
Mark Hoemmen mhoemme@sandia.gov

Sandia National Laboratories

02 Nov 2011

1

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a

wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear

Security Administration under contract DE-AC04-94AL85000.

Next-generation iterative solvers

for next-generation computing:

Anasazi and Belos

SAND2011-8187 C
SAND2011-8187C

2

Who am I?

 Postdoc at Sandia National Laboratories
 Graduated UC Berkeley spring 2010

 Research: “Scalable algorithms”
 Interactions between algorithms and computer architectures

 Trilinos developer since Spring 2010
 New, fast, accurate block orthogonalization (TSQR)

 New iterative linear solvers in progress

 Sparse matrix I/O, utilities, bug fixes, and consulting

 Trilinos packages I’ve worked on:
 Anasazi, Belos, Kokkos, Teuchos, Tpetra

3

List of contributors

 Anasazi and Belos share many contributors
 Common initial design

 Anasazi motivated Belos in part

 Common lead:
 Heidi Thornquist

 Contributors:
 Chris Baker, David Day, Mike Heroux, Ulrich Hetmaniuk, Sarah

Knepper, Rich Lehoucq, Mark Hoemmen, Vicki Howle, Mike
Parks, Kirk Soodhalter, …

 Motivations for the two packages

 Application-aware, architecture-aware algorithms

 Adapt quickly to rapidly evolving computer architectures

 New features (since last TUG)

 Including new solvers!

 Design evolution discussion: Help Anasazi & Belos…

 Track architecture evolution

 Support new solver algorithms

4

“State of the union”: Outline

 Architecture-aware
 “Flops are cheap,

bandwidth is money,

latency is expensive”

 – Kathy Yelick

 Favor “block” kernels that

amortize data movement

cost over several vectors

• Sparse matrix times

multiple vectors

• Block vector operations

 Application-driven
 Many apps don’t just

solve one linear system

 Apps really solve “block”

problems…

• Eigenvalue clusters

• AX = B

• (A + ΔAj) Xj = B + ΔBj

 Use cases:

• Nonlinear solvers

• Time evolution

• Parameter studies

5

 Convergence of computational kernels and algorithms

Support algorithms that are…

 Older packages (Aztec(OO), ARPACK)

 “Reverse communication” interface

 Constrains vector (& matrix) representation

 Anasazi and Belos

 Only constrains algebra (interface) of operators and vectors

 Does not constrain data representation

 Decoupling from data representation

 Solvers work with your favorite linear algebra library

• Epetra, Tpetra, Thyra, yours (if you wrap it)

 Enables evolution to different node architectures and

programming models

• Optimal data placement critical for performance

• Best placement depends on the hardware

6

Abstract interface lets solvers

track architecture evolution

7

New solvers and features

 Algorithm: Kirk Soodhalter (Temple U, Daniel Szyld)

 Belos implementation: Kirk S. and Mike Parks

 Reuse basis from previous solves to accelerate

sequences of solves

8

 Example: Tramonto

 Fluid density functional theory

 Hard spheres w/ electrostatics

and attractions

 Newton iteration: 7 solves

 Savings:

 1 RHS: 60 matvecs (36%)

 3 RHS: 50 matvecs (40%)

Block Recycling GMRES

(Block GCRO-DR)

 Algorithm: Michael Saunders (Stanford)

 Belos implementation:

 Sarah Knepper (Emory, now Intel) and David Day

 LSQR solves

 Nonsymmetric linear systems

 Linear and damped least squares

 Algorithmic features

 Detects incompatible Ax=b; returns least-squares solution

 Tolerates singular matrix A; works with nonsquare A

 Computes sparse SVD: sharp condition number bounds

 Fixed memory footprint (but more matvecs than GMRES)

9

LSQR: Least-squares

solver (1 of 2)

 Use case: Adaptive-precision solver

 Mixed & arbitrary precision an important Belos motivation

 Prefer single to double precision

• Memory bandwidth and memory per node constrained on

modern computers

 But A may be singular in single, not in double

 while(cond(A) > 1 / eps(prec)) { increase prec, solve again }

 Other applications

 Nonlinear least squares (trust region search)

 Certain inverse problems: min || b – Ax ||2 + μ ||Lx||2

 Software notes

 Requires transpose: first Belos solver that does!

 This helped us discover and fix Belos’ Epetra wrappers

10

LSQR: Least-squares

solver (2 of 2)

 Algorithm: Paige and Saunders

 Belos implementation: Nico Schlömer

 With help from Heidi Thornquist and Mark Hoemmen

 Solves symmetric indefinite linear systems

 Fixed memory footprint

 Result of Nico’s TUG 2010 presentation!

 Nico: “You can see CG deflating the negative eigenvalues…”

 me: [cringes visibly]

 Inspired Nico to contribute MINRES implementation

11

MINRES: Linear solver

 Tall Skinny QR (TSQR) orthogonalization method

 2008 UC Berkeley tech report, SC09, IPDPS 2011, …

 O(1) reductions, independent of number of vectors

 Now works with any Tpetra type on CPU node

 Kokkos Node = TPINode, TBBNode, SerialNode

 Algorithm specialized for Kokkos node type

 Also works with Epetra, if Trilinos built with Tpetra

 In Belos: Available via OrthoManagerFactory

 Solvers no longer have to construct OrthoManager

 Factory handles interpreting parameters

• Sublist “Orthogonalization Parameters”

 Available in GCRODR, soon in other GMRES variants

12

Faster orthogonalizations,

more easily available

13

Design evolution discussion

 Refactor solvers’ interface to linear algebra?

 Do Anasazi and Belos need fused computational kernels?

 Improve support for inner-outer iterations?

 Improve robustness to effects of hybrid parallelism?

14

Design evolution

 Anasazi & Belos currently assume separate kernels

 One kernel = one linear algebra library routine call

 Vector ops and matrix-vector ops are separate

 Examples of fused kernels:

 w = A*x, alpha = dot(w,x)

 w = A*x, z = AT * y

 Almost always good or harmless for performance

 Avoid overhead of starting & stopping tasks

 Increase task duration  maximize data locality

 How would this change solvers?

 Solver code changes, but algorithms don’t (much)

 Low-risk evaluation using Chris Baker’s Tpetra::RTI CG

 No change to user interface, only to linear algebra interface

15

Fuse computational kernels?

 Currently: Outer solver treats inner as black box

 Some algorithms want communication between inner

and outer solves

 Example: inexact Krylov (Szyld et al.)

• Outer solver adjusts inner tolerance based on outer ||rk||

 Example: Fault-Tolerant GMRES (Heroux, Hoemmen et al.)

• Inner solve events may affect outer solve behavior

 Can we support this without rewriting solvers (much)?

16

Improve support for

inner-outer iterations?

 Thread parallelism may not be deterministic

 Parallel BLAS & LAPACK may give different results

on different MPI processes

 Anasazi & Belos expect same evaluation of projected

(small dense) problem on different processes

 “Continuous” perturbation affects discrete decisions

 Count of eigenvalues in a cluster

 Convergence criteria for linear solves

 If some processes go on and others stop:

 Crash or deadlock

 To fix: No hard math, but redesign of all “parallel

decisions” and continuous  discrete transitions

17

Improve robustness to

effects of hybrid parallelism?

18

Any questions?

19

Extra Slides

 Leave reduction results on the compute device?

 Current interface returns scalar results from GPU to CPU

 Instead, could leave results on GPU, fire kernels asynch.

 Carter Edwards’ Gram-Schmidt prototype (ValueView)

 Solver code changes a LOT; algorithms may too

• Can’t evaluate convergence tests on the GPU

• Batch up several iterations

 Not so effective with MPI and multiple GPUs

• Must communicate the reduction results anyway

• Can they go straight from the GPU to the network interface

20

Design evolution (extra)

Full Vertical

Solver Coverage

Bifurcation Analysis LOCA

DAEs/ODEs:

Transient Problems

Rythmos

Eigen Problems:

Linear Equations:

 Linear Problems
AztecOO

Belos

Ifpack, ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Tpetra

Optimization

MOOCHO
Unconstrained:

Constrained:

Nonlinear Problems
NOX S

e
n

s
it

iv
it

ie
s

(A

u
to

m
a

ti
c

 D
if

fe
re

n
ti

a
ti

o
n

:
S

a
c

a
d

o
)

Kokkos

22

Belos

 Next-generation linear iterative solvers

 Decouples algorithms from linear algebra objects
 Better than “reverse communication” interface of Aztec

 Linear algebra library controls storage and kernels

 Essential for multicore CPU / GPU nodes

 Solves problems that apps really want to solve, faster:
 Multiple right-hand sides: AX=B

 Sequences of related systems: (A + ΔAk) Xk = B + ΔBk

 Many advanced methods for these types of systems
 Block methods: Block GMRES and Block CG

 Recycling solvers: GCRODR (GMRES) and CG

 “Seed” solvers (hybrid GMRES)

 Block orthogonalizations (TSQR)

 Supports arbitrary and mixed precision, and complex

Developers: Heidi Thornquist, Mike Heroux, Mark Hoemmen,

 Mike Parks, Rich Lehoucq

23

Anasazi

 Next-generation iterative eigensolvers

 Decouples algorithms from linear algebra objects
 Better than “reverse communication” interface of ARPACK

 Linear algebra library controls storage and kernels

 Essential for multicore CPU / GPU nodes

 Block eigensolvers for accurate cluster resolution

 Can solve
 Standard (AX = ΛX) or generalized (AX = BXΛ)

 Hermitian or not, real or complex

 Algorithms available
 Block Krylov-Schur (most like ARPACK’s IR Arnoldi)

 Block Davidson

 Locally Optimal Block-Preconditioned CG (LOBPCG)

 Implicit Riemannian Trust Region solvers

 Advanced (faster & more accurate) orthogonalizations

Developers: Heidi Thornquist, Mike Heroux, Chris Baker,

 Rich Lehoucq, Ulrich Hetmaniuk, Mark Hoemmen

