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Motivation and Context

www.savethewatertable.org

Hydraulic fracturing

“Gasland”

Carbon dioxide (CO2) sequestration

Schematic of geologic 
sequestration

•  Extent of reservoir damage due to 
fracking and transport of chemicals

•  Potential for caprock fracture leading to 
large-scale release back into the atmosphere



Motivation and Context

www.popsci.com

Energetic materials
•  Burn dynamics and reaction violence are 

strongly correlated with damage in 
explosive materials 
 

•  Effect of pre-igintion damage on perme-
ability of eneregetic materials

•  Model enclosure breach and calculate gas 
production

•  Determine fragmentation of confinement 
after ignition and relative energy of frag-
ments

Hobbs, Kaneshige, and 
Wente. Correlating cookoff 
violence with pre-ignition 
damage.  SAND2010-1183C

Vented confinement

Sealed confinement

Koerner,  
Maienschein, 
Burnham, and 
Wemhoff, UCRL-
CONF-232590

ODTX experiements: Evidence of 
breached confinement

SITI experiements

Goals



Theories for Damage Mechanisms

Primary drivers
•  Phase change from condensed to gas 

phase leads to material weakening
•  Thermal expansion of both the condensed 

and gas phases creates confinement pres-
surization that stresses the material

•  Pore pressure pushes bonds in the material 
apart leading to weakening (inter-grain or 
intra-grain)

•  Compounding effects like chemical reac-
tion acceleration due to increased surface 
area from damage 
 

•  Dislocation movement and void coales-
cence

•  Changes in crystal structure or packing

Second order effects
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Diagram taken from Baine 
Asay lecture notes: 
Deflagration-to-Detona-
tion Transition, Sept 2011



Coupling Approach Overview

Effective stress
•  Internal force on pores brought about by 

the fluid/gas pressure (added stress)

Damage modified permeability

x

y

•  Model race tracking and decreased resis-
tance to flow (added permeability)

•  Incorporate pore volume changes result-
ing from deformation of the solid media 
(added compressibility)
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Reference 
configuration

Reference 
configuration

Deformed 
configuration

Deformed 
configuration



Decomposition Model

Energy equation for temperature, T

Fickian diffusion

Species equation for species, X

Mass balance equation for pressure, p

Darcy’s law (momentum balance) for 
velocity, v

Reaction rate model for source, S

Arrhenius AutocatalyticPressure
dependent

Damage modified permeability

Standard Galerkin single field weak form



Deformation and Damage Evolution

Peridynamics
•  Integral based formulation rather than 

differential equations
•  Nice features regarding crack propegation 

paths
•  Scalable for massively parallel
•  Similarities with molecular dynamics
•  Efficient for large scale damage evolution
•  Can be used effectively in an explicit or 

implicit context
•  Traditional elasticity theory can be recov-

ered under the right circumstances

Images taken from 
EMU web page. 
Simulations done 
by Stewart Silling 
and co-workers

Various peridynamics simulations of 
projectile impact



Deformation and Damage Evolution

Various uses of peridynamics for  
modeling damage
•  Mechanical deformation and fracture in 

the confinement
•  Model for computing permeability due to 

damage caused by fluid-structure interac-
tion (mixture theory)

•  Cracking and void formation in the ener-
getic material

•  Combinations of the above

Flow across a porous tensile specimen

Model of energetic material, seal, and 
portion of the anvil



Deformation and Damage Evolution

Peridynamics formulation
•  Equation of motion 

 
 
 

•  Discretized equation of motion 
 
 
 
 
 

•  Material model 
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(associates bond with force 
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Peridynamics horizon



Solve 
Solve Solid

Send 
Pressure to 

Solid

Send 
Disp./Damage 

to Decomp

Time Step

Converged?
YesNo

Decomposition
Model

Coupling Approach Overview

Solution procedure

Lockstep solution procedure

Sierra solution control input block



Slow cookoff

Questions for accident scenarios
•  Will ignition occur? Or will the reac-

tion gases escape before pressurizing or 
reacting?

•  How might the enclosure fragment and 
with how much energy will the pieces 
be projected?

•  Does damage to the energetic material 
change the ignition location or the vol-
ume that simultaneously ignites?

•  How can safety mechanisms like vents 
be designed to ensure insensitive muni-
tions without inadvertently encourag-
ing reaction violence?

•  How does ullage effect reaction vio-
lence if at all?

Numerical simulations of 
the proposed method

Vent location



Experiment Description

Problem description
•  Heating drives the reaction rate which 

may or may not run away
•  Pressure causes material damage which 

allows for both pressure relaxation and 
transport of heat via fluid through the 
cracks

•  Eclosure breach or seal damage allows 
gas to escape potentially stalling  
reaction 

•  Multiphysics coupling: 
mass balance (pressure)
energy (temperature)
species transport (concentration)
peridynamics (displacements) Koerner,  

Maienschein, 
Burnham, and 
Wemhoff, UCRL-
CONF-232590

SITI device

ODTX device

Kaneshige, Renlund, 
Schmidtt, and Erikson, 
2002



Decomp Model Validation (No Damage)

ODTX with PBX-9502
•  Vary anvil temperature measure 

time to ignition
•  No pressure dependence
•  No damage model
•  No enclosure deformation
•  Assuming sealed confinement
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Decomp Model Validation (No Damage)

Time to ignition vs. anvil temperature

Temperature vs. time Species X vs. time

Ignition



Permeability Changes Due to Damage

Unconfined PBX-9501
•  Leading prediction is that permeability 

chages are mainly due to phase change
•  Pressure dependent rate model
•  Random initialization of bond strength
•  Measure average flux/pressure and back 

calculate the permeability
•  Specific permeability K/m

Reaction rate model for source, S

Darcy Flow

Local permeability model

Dirichlet BC for temperature

Dirichlet BC for temperature
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Permeability Changes Due to Damage

A

A
B

B

C

C

Plots of local permeability due to damage 
 for various points in time



Permeability Changes Due to Damage

Deformed configuration of PBX-9501 sample 
immediately prior to ignition (point B)



Confinement Breach

Stalling ignition
•  For certain cases an explosion may or may 

not occur depending on the integrity of 
the confinement

•  If reaction gases escape during heating, 
the confinement may depressurize leading 
to slower reaction rates



Damage Evolution Characteristics

Damage evolution characteristics
•  How does the material decompose in-

side the confinement at ignition?
•  How does damage propegate inside the 

energetic material?

Isosurface of damage in (top) confinement with ullage 
(bottom) confinement with no ullage  

at various times during ignition
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Fragmentation at Ignition

Fragmentation and projectile energy
•  How does ullage in the confinement af-

fect the resulting fragmentation?
•  For a given scenario, how large will the 

fragments be and with how much energy 
will they project? 



Summary and Future Work

Problems of interest
•  Enclosure breach
•  Permeability changes due to damage
•  Fragmentation of confinement

Future work
•  Experimental validation
•  Model development
•  Justification for peridynamics effective 

stress from first principles

Overview of numerical approach
•  Pore pressure / effective stress addition to 

peridynamics
•  Modified permeability based on peridyn-

amics damage criteria

Fragmentation pattern for 
simple confinement at ignition
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