

Next-generation iterative solvers for next-generation computing: Anasazi and Belos

Mark Hoemmen mhoemme@sandia.gov

Sandia National Laboratories

02 Nov 2011

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Who am I?

- Postdoc at Sandia National Laboratories
 - ◆ Graduated UC Berkeley spring 2010
- Research: “Scalable algorithms”
 - ◆ Interactions between algorithms and computer architectures
- Trilinos developer since Spring 2010
 - ◆ New, fast, accurate block orthogonalization (TSQR)
 - ◆ New iterative linear solvers in progress
 - ◆ Sparse matrix I/O, utilities, bug fixes, and consulting
- Trilinos packages I’ve worked on:
 - ◆ Anasazi, Belos, Kokkos, Teuchos, Tpetra

List of contributors

- Anasazi and Belos share many contributors
 - ◆ Common initial design
 - ◆ Anasazi motivated Belos in part
- Common lead:
 - ◆ Heidi Thornquist
- Contributors:
 - ◆ Chris Baker, David Day, Mike Heroux, Ulrich Hetmaniuk, Sarah Knepper, Rich Lehoucq, Mark Hoemmen, Vicki Howle, Mike Parks, Kirk Soodhalter, ...

“State of the union”: Outline

- Motivations for the two packages
 - ◆ Application-aware, architecture-aware algorithms
 - ◆ Adapt quickly to rapidly evolving computer architectures
- New features (since last TUG)
 - ◆ Including new solvers!
- Design evolution discussion: Help Anasazi & Belos...
 - ◆ Track architecture evolution
 - ◆ Support new solver algorithms

Support algorithms that are...

- Architecture-aware
 - ◆ “Flops are cheap, bandwidth is money, latency is expensive”
– Kathy Yelick
 - ◆ Favor “block” kernels that amortize data movement cost over several vectors
 - Sparse matrix times multiple vectors
 - Block vector operations
- Application-driven
 - ◆ Many apps don’t just solve one linear system
 - ◆ Apps really solve “block” problems...
 - Eigenvalue clusters
 - $AX = B$
 - $(A + \Delta A_j) X_j = B + \Delta B_j$
 - ◆ Use cases:
 - Nonlinear solvers
 - Time evolution
 - Parameter studies
- Convergence of computational kernels and algorithms

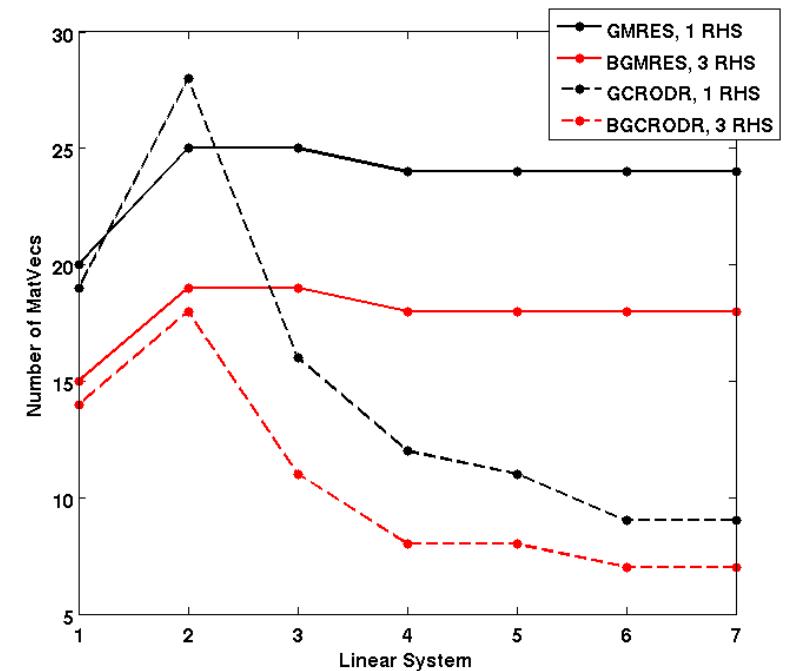
Abstract interface lets solvers track architecture evolution

- Older packages (Aztec(OO), ARPACK)
 - ◆ “Reverse communication” interface
 - ◆ Constrains vector (& matrix) representation
- Anasazi and Belos
 - ◆ Only constrains *algebra* (interface) of operators and vectors
 - ◆ Does *not* constrain data representation
- Decoupling from data representation
 - ◆ Solvers work with your favorite linear algebra library
 - Epetra, Tpetra, Thyra, yours (if you wrap it)
 - ◆ Enables evolution to different node architectures and programming models
 - Optimal data placement critical for performance
 - Best placement depends on the hardware

New solvers and features

Block Recycling GMRES (Block GCRO-DR)

- Algorithm: Kirk Soodhalter (Temple U, Daniel Szyld)
- Belos implementation: Kirk S. and Mike Parks
- Reuse basis from previous solves to accelerate sequences of solves
- Example: Tramonto
 - Fluid density functional theory
 - Hard spheres w/ electrostatics and attractions
 - Newton iteration: 7 solves
 - Savings:
 - 1 RHS: 60 matvecs (36%)
 - 3 RHS: 50 matvecs (40%)



LSQR: Least-squares solver (1 of 2)

- Algorithm: Michael Saunders (Stanford)
- Belos implementation:
 - ◆ Sarah Knepper (Emory, now Intel) and David Day
- LSQR solves
 - ◆ Nonsymmetric linear systems
 - ◆ Linear and damped least squares
- Algorithmic features
 - ◆ Detects incompatible $Ax=b$; returns least-squares solution
 - ◆ Tolerates singular matrix A ; works with nonsquare A
 - ◆ Computes sparse SVD: sharp condition number bounds
 - ◆ Fixed memory footprint (but more matvecs than GMRES)

LSQR: Least-squares solver (2 of 2)

- Use case: Adaptive-precision solver
 - ◆ Mixed & arbitrary precision an important Belos motivation
 - ◆ Prefer single to double precision
 - Memory bandwidth and memory per node constrained on modern computers
 - ◆ But A may be singular in single, not in double
 - ◆ `while(cond(A) > 1 / eps(prec)) { increase prec, solve again }`
- Other applications
 - ◆ Nonlinear least squares (trust region search)
 - ◆ Certain inverse problems: $\min \| b - Ax \|^2 + \mu \| Lx \|^2$
- Software notes
 - ◆ Requires transpose: first Belos solver that does!
 - ◆ This helped us discover and fix Belos' Epetra wrappers

MINRES: Linear solver

- Algorithm: Paige and Saunders
- Belos implementation: Nico Schrömer
 - ◆ With help from Heidi Thornquist and Mark Hoemmen
- Solves symmetric indefinite linear systems
 - ◆ Fixed memory footprint
- Result of Nico's TUG 2010 presentation!
 - ◆ Nico: "You can see CG deflating the negative eigenvalues..."
 - ◆ me: [cringes visibly]
 - ◆ Inspired Nico to contribute MINRES implementation

Faster orthogonalizations, more easily available

- Tall Skinny QR (TSQR) orthogonalization method
 - ◆ 2008 UC Berkeley tech report, SC09, IPDPS 2011, ...
 - ◆ $O(1)$ reductions, independent of number of vectors
- Now works with any Tpetra type on CPU node
 - ◆ Kokkos Node = TPINode, TBBNode, SerialNode
 - ◆ Algorithm specialized for Kokkos node type
- Also works with Epetra, if Trilinos built with Tpetra
- In Belos: Available via OrthoManagerFactory
 - ◆ Solvers no longer have to construct OrthoManager
 - ◆ Factory handles interpreting parameters
 - Sublist “Orthogonalization Parameters”
 - ◆ Available in GCRODR, soon in other GMRES variants

Design evolution discussion

Design evolution

- Refactor solvers' interface to linear algebra?
 - ◆ Do Anasazi and Belos need fused computational kernels?
- Improve support for inner-outer iterations?
- Improve robustness to effects of hybrid parallelism?

Fuse computational kernels?

- Anasazi & Belos currently assume separate kernels
 - ◆ One kernel = one linear algebra library routine call
 - ◆ Vector ops and matrix-vector ops are separate
- Examples of fused kernels:
 - ◆ $w = A^*x$, $\text{alpha} = \text{dot}(w, x)$
 - ◆ $w = A^*x$, $z = A^T * y$
- Almost always good or harmless for performance
 - ◆ Avoid overhead of starting & stopping tasks
 - ◆ Increase task duration → maximize data locality
- How would this change solvers?
 - ◆ Solver code changes, but algorithms don't (much)
 - ◆ Low-risk evaluation using Chris Baker's Tpetra::RTI CG
 - ◆ No change to user interface, only to linear algebra interface

Improve support for inner-outer iterations?

- Currently: Outer solver treats inner as black box
- Some algorithms want communication between inner and outer solves
 - ◆ Example: inexact Krylov (Szyld et al.)
 - Outer solver adjusts inner tolerance based on outer $\|r_k\|$
 - ◆ Example: Fault-Tolerant GMRES (Heroux, Hoemmen et al.)
 - Inner solve events may affect outer solve behavior
- Can we support this without rewriting solvers (much)?

Improve robustness to effects of hybrid parallelism?

- Thread parallelism may not be deterministic
- Parallel BLAS & LAPACK may give different results on different MPI processes
- Anasazi & Belos expect same evaluation of projected (small dense) problem on different processes
- “Continuous” perturbation affects discrete decisions
 - ◆ Count of eigenvalues in a cluster
 - ◆ Convergence criteria for linear solves
- If some processes go on and others stop:
 - ◆ Crash or deadlock
- To fix: No hard math, but redesign of all “parallel decisions” and continuous → discrete transitions

Any questions?

Extra Slides

Design evolution (extra)

- Leave reduction results on the compute device?
 - ◆ Current interface returns scalar results from GPU to CPU
 - ◆ Instead, could leave results on GPU, fire kernels asynch.
 - ◆ Carter Edwards' Gram-Schmidt prototype (ValueView)
 - ◆ Solver code changes a LOT; algorithms may too
 - Can't evaluate convergence tests on the GPU
 - Batch up several iterations
 - ◆ Not so effective with MPI and multiple GPUs
 - Must communicate the reduction results anyway
 - Can they go straight from the GPU to the network interface

Full Vertical Solver Coverage

Optimization Unconstrained: Constrained:	Find $u \in \mathbb{R}^n$ that minimizes $g(u)$ Find $x \in \mathbb{R}^m$ and $u \in \mathbb{R}^n$ that minimizes $g(x, u)$ s.t. $f(x, u) = 0$	Sensitivities (Automatic Differentiation: Sacado)	MOOCHO
Bifurcation Analysis	Given nonlinear operator $F(x, u) \in \mathbb{R}^{n+m}$ For $F(x, u) = 0$ find space $u \in U \ni \frac{\partial F}{\partial x}$		LOCA
Transient Problems DAEs/ODEs:	Solve $f(\dot{x}(t), x(t), t) = 0$ $t \in [0, T], x(0) = x_0, \dot{x}(0) = x_0'$ for $x(t) \in \mathbb{R}^n, t \in [0, T]$		Rythmos
Nonlinear Problems	Given nonlinear operator $F(x) \in \mathbb{R}^m \rightarrow \mathbb{R}^n$ Solve $F(x) = 0 \quad x \in \mathbb{R}^n$		NOX
Linear Problems Linear Equations: Eigen Problems:	Given Linear Ops (Matrices) $A, B \in \mathbb{R}^{m \times n}$ Solve $Ax = b$ for $x \in \mathbb{R}^n$ Solve $A\nu = \lambda B\nu$ for (all) $\nu \in \mathbb{R}^n, \lambda \in \mathbb{C}$		AztecOO Belos Ifpack, ML, etc... Anasazi
Distributed Linear Algebra Matrix/Graph Equations: Vector Problems:	Compute $y = Ax; A = A(G); A \in \mathbb{R}^{m \times n}, G \in \mathbb{S}^{m \times n}$ Compute $y = \alpha x + \beta w; \alpha = \langle x, y \rangle; x, y \in \mathbb{R}^n$		Epetra Tpetra Kokkos

Belos

- Next-generation linear iterative solvers
- Decouples algorithms from linear algebra objects
 - ◆ Better than “reverse communication” interface of Aztec
 - ◆ Linear algebra library controls storage and kernels
 - ◆ Essential for multicore CPU / GPU nodes
- Solves problems that apps really want to solve, faster:
 - ◆ Multiple right-hand sides: $AX=B$
 - ◆ Sequences of related systems: $(A + \Delta A_k) X_k = B + \Delta B_k$
- Many advanced methods for these types of systems
 - ◆ Block methods: Block GMRES and Block CG
 - ◆ Recycling solvers: GCRODR (GMRES) and CG
 - ◆ “Seed” solvers (hybrid GMRES)
 - ◆ Block orthogonalizations (TSQR)
- Supports arbitrary and mixed precision, and complex

Developers: Heidi Thornquist, Mike Heroux, Mark Hoemmen,
Mike Parks, Rich Lehoucq

Anasazi

- Next-generation iterative eigensolvers
- Decouples algorithms from linear algebra objects
 - ◆ Better than “reverse communication” interface of ARPACK
 - ◆ Linear algebra library controls storage and kernels
 - ◆ Essential for multicore CPU / GPU nodes
- Block eigensolvers for accurate cluster resolution
- Can solve
 - ◆ Standard ($AX = \Lambda X$) or generalized ($AX = BX\Lambda$)
 - ◆ Hermitian or not, real or complex
- Algorithms available
 - ◆ Block Krylov-Schur (most like ARPACK’s IR Arnoldi)
 - ◆ Block Davidson
 - ◆ Locally Optimal Block-Preconditioned CG (LOBPCG)
 - ◆ Implicit Riemannian Trust Region solvers
 - ◆ Advanced (faster & more accurate) orthogonalizations

Developers: Heidi Thornquist, Mike Heroux, Chris Baker,
Rich Lehoucq, Ulrich Hetmaniuk, Mark Hoemmen