governing how hydrogen
behaves in different materials can be applied
to a wide range of systems.



MAGNETIC FUSION ENERGY PROGRAM COUPLES WITH OTHER

HYDROGEN RESEARGCH AT SANDIA

Basic concept:
Same as
hydrogen bomb
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Key issue:

Trapped tritium

ITER baseline design Interior view showing plasma discharge
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We leverage Sandia tritium iommon intsristcljaenefi.ts
and GTS expertise for the science behind GTS:

fusion: * Fosters collaboration

« Simulate neutron damage “ Provides ac::ess to

» Understand tritium trapping 'Cr;temc?t'?”ad_eXPertlseh

« Model bubble growth utside tunding to enhance

capabilities




EXPERIMENTAL MOTIVATION:

LUNDERSTANDING TRITIUM RETENTION IN METALS

Implant high concentrations of tritium
into materials

« Study tritium trapping and
permeation

« Joint experiment between Sandia and

Idaho National Laboratory (INL)

™

N
TPE glove box

Plasma column created by a reflex-arc discharge

Unique features

*  Only high-flux tritium plasma
generator in the world

« Handles neutron irradiated
samples

« Plasma-driven permeation
« Tritium surface/depth profiling
Experiment History:

» Developed at SNL, later moved to
INL (2002).




THERMAL DESORPTION SPECTROSCOPY ENABLES US TO

MEASURE THE TOTAL TRITIUM INVENTORY
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TPE CONTRIBUTES TO UNDERSTANDING TRITIUM

RETENTION AT HIGH CONCENTRATIONS

Retention measurements: Used to
predict trittum accumulation in reactors
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Existing models over-predict
retention

Extrapolations to higher
fluence guestionable

What materials science are we
missing?




PROFILOMETERY REVEALS THAT SMALL

HYDROGEN BUBBLES HAVE GROWN

Note:
Each panel
depicts a

500 pym x 500
um area.
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« Difficult to keep hydrogen in solution in W.
« Precipitation of H, in bubbles preferred.
« Trapping by bubbles inhibits permeation.

« Standard models (TMAP7, DIFFUSE) don’t account for
bubble growth and precipitation.




HYDROGEN PRECIPITATE GROWTH IN TUNGSTEN:

EXPERIMENTAL FINDINGS

Focused ion beam (FIB) results: | | FIB CROSS-

SECTION

* Profiled PLANSEE W previously exposed i % \
in TPE: : : c

70 eV D* ions

«®=1.1X1018 cm=2s1 FIB CROSS- FIB CROSSiSECTION,
*F=8.7 X102 cm=2 .
«T=385 ° C.

Large blister in (b) enlarged by crack
growth.

« Small blister in (c) has grown by

dislocation loop punching. Bubble growth mechanisms:
 FIB profile of re-crystallized tungsten ji e qbiabagation

exposed under similar conditions shown in * Dislocation loop punching

(d). Image from [Lindig et al., Phys. Scr. « Vacancy clustering

(2009).] Growth mechanism also appear to
be due to dislocation loop punching.




CONTINUUM-SCALE FINITE DIFFERENCE MODEL

ENABLES SIMULATIONS OF BUBBLE GROWTH

Precipitation affects hydrogen diffusion in metals [W.R. Wampler, Nucl.
Fusion (2009)]

Motivation for further model develo

 DFT, MD, and Kinetic Monte Carlo reveal key nucleation and growth
mechanisms.

 Incorporate insight into continuum approach to model experimental
environment

» Existing continuum models (TMAP, DIFFUSE) exclude important physics
(e.g. precipitation)

dWe leverage metal tritides expertise at Sandia from 3He bubble growth
models [D.F. Cowqill, Fusion Sci. & Technol. (2005)]

UAltered to simulate hydrogen bubbles:
« Different nucleation process [Henricksson Appl. Phys. Lett. (2008).]
LUse experiments to refine model.




DIFFUSION AND TRAPPING WERE MODELED

USING A CONTINUUM-SCALE APPROACH

Diffusion:

Basic 1-D diffusion equation assuming uniform
temperature.

Point defects:

Point defects modeled as 1.4 eV saturable traps (not
permitted to serve as nucleation sites for bubbles.)
Used approach of Ogorodnikova [J. Nucl. Mater.
2009] to address trapping and release:

6C; (x,t)/ &t = (2Dal 3)[Cry (Ng — &t ) — (125C; / @) exp(—Ey /KT)]
0 = inverse trap saturability; N, = trap density; C, = H

concentration in traps.

Trapping by bubbles:

Modeled using a simple approach developed by Mills
[J. Appl. Phys. (1959)].

internal pressure [GPa]
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Bubble growth by loop punching

Loop punching condition:

PLp= 2ylr +ublr,

punching stress.

y = surface energy I, = bubble radius
b = Burgers vector u = shear stress

Plot above shows the p , for W. For small
bubbles, p,p is >10 GPa. Need equation of
state to calculate H, per bubble from loop

a|qanq Jad °H
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INTERNAL PRESSURE WITHIN BUBBLES CAN EXCEED 1

H, equation of state (EOS):

Very high pressures (>1 Gpa) expected
within small hydrogen bubbles.

At 25 ° C, H, solidifies at p=5.7 GPa,
forming an hexagonal close-packed
molecular solid.

« Over the range of pressures of
interest for this work, we found Tkacz’s
[J. Alloys & Compounds (2002)] EOS to
provide the best fit:

V= Ap_ll3 + Bp_2/3 +Cp_4/3 +(D + ET)p_1

« San Marchi’'s simplified EOS is also
guite accurate at lower pressures:

v:ﬂ+b
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EQUATION OF STATE
DATA FOR HYDROGEN

Experimental:
O Michels (1959)
A Mills (1977)
O Mao (1988)

Curve Fits:
— ideal gas
- -+ Shimizu (1981)
+  Loubeyre (1996)
— Tkacz (2002)
- =+ San Marchi (2007)
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1 L1 1111l

specific volume [cm3/mol]
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EQUILIBRIUM CONDITIONS DICTATE

WHEN THE BUBBLES WILL GROW

Calculation of equilibrium pressure:

O Equate the chemical potentials of the gas phase
and solution.

O Account the non-ideal behavior of the gas in
bubbles by incorporating hydrogen fugacity:

In(f /p)= [ («(p.T)/RT -1/ p)dp

0 The equilibrium concentration is then given by the
following expression:

S, and H, are solubility parameters from Frauenfelder
[J. Vac. Sci. & Tech., 1969].

Equilibrium conditions predict when
precipitation is favorable.
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CONTINUUM-SCALE APPROACH ENABLES RAPID
SOLUTION OF DIFFUSION EQUATION

Assume:

(a)Point defects saturable, do not behave as bubble nucleation
sites.

(b)Array of evenly-spaced sperhical bubbles.
(c)Bubble diameter smaller than inter-bubble spacings
(d)Slow thermal ramp (quasi-equilibrium is satisfied.)

Array of evenly-
spaced spherical
bubbles.
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BASIS FOR FINITE DIFFERENCE MODEL.:

NEED TO INTEGRATE THREE COUPLED PDE’Ss

Governing equation (1-D diffusion w /2 sink terms): ___ qr = dur(x,t)/0t
du(x,t)/ot = D(t) 0%u(x,t)/ox? —@— qg(x,t)

Flow into or out of the bubbles determined by local eq. conc.

qp = Oug(x,t)/0t = 4mwD(t)rg(x,t)Ng(x) [u(x, t) — Upq (X, t)]

Concentration at bubble surface determined by Sievert’'s Law:

Ueq (x,t) = \/FSOeXp(_ES/RT)

Fugacity (requires aforementioned EOS):
p

In(f/p) = f (w(p, T)/RT — 1/p)dp

0
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SIMULATED BUBBLE SIZES CONSISTENT

WITH EXPERIMENTAL FINDINGS

« Assumed a pre-existing concentration of -
nucleation sites (eventually growing into Nt—4"13 V\{
bubbles.) Nb=1?8 W :
- Traps fill first, followed by bubble growth. | [F=10™ D/cm=s, calculated near-
. Using realistic input conditions, depth surface conc. at the end of range from
profiles consistent with experimental F=Durr. _
findings. r=2.5 nm for 100 eV D* ions
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CONCLUDING REMARKS

We have studied....

« Tritium trapping in metals
— TPE used to implant a large amount of hydrogen
— Observed hydrogen bubble growth in tungsten

« Hydrogen bubble growth

— Successfully adapted metal tritides code

— Model accurately predicts bubble growth conditions

— Further work:
* Implementation of fast DAE solver
* Modeling of thermal desorption from precipitates
« Experiments to validate the model predictions
 Application to high-temperature hydrogen attack.
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