
Panzer: A Finite Element Assembly

Engine for Multiphysics Simulation

Sandia is a multiprogram laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States Department of Energy

under Contract DE-AC04-94AL85000

Roger Pawlowski, Eric Cyr, and John Shadid

Sandia National Laboratories

Trilinos User Group Meeting

November 2nd, 2011

SAND2011-8261C

History

• Research over past 7 years in Charon:

– Export control (4D001) restricted collaborations

– Complicated build system (some great features

including TPL management)

– Restricted to Nevada mesh database/element

library

• Generalize the capabilities explored in

Charon into Trilinos packages

– New code base  flexibility, lessons learned

– Resulting packages: Phalanx, Panzer

What is Panzer?

• A general finite element assembly engine for multiphysics

simulation:

– Produces quantities need for advanced solution and analysis

algorithms: residuals, Jacobians, parameter sensitivities, stochastic

residual/Jacobians, etc.

– A unification of Trilinos discretization tools: Shards, Intrepid,

Phalanx, Sacado, Stokhos, (Optionally: STK, SEACAS)

– Supports 1D, 2D, and 3D calculations

• A library – NOT a terminal application

– Allows for multiple instantiations

• Contains NO physics specific code

– Generic assembly tools

• Leverages Template-based Generic Programming to assemble

quantities of interest

Research Requirements

A Research Tool for DOE/OS: ASCR/AMR, ASCR/Multiscale

• Formulations: fully coupled fully implicit, semi-implicit, FCT

• Compatible discretizations:

– Mixed basis for DOFs within element block

– Arbitrary element types (not restricted to nodal basis)

• Multiphysics:

– Fully coupled systems composed of different equation sets in different

element blocks

– Preconditioning: Approximate block factorization/physics based

• Supports advanced analysis techniques:

– Supports Template-based Generic Programming

– Adjoint-based error analysis

– Stability, bifurcation, embedded (SAND) optimization, embedded uncertainty

quantification (Stokhos/PCE)

Production Requirements

Production Quality Software (ASC, CASL)

• Strict and extensive unit testing (TDD)

• Integration with legacy code components

• NOT restricted to any mesh database or I/O format

• Control over granularity of assembly process (efficiency vs flexibility)

• Applications:
– ASC: Semiconductor Device (Next-generation Charon) for QASPR

– CASL: CFD component for VERA simulator

DOE / NNSA

Use Case

Panzer

Register Problem

Build Thyra::ModelEvaluator

Register ProblemDescription

(Teuchos::ParameterList)

Register EquationSetFactory

Register BCFactory

Register EvaluatorFactory

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Build Piro::ModelEvaluator

<<uses>>

Physics applications are light

weight front end

(External Trilinos Repo?)

Examples of Nonlinear Analysis (Supported by ModelEvaluator)

Nonlinear equations:

Stability/Bifurcation analysis:

DAEs/Implicit ODEs:

Explicit ODEs:

DAE/Implicit ODE Forward
Sensitivities:

Unconstrained Optimization:

Constrained Optimization:

ODE Constrained
Optimization:

Explicit ODE Forward
Sensitivities:

Graph-based Assembly Process
(Notz, Pawlowski, Sutherland; submitted to TOMS)

• Graph-based equation

description

– Automated dependency

tracking (Topological sort to

order the evaluations)

– Each node is a point of

extension that can be

swapped out

– Easy to add equations

– Easy to change models

– Easy to test in isolation

– User controlled granularity

– No unique decomposition

• Worksets (blocks of cells)

• User controlled memory

allocation of Field data

• Multi-core research:

– Spatial decomposition

– Algorithmic decomposition

Phalanx Handles Multiphysics Complexity using

Template-based Generic Programming

Param. Sens., Jv, Adjoint, PCE (SGF, SGJ), Arb. Prec.

PCE::OrthogPoly<double>

DFad<PCE::OrthogPoly<double> >

DFad< DFad<double> >

Extract/Scatter

Gather/Seed

DFad<double>

Extract/Scatter

Gather/Seed

Scalar TypeEvaluation Type

Gather/Seed

Extract/Scatter

double

Take Home Message:

Reuse the same code base!

Equations decoupled from algorithms!

Machine precision accuracy!

TBGP, Pawlowski,

Phipps, Salinger;

submitted to SP

Panzer Components

• Problem Description

– Maps equations sets and boundary conditions into

evaluators for Phalanx assembly

• Assembly Engine

– A collection of Phalanx Field Managers to control assembly

– Produces a Model Evaluator for User

• Data Mapping Utilities

– DOF Manager for mapping field values into linear algebra

– Connection Manager: Abstraction of Mesh

• STK Adaptors

– Concrete implementation Panzer objects for using

STK::Mesh and SEACAS for I/O

– Specialized evaluators

Data Mapping

Assembly Engine

Panzer Unifies Trilinos Discretization Tools

Shards::MDArray

Phalanx

Sacado

Stokhos

Intrepid

Panzer

AssemblyEngine

Connection ManagerSTK Mesh

STK

FEI

Evaluators

SEACAS

STK Evaluators

Thyra::ModelEvaluator

Epetra

Tpetra

Teuchos

ME_Factory

Thyra::Operator_Vector

• NOTE: NO Solver

Relationships

• NOTE: No

internal

relationships

shown

STK Adaptors

Linear Object Factory

DOF Manager

Problem Specification

Physics Blocks

Boundary Conditions

Integration/Basis Layouts

Shards::Topology

STK Connection Manager

Data Mapping

Computes global unknown indices
1. Serves as interface to mesh

2. Allows Panzer to be mesh agnostic

3. Handles unknowns for mixed discretizations

4. Handles unknowns for multiphysics (multiple element blocks)

5. Uses FEI for producing unknowns

Composed of 3 primary pieces
1. FieldPattern – Describes the basis layout and continuity of fields

2. DOFManager – Manages and computes unknown numbers on fields

3. ConnManager – (User implemented) Mesh topology from field pattern

Features not implemented but supported by design
1. Higher order discretizations – geometric symmetries

2. Heterogeneous meshes – quadrilaterals and triangles

Data Mapping: Field Pattern

up

For stable Navier-Stokes pair:
 Linear pressures

 Quadratic velocities

Field Pattern specifies basis layout

 Continuity across subcells (continuity of field)

 Unknowns on each element

 Communicates required topology

Data Mapping: DOFManager

Input

Element Block 1

u as

p as

T as

Element Block 2

T as

ConnManager

Output

Element Block 1
u,p,T GIDs on all

elements

Element Block 2
T GIDs on all

elements

panzer::DOFManager

Magic!

Data Mapping: ConnManager

Must generate mesh connectivity
 DOFManager passes in field pattern

 Provides unique global node, edge, volume ids for each element

 Uniform field pattern across all element blocks

 Makes multiphysics easy

0 1 2

3 4 5

6 7 8

90 1 2

3 4 5

6 7 8

10

11 12 13 14 15

16 17

18 19 20 21 22

23 24

Data Mapping: ConnManager

0 1 2

3 4 5

6 7 8

Piecewise linear p

Piecewise linear u

90 1 2

3 4 5

6 7 8

10

11 12 13 14 15

16 17

18 19 20 21 22

23 24

Piecewise linear p

Piecwise quadratic u

The Future

• Stokhos integration (almost complete)

• Adjoint capability

• Use of Kokkos MDArray for multi-/many-

core/GPGPU support

• Expression templates for MDFields

