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Who am I? 

 Postdoc at Sandia National Laboratories 
 Graduated UC Berkeley spring 2010 

 Research: “Scalable algorithms”  
 Interactions between algorithms and computer architectures 

 Trilinos developer since Spring 2010 
 New, fast, accurate block orthogonalization (TSQR) 

 New iterative linear solvers in progress 

 Sparse matrix I/O, utilities, bug fixes, and consulting 

 Trilinos packages I’ve worked on: 
 Anasazi, Belos, Kokkos, Teuchos, Tpetra 
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List of contributors 

 Anasazi and Belos share many contributors 
 Common initial design 

 Anasazi motivated Belos in part 

 Common lead: 
 Heidi Thornquist 

 Contributors: 
 Chris Baker, David Day, Mike Heroux, Ulrich Hetmaniuk, Sarah 

Knepper, Rich Lehoucq, Mark Hoemmen, Vicki Howle, Mike 
Parks, Kirk Soodhalter, … 



 Motivations for the two packages 

 Application-aware, architecture-aware algorithms 

 Adapt quickly to rapidly evolving computer architectures 

 

 New features (since last TUG) 

 Including new solvers! 

 

 Design evolution discussion: Help Anasazi & Belos… 

 Track architecture evolution 

 Support new solver algorithms 
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“State of the union”: Outline 



 Architecture-aware 
 “Flops are cheap, 

bandwidth is money, 

latency is expensive” 

 – Kathy Yelick 

 Favor “block” kernels that 

amortize data movement 

cost over several vectors 

• Sparse matrix times 

multiple vectors 

• Block vector operations 

 Application-driven 
 Many apps don’t just 

solve one linear system 

 Apps really solve “block” 

problems… 

• Eigenvalue clusters 

• AX = B 

• (A + ΔAj) Xj = B + ΔBj 

 Use cases: 

• Nonlinear solvers 

• Time evolution 

• Parameter studies 
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 Convergence of computational kernels and algorithms 

Support algorithms that are… 



 Older packages (Aztec(OO), ARPACK) 

 “Reverse communication” interface 

 Constrains vector (& matrix) representation 

 Anasazi and Belos  

 Only constrains algebra (interface) of operators and vectors 

 Does not constrain data representation 

 Decoupling from data representation 

 Solvers work with your favorite linear algebra library 

• Epetra, Tpetra, Thyra, yours (if you wrap it) 

 Enables evolution to different node architectures and 

programming models 

• Optimal data placement critical for performance 

• Best placement depends on the hardware 
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Abstract interface lets solvers 

track architecture evolution 
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New solvers and features 
 

 



 Algorithm: Kirk Soodhalter (Temple U, Daniel Szyld) 

 Belos implementation: Kirk S. and Mike Parks 

 Reuse basis from previous solves to accelerate 

sequences of solves 
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 Example: Tramonto 

 Fluid density functional theory 

 Hard spheres w/ electrostatics 

and attractions 

 Newton iteration: 7 solves 

 Savings: 

 1 RHS: 60 matvecs (36%) 

 3 RHS: 50 matvecs (40%) 

 

 

 

Block Recycling GMRES  

(Block GCRO-DR) 



 Algorithm: Michael Saunders (Stanford) 

 Belos implementation:  

 Sarah Knepper (Emory, now Intel) and David Day 

 LSQR solves  

 Nonsymmetric linear systems 

 Linear and damped least squares 

 Algorithmic features 

 Detects incompatible Ax=b; returns least-squares solution 

 Tolerates singular matrix A; works with nonsquare A 

 Computes sparse SVD: sharp condition number bounds 

 Fixed memory footprint (but more matvecs than GMRES) 
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LSQR: Least-squares  

solver (1 of 2) 



 Use case: Adaptive-precision solver 

 Mixed & arbitrary precision an important Belos motivation 

 Prefer single to double precision 

• Memory bandwidth and memory per node constrained on 

modern computers 

 But A may be singular in single, not in double 

 while(cond(A) > 1 / eps(prec)) { increase prec, solve again } 

 Other applications 

 Nonlinear least squares (trust region search) 

 Certain inverse problems: min || b – Ax ||2 + μ ||Lx||2 

 Software notes 

 Requires transpose: first Belos solver that does! 

 This helped us discover and fix Belos’ Epetra wrappers 
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LSQR: Least-squares  

solver (2 of 2) 



 Algorithm: Paige and Saunders 

 Belos implementation: Nico Schlömer 

 With help from Heidi Thornquist and Mark Hoemmen 

 Solves symmetric indefinite linear systems 

 Fixed memory footprint 

 Result of Nico’s TUG 2010 presentation! 

 Nico: “You can see CG deflating the negative eigenvalues…” 

 me: [cringes visibly] 

 Inspired Nico to contribute MINRES implementation 
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MINRES: Linear solver 



 Tall Skinny QR (TSQR) orthogonalization method 

 2008 UC Berkeley tech report, SC09, IPDPS 2011, … 

 O(1) reductions, independent of number of vectors  

 Now works with any Tpetra type on CPU node 

 Kokkos Node = TPINode, TBBNode, SerialNode 

 Algorithm specialized for Kokkos node type 

 Also works with Epetra, if Trilinos built with Tpetra 

 In Belos: Available via OrthoManagerFactory 

 Solvers no longer have to construct OrthoManager 

 Factory handles interpreting parameters 

• Sublist “Orthogonalization Parameters” 

 Available in GCRODR, soon in other GMRES variants 
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Faster orthogonalizations,  

more easily available 
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Design evolution discussion 
 

 



 Refactor solvers’ interface to linear algebra? 

 Do Anasazi and Belos need fused computational kernels? 

 

 Improve support for inner-outer iterations? 

 

 Improve robustness to effects of hybrid parallelism? 
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Design evolution 



 Anasazi & Belos currently assume separate kernels 

 One kernel = one linear algebra library routine call 

 Vector ops and matrix-vector ops are separate 

 Examples of fused kernels:  

 w = A*x, alpha = dot(w,x) 

 w = A*x, z = AT * y 

 Almost always good or harmless for performance 

 Avoid overhead of starting & stopping tasks 

 Increase task duration  maximize data locality 

 How would this change solvers? 

 Solver code changes, but algorithms don’t (much) 

 Low-risk evaluation using Chris Baker’s Tpetra::RTI CG 

 No change to user interface, only to linear algebra interface 
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Fuse computational kernels? 



 Currently: Outer solver treats inner as black box 

 Some algorithms want communication between inner 

and outer solves 

 Example: inexact Krylov (Szyld et al.) 

• Outer solver adjusts inner tolerance based on outer ||rk|| 

 Example: Fault-Tolerant GMRES (Heroux, Hoemmen et al.) 

• Inner solve events may affect outer solve behavior 

 Can we support this without rewriting solvers (much)? 
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Improve support for  

inner-outer iterations? 



 Thread parallelism may not be deterministic 

 Parallel BLAS & LAPACK may give different results 

on different MPI processes 

 Anasazi & Belos expect same evaluation of projected 

(small dense) problem on different processes 

 “Continuous” perturbation affects discrete decisions 

 Count of eigenvalues in a cluster 

 Convergence criteria for linear solves 

 If some processes go on and others stop:  

 Crash or deadlock 

 To fix: No hard math, but redesign of all “parallel 

decisions” and continuous  discrete transitions 
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Improve robustness to  

effects of hybrid parallelism? 
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Any questions? 
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Extra Slides 
 

 



 Leave reduction results on the compute device? 

 Current interface returns scalar results from GPU to CPU 

 Instead, could leave results on GPU, fire kernels asynch. 

 Carter Edwards’ Gram-Schmidt prototype (ValueView) 

 Solver code changes a LOT; algorithms may too 

• Can’t evaluate convergence tests on the GPU 

• Batch up several iterations 

 Not so effective with MPI and multiple GPUs 

• Must communicate the reduction results anyway 

• Can they go straight from the GPU to the network interface 
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Design evolution (extra) 



Full Vertical  

Solver Coverage 

Bifurcation Analysis  LOCA 

DAEs/ODEs: 

Transient Problems  
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Eigen Problems: 

Linear Equations: 
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Belos 

 Next-generation linear iterative solvers 
 

 Decouples algorithms from linear algebra objects 
 Better than “reverse communication” interface of Aztec 

 Linear algebra library controls storage and kernels 

 Essential for multicore CPU / GPU nodes 

 Solves problems that apps really want to solve, faster: 
 Multiple right-hand sides: AX=B 

 Sequences of related systems: (A + ΔAk) Xk = B + ΔBk 

 Many advanced methods for these types of systems 
 Block methods: Block GMRES and Block CG 

 Recycling solvers: GCRODR (GMRES) and CG 

 “Seed” solvers (hybrid GMRES)  

 Block orthogonalizations (TSQR) 

 Supports arbitrary and mixed precision, and complex 

Developers:  Heidi Thornquist, Mike Heroux, Mark Hoemmen, 

     Mike Parks, Rich Lehoucq 
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Anasazi 

 Next-generation iterative eigensolvers 
 

 Decouples algorithms from linear algebra objects 
 Better than “reverse communication” interface of ARPACK 

 Linear algebra library controls storage and kernels 

 Essential for multicore CPU / GPU nodes 

 Block eigensolvers for accurate cluster resolution 

 Can solve 
 Standard (AX = ΛX) or generalized (AX = BXΛ) 

 Hermitian or not, real or complex 

 Algorithms available 
 Block Krylov-Schur (most like ARPACK’s IR Arnoldi) 

 Block Davidson 

 Locally Optimal Block-Preconditioned CG (LOBPCG) 

 Implicit Riemannian Trust Region solvers 

 Advanced (faster & more accurate) orthogonalizations 

 

Developers:  Heidi Thornquist, Mike Heroux, Chris Baker,  

                       Rich Lehoucq, Ulrich Hetmaniuk, Mark Hoemmen 


