SANCSAND2011-7412C

Understanding the Thermal-
Oxidative Degradation of Nylon 6.6
using Isotopically Labeled Polymers

Gregory Von White Il,2 Roger L. Clough, 2 Jonell N. Smith, °

Mike I. White, ®James M. Hochrein, ® Robert Bernstein?

Sandia National Laboratories, Albuquerque, NM 87185
Org. 1821—O0rganic Materials® and Org. 1825—Materials Reliability?

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security

T U A | D(\"‘ Administration under contract DE-AC04-94AL85000.
NN A’ A4 @

National Nuclear Security Admlnlstratlon




Polymer aging in general

Polymers used for essentially every application in today's society (automotive, medical,
food, defense, clothing, etc...)

Thermal degradation for many materials has been actively pursued using techniques
such as pyrolysis and TGA

— Fast/inexpensive
— Provides information about thermal degradation products
— Mechanisms altered; not good representation of real world (low temp long times)

Detailed oxidative degradation mechanisms and products that are formed are not as
well understood for many polymers

— Aging dependent and time dependent
— Formulation dependent (fillers, additives, antioxidants, lubricants, etc.)

Isotopic labeling of polymers can reveal detailed mechanistic information about
oxidative degradation to gain insights into realistic lifetimes of materials

Understanding degradation mechanisms is the gateway for sensor development to
identify unique volatile degradation products for condition monitoring

— Early warning system
— Establish real-time status update




Polypropylene studies served as the model for nylon studies
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Relative 13C abundance (%) of selectively-labeled
polypropylene samples

Sample | CH | CH, | CH,
C(1) | 1.0 |96.7] 2.3
C(2) |985| 0.8 | 0.8
C(1,3) | 0.9 |68.3]30.8

(h)



Polypropylene published and ‘done’
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Many high reliability military and
civilian products are made of nylon
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* Nylon used for wide variety
of products

e rd

e Oxidation reduces the
overall lifetime of high = B .
reliability materials altering =
performance

* Mechanism must be
understood to predict
degradation product
formation and develop
sensors enabling early
warning
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¢ Prediction of physical properties vs. time
¢ Predict remaining physical properties of field materials
e Develop condition monitoring method




Average % tensile strength remaining

Nylon 6.6 Accelerated Aging Studies

Predicted results for 23 °C in years
0 20 40 60 80

— 100

Bernstein, R.; Gillen, K. T. Polym. Degrad. Stab. 2010, 95, 1471-1479.
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Nylon Degradation Chemistry

“A considerable amount of work has already been
carried out to investigate the mechanism of nylon
degradation, but the exact mechanism of the
degradation has still not been conclusively
established.”

Shamey, R.; Sinha, K. Rev. Prog. Color. 2003, 33, 93-107.
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Methodologies

Isotopically labeled and unlabeled nylon 6.6 were

aged in 5 mL stainless steel vessels between 1 and Identlfy degradatlon
243 days at 109 °C and 138 °C products

o Use mass shifts to
@N (_f C-’*CH aamll  determine degradation
NS N

CH mechanisms
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Example: Carbon Dioxide
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A representative carbon dioxide mass spectrum
from oxidation of unlabeled nylon 6.6

NIST Mass Spectral Library match of
carbon dioxide spectrum




Example: Carbon Dioxide
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Carbon dioxide mass spectrum from oxidation of 13C labeled

nylon 6.6 in an oxygen environment
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Proposed Origins of CO,
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Proposed Origins of CO,
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Proposed Origins of CO,
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Proposed Origins of CO,
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Other Molecules Identified

15 18 189 18
/ By, / N o] 0]

13
X ’CH, X A )K 180/ \)k
Benzene Pyridine Acetone Methyl Acetate Butan-2-one

Future work will include the identification of the underlying chemistries
which lead to the formation of the above molecules




Conclusions

* By leveraging isotopic labels, we have
proposed the origins of carbon dioxide and
several possible degradation mechanisms

 We have identified and are proposing
degradation mechanisms for other low
molecular weight thermal-oxidative
degradation products




Future Work

* |nvestigate the hydrolytic degradation
mechanisms of nylon 6.6

* |nitiate accelerated aging studies on
poly(ethylene co-vinyl acetate), EVA
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