SANDNHEEYP-9055¢C

Self-improving Algorithms for Coordinate-wise Maxima

Kenneth L. Clarkson* Wolfgang Mulzer' C. Seshadhrit

Abstract

Computing the coordinate-wise maxima of a planar point set is a classic and well-studied problem in compu-
tational geometry. We give an algorithm for this problem in the self-improving setting. We have n (unknown)
independent distributions Dy, Ds, ..., D,, of planar points. An input (p1,ps,...,ps) is generated by choosing
an independent sample p; from each D;, so the input distribution D is the product [[;, D;. A self-improving
algorithm repeatedly gets input sets from the distribution D (which is a priori unknown) and tries to optimize
its running time for D. Our algorithm uses the first few inputs to learn salient features of the distribution,
and then becomes an optimal algorithm for distribution D. Let OPTp denote the expected depth of an
optimal linear comparison tree computing the maxima for distribution D. Our algorithm eventually has an
expected running time of O(OPTp + n), even though it did not know D to begin with.

Our result requires new tools to understand linear comparison trees for computing maxima. We show
how to convert general linear comparison trees to very restricted versions, which can then be related to the
running time of our algorithm. An interesting feature of our algorithm is an interleaved search, where the
algorithm tries to determine the likeliest point to be maximal with minimal computation. This allows the
running time to be truly optimal for the distribution D.

*IBM Almaden Research Center, San Jose, USA. Email: klclarks@us.ibm.com
tInstitut fiir Informatik, Freie Universitit Berlin, Berlin, Germany. Email: mulzer@inf.fu-berlin.de.
tSandia National Labs, Livermore, USA. Email: scomand@sandia.gov

lgalleg
Typewritten Text
SAND2011-9055 C

1 Introduction

Given a set P of n points in the plane, the mazrima problem is to find those points p € P for
which no other point in P has a larger z-coordinate and a larger y-coordinate. More formally, for
p € R?, let z(p) and y(p) denote the = and y coordinates of p. Then p’ dominates p if and only if
z(p') > x(p), y(p') > y(p), and one of these inequalities is strict. The desired points are those in P
that are not dominated by any other points in P. The set of maxima is also known as a skyline in
the database literature [BKS01] and as a Pareto frontier.

This algorithmic problem has been studied since at least 1975 [KLP75], when Kung et al. de-
scribed an algorithm with an O(nlogn) worst-case time and gave an Q(nlogn) lower bound. Re-
sults since then include average-case running times of 7 4 O(n%7) point-wise comparisons [Gol94];
output-sensitive algorithms needing O(nlogh) time when there are h maxima [KS86]; and algo-
rithms operating in external-memory models [GTVV93]. A major problem with worst-case analysis
is that it may not reflect the behavior of real-world inputs. Worst-case algorithms are tailor-made
for extreme inputs, none of which may occur (with reasonable frequency) in practice. Average-case
analysis tries to address this problem by assuming some fixed distribution on inputs; for maxima,
the property of coordinate-wise independence covers a broad range of inputs, and allows a clean
analysis [Buc89], but is unrealistic even so. The right distribution to analyze remains a point of
investigation. Nonetheless, the assumption of randomly distributed inputs is very natural and one
worthy of further investigation.

The self-improving model. Ailon et al. introduced the self-improving model to address this
issue [ACCLO6]. In this model, there is some fixed but unknown input distribution D that generates
independent inputs, that is, whole input sets P. The algorithm initially undergoes a learning phase,
where it processes inputs with a worst-case guarantee but tries to learn information about D. The
aim of the algorithm is to become optimal for the distribution D. After seeing some (hopefully
small) number of inputs, the algorithm shifts into the limiting phase. Now, the algorithm is tuned
for D and the expected running time is (ideally) optimal for D. A self-improving algorithm can be
thought of as an algorithm can attain the optimal average-case running time for all, or at least a
large class of, distributions D.

Following earlier self-improving algorithms, we assume the input has a product distribution. An
input P = (p1,p2,...,pn) is a set of n points in the plane. Each p; is generated independently from
a distribution D;, so the probability distribution of P is the product [[, D;. The D;s themselves are
arbitrary, and the only assumption made is their independence. There are lower bounds showing
that some restriction on D is necessary for a reasonable self-improving algorithm, as we explain
later.

The first self-improving algorithm was for sorting; this was extended to Delaunay triangulations,
with these results eventually merged [CS08, ACCT11]. A self-improving algorithm for planar convex
hulls was given by Clarkson et al. [CMS10], however their analysis was recently discovered to be
flawed.!

! However, a slightly sub-optimal algorithm has been found, with a paper in preparation. That new algorithm
and the algorithm here are considerably simpler than that in [CMS10], and with a simpler analysis that is simpler to
verify.

1.1 Main result

Our main result is a self-improving algorithm for planar coordinate-wise maxima over product
distributions. We need some basic definitions before stating our main theorem. We explain what
it means for a maxima algorithm to be optimal for a distribution D. This in turn requires a notion
of certificates for maxima, which allow the correctness of the output to be verified in O(n) time.

Definition 1.1. A certificate v comprises: (i) the sequence of the indices of the mazimal points,
sorted from left to right; (ii) for each non-mazximal point, a per-point certificate of non-mazimality,
which is simply the index of an input point that dominates it. We say that a certificate v is valid
for an input P if v satisfies these conditions for P.

The model of computation that we use to define optimality is a linear computation tree that
generates query lines using the input points. In particular, our model includes the usual CCW-test
that forms the basis for many geometric algorithms.

Let £ be a directed line. We use ¢T to denote the open halfplane to the left of ¢ and ¢~ to
denote the open halfplane to the right of £.

Definition 1.2. A linear comparison tree T is a binary tree whose nodes are labeled with queries
of the form “p € £1?77, where p denotes an input point and £ denotes a directed line. The line { can
be obtained in three ways: (i) it can be a fized line; (ii) it can be a line with a fized slope passing
through a given input point; or (iii) it can be the line defined by two distinct input points. A linear
comparison tree is restricted if it only makes queries of type (i).

A linear comparison tree T computes the mazima of P if each leaf corresponds to a certificate.
This means that each leaf v of T is labeled with a certificate v that is valid for every possible input
P that reaches v.

For every distribution D, there exists an optimal tree 7p that computes the maxima. Let the
expected depth (over D) of this tree be OPTp. We want our algorithm to have a running time
comparable to OPTp.

Theorem 1.3. Let ¢ > 0 be a fized constant and D1,Do, ..., D, be independent planar point
distributions. The input distribution is D = [[, D;. There is a self-improving algorithm to compute
the coordinate-wise maxima whose expected time in the limiting phase is O(e~!(n + OPTp)). The
learning phase lasts for O(n®) inputs and the space requirement is O(n'*¢).

There are lower bounds in [ACCT11] (for sorters) implying that a self-improving maxima algo-
rithm that works for all distributions requires exponential storage, and that the time-space tradeoff
(wrt €) in the above theorem is optimal.

Challenges. One might think that since self-improving sorters are known, an algorithm for
maxima should follow directly. But this reduction is only valid for O(nlogn) algorithms. Consider
Figure 1(i). The distributions D1, Dy, ..., D, /o generate the fixed points shown. The remaining
distributions generate a random point from a line below L. Observe that an algorithm that wishes
to sort the z-coordinates requires 2(nlogn) time. On the other hand, there is a simple comparison
tree that determines the maxima in O(n) time. For all p; where j > n/2, the tree simply checks if
Pny2 dominates p;. After that, it performs a linear scan and outputs a certificate.

We stress that even though the points are independent, the collection of maxima exhibits strong
dependencies. In Figure 1(ii), suppose a distribution D; generates either py or pg; if p, is chosen,

° Ph
[] []
,,,,,,,,,,,,,,,,,,, U.'pn/2 o
L ®e
® ® ® [] ® @ [] ® @ [] ..

(i)
Fig. 1

we must consider the dominance relations among the remaining points, while if py is chosen, no
such evaluation is required. The optimal search tree for a distribution D must exploit this complex
dependency.

Indeed, arguing about optimality is one of the key contributions of this work. Previous self-
improving algorithms employed information-theoretic optimality arguments. These are extremely
difficult to analyze for settings like maxima, where some points are more important to process that
others, as in Figure 1. (The main error in the self-improving convex hull paper [CMS10] was an
incorrect consideration of dependencies.) We focus on a somewhat weaker notion of optimality—
linear comparison trees—that nonetheless covers most (if not all) important algorithms for maxima.

In Section 3, we describe how to convert linear comparison trees into restricted forms that
use much more structured (and simpler) queries. Restricted trees are much more amenable to
analysis. In some sense, a restricted tree decouples the individual input points and makes the
maxima computation amenable to separate D;-optimal searches. A leaf of a restricted tree is
associated with a sequence of polygons (Ry, Ra, ..., R,) such that the leaf is visited if and only if
every p; € R;, and conditioned on that event, the p; remain independent. This independence is
extremely important for the analysis. We design an algorithm whose behavior can be related to
the restricted tree. Intuitively, if the algorithm spends many comparisons involving a single point,
then we can argue that the optimal restricted tree must also do the same. We give more details
about the algorithm in Section 2.

1.2 Previous work

Afshani et al. [ABC09] introduced a model of instance-optimality applying to algorithmic problems
including planar convex hulls and maxima. (However, their model is different from, and in a sense
weaker than, the prior notion of instance-optimality introduced by Fagin et al. [FLNO1].) All
previous (e.g., output sensitive and instance optimal) algorithms require expected Q(nlogn) time
for the distribution given in Figure 1, though an optimal self-improving algorithm only requires
O(n) expected time. (This was also discussed in [CMS10] with a similar example.),

We also mention the paradigm of preprocessing regions for faster computation of certain geo-
metric structures [BLMM11, EM11, HMO08, LS10, vKLM10]. Here, we are given a set R of planar
regions, and we would like to preprocess R in order to quickly find the (Delaunay) triangulation
(or convex hull) for any point set which contains exactly one point from each region in R. This
setting is adversarial, but if we only consider point sets where a point is randomly drawn from each
region, it can be regarded as a special case of our setting. In this view, these results give us bounds
on the running time a self-improving algorithm can achieve if D draws its points from disjoint
planar regions. We feel that this surprising application of the self-improving paradigm speaks for

its versatility.

1.3 Preliminaries and notation

Before we begin, let us define same basic concepts and agree on a few notational conventions. We
use c for a sufficiently large constant, and we write log x to denote the logarithm of z in base 2.
All the probability distributions are assumed to be continuous. (It is not necessary to do this, but
it makes many calculations a lot simpler.)

Given a polygonal region R C R? and a probability distribution D on the plane, we call £ a
halving line for R (with respect to D) if

+ _ —
pr’rD[pEE mR]_plz%[peé N RJ.

Note that if Prpop[p € R] = 0, every line is a halving line for R. If not, a halving line exactly
halves the conditional probability for p being in each of the corresponding halfplanes, conditioned
on p lying inside R.

Define a wvertical slab structure S as a sequence of vertical lines partitioning the plane into
vertical regions, called leaf slabs. (We will consider the latter to be the open regions between
the vertical lines. Since we assume that our distributions are continuous, we abuse notation and
consider the leaf slabs to partition the plane.) More generally, a slab is the region between any two
vertical lines of the S. The size of the slab structure is the number of leaf slabs it contains. We
denote it by |S|. Furthermore, for any slab S, the probability that p; ~ D; is in S is denoted by
q(i, S).

A search tree T over S is a comparison tree that locates a point within leaf slabs of S. Each
internal node compares the z-coordinate of the point with a vertical line of S, and moves left or
right accordingly. We can associate each internal node v with a slab S, (any point in S, will
encounter v along its search).

1.4 Tools from self-improving algorithms

We introduce some tools developed in previous self-improving results. The ideas are by and large
old, but our presentation in this form is new. We feel that the following statements (especially
Lemma 1.6) are of independent interest.

We define the notion of restricted searches, introduced in [CMS10]. This notion is central to our
final optimality proof. (The lemma and formulation as given here are new.) Let U be an ordered
set and F be a distribution over U. For any element j € U, we let ¢; denote the probability of j
falling in F. For any interval S of U, the total probability of S is gg.

We let T' denote a search tree over U. It will be convenient to think of T as ternary, where
each node has at most 2 children that are internal nodes. In our application of the lemma, U will
just be the set of leaf slabs of a slab structure S. We now introduce some definitions regarding
restricted searches and search trees.

Definition 1.4. Given a distribution F and an interval S, an S-restricted distribution Fg is
defined by a sequence of values q} with the following properties. For each j € S, q;- < gqj. For every
other j, ¢; = 0. The probability of element j in Fs is ¢;/ >, q,-

Suppose j € S. An S-restricted search is a search for j in T that terminates once j is located
in any interval contained in S.

Definition 1.5. A search tree T over U is pu-reducing if: for any internal node S and for any
non-leaf child S' of S, qsr < pqs. (As a result, if S has depth k, then qg < u*.)

A search tree T is c-optimal for restricted searches over F if: for all S and S-restricted distri-
butions Fgs, the expected time of an S-restricted search over Fg is at most ¢(—logqs + 1). (The
probabilities ¢ are as given in Definition 1.4.)

We give the main lemma about restricted searches. This is useful because a tree that is optimal
for searches over F also works for restricted distributions. The proof is given in Appendix A.

Lemma 1.6. Let T be a u-reducing search tree for F. Then T is O(1/log(1/u))-optimal for
restricted searches over JF.

We list theorems about data structures that are constructed from the learning phase. Similar
structures were first constructed in [ACC*11], and the following can be proved using their ideas.
The data structures involve construction of slab structures and specialized search trees for each
distribution D;. It is also important that these trees can be represented in small space, to satisfy
the requirements of Theorem 1.3. The following lemmas give us the details of the data structures
required (proof in Appendix B.

Lemma 1.7. We can construct a slab structure S with O(n) leaf slabs such that, with probability
1 — n=3 over the construction of S, the following holds. For a leaf slab \ of S, let X\ denote
the number of points in a random input P that fall into \. For every leaf slab X of S, we have
E[X?] = O(1). The construction takes O(logn) rounds and O(nlog?n) time.

Lemma 1.8. Let ¢ > 0 be a fized parameter. In O(n?) rounds and O(n'™¢) time, we can construct
search trees Ty, Ty, ..., T, over S such that the following holds. (i) the trees can be represented
in O(n't€) total space; (ii) with probability 1 — n=3 over the construction of the T;s, every T; is
O(1/¢)-optimal for restricted searches over D;.

2 Qutline of algorithm

If the points of P are sorted by z-coordinate, the maxima of P can easily be found by a right-to-left
sweep over P: we maintain the largest y-coordinate Y of the points traversed so far; when a point
p is visited in the traversal, if y(p) < Y, then p is non-maximal, and the point p; with ¥ = y(p;)
gives a per-point certificate for p’s non-maximality. If y(p) > Y, then p is maximal, and can be put
at the beginning of the certificate list of maxima of P.

This suggests the following approach to a self-improving algorithm for maxima: sort P with a
self-improving sorter and then use the traversal. The self-improving sorter of [ACCT11] works by
locating each point of P within the slab structure S of Lemma 1.7 using the trees T; of Lemma 1.8.

While this approach does use S and the T;’s, it is not optimal for maxima, because the time
spent finding the exact sorted order of non-maximal points may be wasted: in some sense, we are
learning much more information about the input P than necessary. To deduce the list of maxima,
we do not need the sorted order of all points of P: it suffices to know the sorted order of just
the maxima! An optimal algorithm would probably locate the maximal points in S and would
not bother locating “extremely non-maximal” points. This is, in some sense, the difficulty that
output-sensitive algorithms face.

As a thought experiment, let us suppose that the maximal points of P are available. We search
only for these in S and determine the sorted list of maximal points. We can argue that the optimal

algorithm must also (in essence) perform such a search. We also need to find per-point certificates
for the non-maximal points. We use the slab structure S and the search trees, but now we shall
be very conservative in our searches. Consider the search for a point p;. At any intermediate
stage of the search, p; is placed in a slab S. This rough knowledge of p;’s location may already
suffice to certify its non-maximality: let m denote the leftmost maximal point to the right of S
(since the sorted list of maxima is known, this information can be easily deduced). We check if m
dominates p;. If so, we have a per-point certificate for p; and we promptly terminate the search for
p;. Otherwise, we continue the search by a single step and repeat. We expect that many searches
will not proceed too long, achieving a better position to compete with the optimal algorithm.

Non-maximal points that are dominated by many maximal points will usually have a very short
search. Points that are “nearly” maximal will require a much longer search. So this approach
should derive just the “right” amount of information to determine the maxima output. But wait!
Didn’t we assume that the maximal points were known? Wasn’t this crucial in cutting down the
search time? This is too much of an assumption, and because the maxima are highly dependent on
each other, it is not clear how to determine which points are maximal before performing searches.

The final algorithm overcomes this difficulty by interleaving the searches for sorting the points
with confirmation of the maximality of some points, in a rough right-to-left order that is a more
elaborate version of the traversal scheme given above for sorted points. The searches for all points
p; (in their respective trees T;) are performed “together”, and their order is carefully chosen. At any
intermediate stage, each point p; is located in some slab S;, represented by some node of its search
tree. We choose a specific point and advance its search by one step. This order is very important,
and is the basis of our optimality. We recall that in the optimal tree, a leaf is labeled with a
sequence of regions (R1, Ra, ..., R,). If the probability that p; € R; is large (resp. small), then for
these inputs, the optimal tree performs a short (resp. long) search for p;. Because of the ordering,
the search time spent by the algorithm depends on these probabilities, implying optimality.

The algorithm is described in detail and analyzed in §4.

3 Computational Model and Lower Bounds
3.1 Reducing to restricted comparison trees

We prove that when P is generated probabilistically, it suffices to focus on restricted comparison
trees. To show this, we provide a sequence of transformations, starting from the more general
comparison tree, that result in a restricted linear comparison tree of comparable expected depth.
Let 7 be a linear comparison tree and v be a node of 7. Note that v corresponds to a region
R, C R?" such that an evaluation of 7 on input P reaches v if and only if P € R,. If T is
restricted, then R, is the Cartesian product of a sequence (Rp, Ra,..., Ry) of polygonal regions.
The depth of v, denoted by d,, is the length of the path from the root of 7 to v. Given T, there
exists exactly one leaf v(P) that is reached by the evaluation of 7 on input P. The ezpected depth
of T, dr, is defined as Ep.p|d,p)]. The expected depth of T is a lower bound for the expected
running time of any algorithm that implements 7. The main lemma of this section is the following.
We stress that there results only hold for when D is a product distribution.

Lemma 3.1. Let T a finite linear comparison tree. Then there exists a restricted comparison tree
T with expected depth d+ = O(dT), as d — cc.

We will describe a transformation from 7 into a restricted comparison tree with similar depth.
The first step is to show how to represent a single comparison by a restricted linear comparison

tree, provided that P is drawn from a product distribution. The final transformation basically
replaces each node of T by the subtree given by the next claim. The complete proof of Lemma 3.1
is given in Appendix C.1.

Claim 3.2. Consider a comparison C as described in Definition 1.2 and let D' be a product distri-
bution for P such that each p; is drawn from a polygonal region R;. Then there exists a restricted
linear comparison tree T that resolves the comparison C' such that the expected depth of T/, (over
the distribution D') is O(1).

Proof. We have three cases depending on the type of C' as given in Definition 1.2.

Case 1: v is of type (i). The node v does a restricted comparison, and the tree 7/ is just v.
Case 2: v is of type (ii). This means that v needs to determine whether an input point p; lies to
the left of the directed line ¢ through another input point p; with a fixed slope a. We replace this
comparison with a binary search. Let R; be the region in D’ corresponding to p;. Take a halving
line /1 for R; with slope a. Then perform two comparisons to determine on which side of ¢; the
inputs p; and p; lie. If p; and p; lie on different sides of ¢1, we declare success and resolve the
original comparison accordingly. Otherwise, we replace R; with the appropriate new region and
repeat the process until we can declare success. Note that in each attempt the success probability
is at least 1/4. The resulting restricted tree 7/ can be infinite. Nonetheless, the probability that
an evaluation of T¢ leads to a node of depth k is at most 27%*) so the expected depth is O(1).
Case 3: v is of type (iii). Now we have to compare an input point p; with the line through
two other input points p; and pg. As before, let R;, R;, and R}, be the corresponding regions in
D'. Recall that these regions are polygonal and hence connected. Let z(R;), z(R;), z(Ry) denote
the corresponding x-projections. The first order of business is to ensure that these projections are
pairwise disjoint. We will explain how to guarantee z(R;) N xz(R;) = (), the other cases are similar.
Take a vertical halving line ¢; for R; and a vertical halving lie ¢; for R;. Determine the position
of p; relative to ¢; and the position of p; relative to R;. If this yields two disjoint z-intervals,
we declare success. Otherwise, we repeat with the new regions R and R;. In each attempt the
probability of success is at least 1/4. In a similar way, we also ensure that the y-projections y(R;),
y(R;), y(Ry) are disjoint.

The disjointness of the x- and y-projections implies that there exists a 3 x 3 grid G such that
each region R;, R;j, Ry is wholly contained in a cell of G' and such that each column and each row
of G contains exactly one such region; see Figure 2b. Now there are two cases. If the central cell
of G contains no region, then the comparison has been decided, because no line through any two
regions can intersect the third region. Thus, suppose the central cell contains a region. Let ¢; be
a line that simultaneously bisects R; and Rj. Such a line exists because of the Ham-Sandwich
Theorem [Mat03, Theorem 3.1.1]. Compare p;, p;, pr with ¢;. There are two ways the comparison
can be resolved, see Figure 2a. Either R; lies in the central cell and p; lies to a different side of ¢;
than both p; and pi. Or R; does not lie in the central cell and it lies to the other side of ¢; as the
point in the central cell but on the same side as the point in the other non-central cell. If this is so,
we declare success, otherwise we repeat the process with the new regions R}, R} and R;. Observe
that in each attempt the probability of success is at least 1/8, since ¢; is halving for R; and Ry,
and at least one of Kf or {; contains more than half the measure of R;. Again, we can argue that
a evaluation leads to a node of depth k with probability at most 2=*) so the expected depth is
o(1). O

i) i) o5 R, DR
(a) (b) (a) (b)

(a) Grid cell (b) Resolving comparison

Fig. 2: Left: Since the z- and y-projections of R;, R;, and R; are disjoint, the regions can be
separated by a grid such that each row and each column contains exactly one region. (a)
If the central grid cell is empty, the comparison has been decided. (b) If not, we use the
ham-sandwich theorem to find a simultaneous halving line which we use for the comparison.
Right: Two ways the comparison can be resolved: (a) R; is in the central grid cell and p;
lies to a different side of ¢; than both p; and py; or (b) R; is not in the central cell and p;
lies transversal to p; and py,.

3.2 Entropy-sensitive comparison trees

Since every linear comparison tree can be made restricted, we can incorporate the entropy of D
into the lower bound. For this we define entropy-sensitive trees, which are useful because the depth
of a node v is related to the probability of the corresponding region R,. All proofs of this section
are given in Appendix C.2.

Definition 3.3. We call a restricted linear comparison tree entropy-sensitive if each comparison
“p; € £7?7 is such that £ is a halving line for the current region R;.

Lemma 3.4. Let v be a node in an entropy-sensitive comparison tree, and let R, = R1 X Ro X
-+ X Ry. Then d, = —)", log Pr[R;].

As in Lemma 3.1, we can make every restricted linear comparison tree entropy-sensitive without
affecting its expected depth too much.

Lemma 3.5. Let T a restricted linear comparison tree. Then there exists an entropy-sensitive
comparison tree T' with expected depth dy = O(dT).

Recall that OPTp is the expected depth of an optimal linear comparison tree that computes
the maxima for P ~ D. We now describe how to characterize OPTp in terms of entropy-sensitive
comparison trees. We first state a simple property that follows directly from the definition of
certificates and the properties of restricted comparison trees.

Proposition 3.6. Consider a leaf v of a restricted linear comparison tree T computing the mazima.
Let R; be the region associated with non-maximal point p; € P in R,. There exists some region R;
associated with an extremal point p; such that every point in R; dominates every point in R;.

We now enhance the notion of a certificate (Definition 1.1) to make it more useful for our
algorithm’s analysis.

Definition 3.7. Let S be a slab structure. A certificate for an input P is called S-labeled if every
mazimal point is labeled with the leaf slab of S containing it.

A linear comparison tree T computes the S-labeled mazima of P if each leaf v of T is labeled
with a S-labeled certificate that is valid for every possible input P € R,. Furthermore, consider the
region R; associated with a non-mazimal point p; € P, and the dominating region R; (as given in
Proposition 3.6). Either R; is contained in a leaf slab of S, or there is a slab boundary separating

R; from R;.

Lemma 3.8. There exists an entropy-sensitive comparison tree T computing the S-labeled mazima
whose expected depth over D is O(n+ OPTp).

4 The algorithm

In the learning phase, the algorithm constructs a slab structure S and search trees T;, as given
in Lemmas 1.7 and 1.8. Henceforth, we assume that we have these data structures, and will
describe the algorithm in the limiting (or stationary) phase. Our algorithm proceeds by searching
progressively each point p; in its tree T;. However, we need to choose the order of the searches
carefully.

At any stage of the algorithm, each point p; is placed in some slab S;. The algorithm maintains
a set A of active points. An inactive point is either proven to be non-maximal, or it has been placed
in a leaf slab. The active points are stored in a data structure L(A). This structure is similar to a
heap and supports the operations delete, decrease-key, and find-mazx. The key associated with an
active point p; is the right boundary of the slab S; (represented as an element of [|S]]).

We list the variables that the algorithm maintains. The algorithm is initialized with A = P,
and each S; is the largest slab in S. Hence, all points have key |S|, and we insert all these keys into
L(A).

e A, L(A): the list A of active points stored in data structure L(A).

e)\ B: Let m be the largest key among the active points. Then X is the leaf slab whose right
boundary is m and B is a set of points located in A Initially B is empty and m is |S|, corresponding
to the 400 boundary of the rightmost, infinite, slab.

o M,p: M is a sorted (partial) list of currently discovered maximal points and p is the leftmost
among those. Initially M is empty and p is a “null” point that dominates no input point.

The algorithm involves a main procedure Search, and an auxiliary procedure Update. The
procedure Search chooses a point and proceeds its search by a single step in the appropriate tree.
Occasionally, it will invoke Update to change the global variables. The algorithm repeatedly calls
Search until L(A) is empty. After that, we perform a final call to Update in order to process any
points that might still remain in B.

Search. Let p; be obtained by performing a find-maz in L(A). If the maximum key m in L(A) is
less than the right boundary of A\, we invoke Update. If p; is dominated by p, we delete p; from
L(A). If not, we advance the search of p; in T; by a single step, if possible. This updates the slab
S;. If the right boundary of S; has decreased, we perform the appropriate decrease-key operation
on L(A). (Otherwise, we do nothing.)

Suppose the point p; reaches a leaf slab A. If A = X, we remove p; from L(A) and insert it in B
(in time O(|B|)). Otherwise, we leave p; in L(A).

Update. We sort all the points in B and update the list of current maxima. As Claim 4.1 will
show, we have the sorted list of maxima to the right of A\. Hence, we can append to this list in
O(|B|) time. We reset B = (), set A to the leaf slab to the left of m, and return.

We prove some preliminary claims. We state an important invariant maintained by the algo-
rithm, and then give a construction for the data structure L(A). All missing proofs can be found
in Appendix D.

Claim 4.1. At any time in the algorithm, the mazima of all points to the right ofX have been
determined in sorted order.

Claim 4.2. Suppose there are x find-maxs and y decrease-keys. We can implement the data
structure L(A) such that the total time for the operations is O(n+x +y). The storage requirement
is O(n).

4.1 Running time analysis

The aim of this subsection is to prove the following lemma.
Lemma 4.3. The algorithm runs in O(n + OPTp) time.

The running time of Update can be bounded by O(n) (details in Appendix D). The important
claim is the following, since it allows us to relate the time spent by Search to the entropy-sensitive
comparison trees. Lemma 4.3 follows directly from this.

Claim 4.4. Let T be an entropy-sensitive comparison tree computing S-labeled mazxima. Consider a
leaf v labeled with the regions R, = (R, Ra, ..., Ry,), which has depth d,. Conditioned on P € R,
the expected running time of Search is O(n + d,).

Proof. For each R;, let S; be the smallest slab of S that completely contains R;. We will show that
the algorithm performs at most an S;-restricted search for input P € R,. If p; is maximal, then R;
is contained in a leaf slab (this is because the output is S-labeled). Hence S; is a leaf slab and an
S;-restricted search for a maximal p; is just a complete search.

Now consider a non-maximal p;. By the properties of S-labeled maxima, the associated region
R; is either inside a leaf slab or is separated by a slab boundary from the dominating region R;. In
the former case, an S;-restricted search is a complete search. In the latter case, we argue that an
S;-restricted search suffices to process p;. This follows from Claim 4.1: by the time an S;-restricted
search finishes, all maxima to the right of S; have been determined. In particular, we have found
pj, and thus p dominates p;. Hence, the search for p; will proceed no further.

The expected search time taken conditioned on P € R, is the sum (over i) of the conditional
expected S;-restricted search times. Let &; denote the event that p; € R;, and £ be the event that
P e R,. We have & = A, &;. By the independence of the distributions and linearity of expectation

n n
Eg[search time| = Z E¢[S;-restricted search time for p;] = Z Eg, [S;-restricted search time for p;].
i=1 i=1

By Lemma 1.6, the time for an S;-restricted search conditioned on p; € R; is O(—log Pr[p; € R;]+1).
By Lemma 3.4, d, =), —log Pr[p; € R;], completing the proof. O

10

5 Acknowledgments

C. Seshadhri was funded by the Early-Career LDRD program at Sandia National Laboratories.
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-AC04-94A1.85000.

We would like to thank Eden Chlamtac for suggesting a simple proof for Claim C.1.

References

[ABC09]

[ACCT11]

[ACCLO6]

[AS00]

[BKSO01]

Peyman Afshani, Jérémy Barbay, and Timothy M. Chan. Instance-optimal geometric
algorithms. In Proc. 50th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages
129-138, 2009.

Nir Ailon, Bernard Chazelle, Kenneth L. Clarkson, Ding Liu, Wolfgang Mulzer, and
C. Seshadhri. Self-improving algorithms. SIAM Journal on Computing, 40(2):350-375,
2011.

Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Self-improving algo-
rithms. In Proc. 17th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages
261-270, 2006.

Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience, New
York, second edition, 2000.

S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In Data Engineering,
2001. Proceedings. 17th International Conference on, pages 421-430. IEEE, 2001.

[BLMM11] Kevin Buchin, Maarten Loffler, Pat Morin, and Wolfgang Mulzer. Preprocessing im-

[Buc89]

[CMS10]

[CSO8]

[EM11]

[FLNO1]

precise points for Delaunay triangulations: Simplified and extended. Algorithmica,
61(3):674-693, 2011.

C. Buchta. On the average number of maxima in a set of vectors. Inform. Process.
Lett., 33(2):63-66, 1989.

K. Clarkson, W. Mulzer, and C. Seshadhri. Self-improving algorithms for convex hulls.
In Proc. 21st Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), 2010.

Kenneth L. Clarkson and C. Seshadhri. Self-improving algorithms for Delaunay trian-
gulations. In Proc. 24th Annu. ACM Sympos. Comput. Geom. (SoCG), pages 226-232,
2008.

Esther Ezra and Wolfgang Mulzer. Convex hull of imprecise points in o(nlogn) time
after preprocessing. In Proc. 27th Annu. ACM Sympos. Comput. Geom. (SoCG), pages
11-20, 2011.

Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for mid-
dleware. In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium,
on Principles of database systems, PODS ’01, pages 102-113, New York, NY, USA,
2001. ACM.

11

[Gol94] M. J. Golin. A provably fast linear-expected-time maxima-finding algorithm. Algorith-
mica, 11:501-524, 1994. 10.1007/BF01189991.

[GTVV93] M. T. Goodrich, Jyh-Jong Tsay, D. E. Vengroff, and J. S. Vitter. External-memory
computational geometry. In Proceedings of the 1993 IEEE 34th Annual Foundations
of Computer Science, pages 714-723, Washington, DC, USA, 1993. IEEE Computer
Society.

[HMO8] Martin Held and Joseph S. B. Mitchell. Triangulating input-constrained planar point
sets. Inform. Process. Lett., 109(1):54-56, 2008.

[KLP75] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors.
J. ACM, 22:469-476, October 1975.

[VKLM10] Marc J. van Kreveld, Maarten Loffler, and Joseph S. B. Mitchell. Preprocessing impre-
cise points and splitting triangulations. SIAM Journal on Computing, 39(7):2990-3000,
2010.

[KS86] David G. Kirkpatrick and Raimund Seidel. The ultimate planar convex hull algorithm?
SIAM Journal on Computing, 15(1):287-299, 1986.

[LS10] Maarten Loffler and Jack Snoeyink. Delaunay triangulation of imprecise points in linear
time after preprocessing. Comput. Geom. Theory Appl., 43(3):234-242, 2010.

[Mat03] Jifi Matousek. Using the Borsuk-Ulam theorem. Springer, Berlin, 2003.

A Restricted searches

Lemma A.1. Given an interval S in U, let Fg be an S-restricted distribution of F. Let T be a
u-reducing search tree for F. Conditioned on j drawn from Fg, the expected time of an S-restricted
search in T for j is at most (b/log(1/p))(—loggs + 1) (for some absolute constant b).

Now that we may assume that we are comparing against an entropy sensitive comparison tree,
we need to think about how to make our searches entropy-sensitive. For this we proceed as follows.
By Lemma 1.7, we have a vertical slab structure S such that each leaf slab contains only constantly
many points in expectation. Now, for each distribution D;, we construct an optimal search tree T;
for the leaf slabs of S. The recursion continues until S; or S, are empty. The search in T; proceeds
in the obvious way. To find the leaf slab containing p;, we begin in at the root and check whether
p; is contained in the corresponding leaf slab. If yes, the search stop. Otherwise, we branch to the
appropriate child and continue.

Each node in T; corresponds to a slab in S, and it is easily seen that if a node has depth d, then
p; is contained in the corresponding slab with probability at most 2~¢. From this, it quickly follows
that T; is an asymptotically optimal search tree for D;. However, below we require a stronger result.
Namely, we need a technical lemma showing how an optimal search tree for some distribution F is
also useful for some conditional distributions.

Let U be an ordered set and F be a distribution over U. For any element j € U, we let p;
denote the probability of j in F. For any interval S of U, the total probability of S is pg.

12

(@) (8)

Fig. 3: (o) The intersections S NV in (i)-(iii) are trivial, the intersections in (iii) and (iv) are
anchored; (/) every node of T; has at most one non-trivial child, except for R.

Let T be a search tree over U with the following properties. For any internal node S and a
non-leaf child S’, pgr < ups. As a result, if S has depth k, then pg < p*. Every internal node of T
has at most 2 internal children and at most 2 children that are leaves.

Definition A.2. Given an distribution F and interval S, an S-restricted distribution Fg is a
conditional distribution of F such that i chosen from Fg always falls in S.

For any S-restriction Fg of F, there exist values p;- with the following properties. For each
j €8, pj < pj. For every other j, pi = 0. The probability of element j in Fg is p}/> p}.
Henceforth, we will use the primed values to denote the probabilities in Fg. For interval R, we
set pp = > ,ep P Suppose we perform a search for j € S. This search is called S-restricted if it
terminates once we locate j in any interval contained in S.

Lemma A.3. Given an interval S in U, let Fg be an S-restricted distribution. Conditioned on j
drawn from Fg, the expected time of an S-restricted search in T for j is O(—logply + 1).

Proof. We bound the number of visited nodes in an S-restricted search. We will prove, by induction
on the distance from a leaf, that for all visited nodes V with py < 1/2, the expected number of
visited nodes below V' is ¢; + clog(pv /p},), for constants ¢, ¢;. This bound clearly holds for leaves.
Moreover, since for V at depth k, py < uF, we have py < 1 /2 for all but the root and at most
1/log(1/u) nodes below it on the search path.

We now examine all possible paths down T that an S-restricted search can lead to. It will be
helpful to consider the possible ways that S can intersect the nodes (intervals) that are visited in
a search. Say that the intersection S NV of S with interval V is trivial if it is either empty, S,
or V. Say that it is anchored if it shares at least one boundary line with S. Suppose SNV = V.
Then the search will terminate at V', since we have certified that j € S. Suppose SNV =5, s0 S
is contained in V. There can be at most one child of V' that contains S. If such a child exists, then
the search will simply continue to this child. If not, then all possible children (to which the search
can proceed to) are anchored. The search can possibly continue to any child, at most two of which
are internal nodes. Suppose V is anchored. Then at most one child of V' can be anchored with S.
Any other child that intersects S must be contained in it. Refer to Figure 3.

Consider the set of all possible nodes that can be visited by an S-restricted search (remove all
nodes that are terminal, i.e., completely contained in S). These form a set of paths, that form some

13

subtree of S. In this subtree, there is only one possible node that has two children. This comes
from some node R that contains S and has two anchored (non-leaf) children. Every other node of
this subtree has a single child. Again, refer to Figure 3.

From the above, it follows that for all visited nodes V with V' # R, there is at most one child
W whose intersection with S is neither empty nor W. Let vis(V') be the expected number of nodes
visited below V, conditioned on V' being visited. We have vis(V') < 1 + vis(W)py;,/py,, using the
fact that when a search for j shows that it is contained in a node contained in S, the S-restricted
search is complete.
Claim A.4. For V,W as above, with py < 1/2, if vis(W) < ¢1 + clog(pw/ply), then for ¢ >
c1/log(1/p), with p € (0,1),

vis(V) < 1+ clog(py /p},)- (1)

Proof. By hypothesis, using pw < upy, and letting 3 := py,/pj, < 1, vis(V') is no more than

L+ (e1 + clog(pw /pw)) /Py < 1+ (e1 + clog(pv /pw) + clog(n) B
=1+ 1B+ clog(py)B + clog(1/py)B + clog(n)B.
The function xlog(1/x) is increasing in the range « € (0,1/2). Hence, py, log(1/py,) < pi, log(1/p},)
for pi, < py < 1/2. Since 5 < 1, we have

vis(V) <1+ 18+ clog(py) + clog(1/py) + clog(u)
= 1+ clog(pv /py) + Bler + clog(p)) < 1+ clog(pv/py),

for ¢ > ¢1/log(1/). O

Only a slightly weaker statement can be made for the node R having two nontrivial intersections
at child nodes Ry and R».

Claim A.5. For R, Ry, Rs as above, if vis(R;) < ¢1 + clog(pRi/p’Ri), for i = 1,2, then for ¢ >

c1/log(1/p),
vis(R) < 1+ clog(pr/pr) + c.

Proof. We have
vis(R) < 1+ vis(R1)pkg, /P + vis(R2)Pk, /PR-
Let B := (p, + Pg,)/Pr- With the given bounds for vis(R;), then using pr, < upg, vis(R) is
bounded by
1+) " [er + clog(pr, /PP, /PR

i=1,2

<1+ 1B+ cBlog(p) + cBlog(pr) + ¢ > (U, /Pr) log(1/pk,)-
1=1,2

The sum takes its maximum value when each p, = pir/2, yielding

vis(R) < 1+ 18 + cBlog(u) + cBlog(pr) + cBlog(2/pk)
< 1+ clog(pr/pR) + Blc1 + clog(u)) + clog(2) < 1+ clog(pr/pk) + clog(2),

for ¢ > ¢1/log(1/p), as in (1), except for the addition of clog2 = c. O

14

Now to complete the proof of Lemma 1.6. For the visited nodes below R, we may inductively
take ¢; = 1 and ¢ = 1/log(1/u), using Claim A.4. The hypothesis of Claim A.5 then holds for
R. For the visited node just above R, we may apply Claim A.4 with ¢; = 1+ 1/log(1/u) and
¢ > c¢1/log(1/p). The result is that for the node V just above R, vis(V') < 1+ clog(p1/py,). This
bound holds then inductively (with the given value of ¢) for nodes further up the tree, at least up
until the 14 1/log(1/u) top nodes. For the root @, note that pb = pls. Thus the expected number
of visited nodes below Q is at most 1/log(1/u) +1+clog(pq/pg) = O(1 —log(py)), as desired. [

B Data structures from the learning phase

Learning the vertical slab structure S is very similar to to learning the V-list in Ailon et al. [ACCT11,
Lemma 3.2]. We repeat the construction and proof for convenience: take the union of the first
k = logn inputs Py, P,, ..., Pr, and sort those points by x-coordinates. This gives a list
T, T1, ..., Tpk—1. Take the n values o, Tk, Tok, ..., T(—1)k- They define the boundaries for S.
We recall a useful fact [ACC*11, Claim 3.3].

Claim B.1. Let Z =), Z; be a sum of nonnegative random variables such that Z; = O(1) for all
i, E[Z] = O(1), and for alli,j, E[Z;Z;] = E[Z])E[Z;]. Then E[Z% = O(1).

Proof. By linearity of expectation,

B2 =B[(Y2))] =Y B[2] +23_ Bz

= ZE [Z22] + 2ZE[Zi]E[Zj] < ZO(E[Zi]) + (Z E[Z])? = 0(1).
0

Now let A be a leaf slab in S. Recall that we denote by X, the number of points of a random
input P that end up in A. Using Claim B.1, we quickly obtain the following lemma.

Lemma B.2. With probability 1 —n=3 over the construction of S, we have E[X}] = O(1) for all
leaf slabs A € S.

Proof. Consider two values x;, z; from the original list. Note that all the other kn — 2 values are
independent of these two points. For every r ¢ {i,j}, let Yt(r) be the indicator random variable for
xy €t:=[r5,25). Let Y =), Yt(r). Since the Yt(r)’s are independent, by Chernoff’s bound [AS00],
for any 8 € (0,1],

PrlY; < (1 — A)B[Y;]] < exp(~2E[Y1)/2).

With probability at least 1 — n=°, if E[Y;] > 12logn, then Y; > logn. By applying the same
argument for any pair z;,z; and taking a union bound over all pairs, with probability at least
1 — n~3 the following holds: for any pair ¢, if ¥; < logn, then E[Y;] < 12logn.

For any leaf slab A\ = [xak,w(aﬂ)k], we have Y, < logn. Let X/(\i) be the indicator random

variable for the event that x; ~ D; lies in A, so that X =), X)(\i). Since E[Y)] > (logn —2)E[X,],
we get E[X,] = O(1). By independence of the D;’s, for all 4, j, E[XiZ)X/(\J)] = E[X/@]E[ng)], SO
E[X?] = O(1), by Claim B.1. O

15

Lemma 1.7 follows immediately from Lemma B.2 and the fact that sorting the k inputs Py, P,
..., Py takes O(nlog?n) time. After the leaf slabs have been determined, the search trees T; can be
found using essentially the same techniques as before [ACCT11, Section 3.2]. The main idea is to
use nf log n rounds to find the first € logn levels of T}, and to use a balanced search tree for searches
that need to proceed to a deeper level. This only costs a factor of e~'. We restate Lemma 1.8 for
convenience.

Lemma B.3. Let ¢ > 0 be a fized parameter. In O(nf) rounds and O(n'*¢) time, we can construct
search trees Ty, To, ..., T, over S such that the following holds. (i) the trees can be totally
represented in O(n'*€) space; (ii) probability 1 — n=3 over the construction of the Tys: every T; is
O(1/¢)-optimal for restricted searches over D;.

Proof. Let § > 0 be some sufficiently small constant and c be sufficiently large . For k = c6~2n® logn
rounds and each p;, we record the leaf slab of S that contains it.

Based on the k instances of p; and their positions in S, we construct a search tree. For a slab .S,
let N(S) be the number of times p; was in S, and let §(7,.S) = N(S)/k be the empirical probability
for this event (4(4, S) is an estimate of ¢(i, 5)?). Fix a slab S. If (i, S) < 1/2n?, then by a Chernoff
bound we get Pr[N(S) > 5logn > 10kq(i, S)] < 27°°8" = n =3, Furthermore, if ¢(i, S) > 1/2n°,
then q(i, S)k > (¢/26%)logn and Pr[N(S) < (1 —6)q(i, S)k] < exp(—q(i, S)5%k/4) < n~> as well as
Pr[N(S) > (1 + 8)q(i, S)k] < exp(—d2q(i, S)k/4) < n~>. Thus, by taking a union bound, we get
that with probability at least 1 — n=3 for any slab S, if N(S) > 5logn, then ¢(i,S) > n~¢/2 and
hence ¢(i,S) € [(1 —0)q(,S), (1 + 0)q(i,S)]. We will henceforth assume that this holds for all 4
and S.

The tree T; is constructed recursively. We will first create a partial search tree, where some
searches may end in non-leaf slabs (or, in other words, leaves of the tree may not be leaf slabs).
The root is the just the largest slab. Given a slab S, we describe how the create the sub-tree of T;
rooted at S. If N(S) < 5logn, then we make S a leaf. Otherwise, we pick a leaf slab A such that
for the slab S; consisting of all leaf slabs (strictly) to the left of A and the slab S, consisting of all
leaf slabs (strictly) to the right of A\ we have ¢(i,.5;) < (2/3)4(,S) and §(7, Sr) < (2/3)4(i, S). We
make X a leaf child of S. Then we recursively create trees for S; and S, and attach them as children
to S. For any internal node of the tree S, we have ¢(i,S) > n®/2, and hence the depth is at most
O(elogn). Furthermore, this partial tree is S-reducing (for some constant [3). The partial tree T;
is extended to a complete tree in a simple way. From each T;-leaf that is not a leaf slab, we perform
a basic binary search for the leaf slab. This yields a tree T; of depth at most (14 O(e))logn. Note
that we only need to store the partial T} tree, and hence the total space is O(n!' ™).

Let us construct, as a thought experiment, a related tree 7;. Start with the partial 7;. For every
leaf that is not a leaf slab, extend it downward using the true probabilities ¢(i,.5). In other words,
let us construct the subtree rooted at a new node S in the following manner. We pick a leaf slab A
such that ¢(i,S;) < (2/3)q(i,S) and q(i, S;) < (2/3)q(i, S) (where S; and S, are as defined above).
This ensures that 7] is f-reducing. By Lemma 1.6, T} is O(1)-optimal for restricted searches over
D; (we absorb the 8 into O(1) for convenience).

We will now prove that T; is O(1/¢)-optimal for restricted searches. Fix a slab S and an S-
restricted distribution Dg. Let ¢/(i, \) (for each leaf slab \) be the series of values defining Dg.
Note that ¢'(i, S) < q(i,S). Suppose ¢'(i,S) < n~°/2. Then —log¢'(i,S) > e(logn)/2. Since any
search in T} takes at most (14+O(g)) logn steps, the search time is at most O(e~!(—log ¢'(i,) +1)).

2 We remind the reader that this the probability that p; € S.

16

Suppose ¢'(i,5) > n~¢/2. Consider a single search for some p;. We will classify this search
based on the leaf of the partial tree that is encountered. By the construction of Tj, any leaf S’ is
either a leaf slab or has the property that (¢, S") < n~¢/2. The search is of Type 1 if the leaf of
the partial tree actually represents a leaf slab (and hence the search terminates). The search is of
Type 2 (resp. Type 3) if the leaf of the partial tree is a slab S is an internal node of T; and the
depth is at least (resp. less than) ¢(logn)/3.

When the search is of Type 1, it is identical in both T; and 7]. When the search is of Type 2, it
takes at e(logn)/3 in T} and at most (trivially) (1 + O(e))(logn) in T;. The total number of leaves
(that are not leaf slabs) of the partial tree at depth less than e(logn)/3 is at most n¥/3. The total
probability mass of D; inside such leaves is at most n°/3 x n=¢/2 < n~2¢/3. Since ¢'(i,S) > n~=5/?,
in the restricted distribution Dg, the probability of a Type 3 search is at most n¢/6.

Choose a random p ~ Dg. Let £ denote the event that a Type 3 search occurs. Furthermore,
let X, denote the depth of the search in 7T; and Xz/) denote the depth in 7). When £ does not occur,
we have argued that X}, < O(X),/¢). Also, Pr(£) < n~¢/%. The expected search time is just E[X,).
By Bayes’ rule,

E[X,] = Pr()Eg[X,] + Pr(€)Ee[X,] < O(e "Eg[X,]) + n~/%(1 + O(e)) logn
E[X]] = Pr(€)Eg[X]] + Pr(€)Eg[X,] = Eg[X]] < E[X]]/Pr(€) < 2E[X]]

Combining, the expected search time is O(e~!(E[X]] +1)). Since T} is O(1)-optimal for restricted
searches, T; is O(e~!)-optimal. O

C Details for Section 3

C.1 Proof of Lemma 3.1

Proof of Lemma 3.1. We incrementally transform 7 into the tree 7. In each such step, we have
a partial restricted comparison tree 7" that will eventually become 7’. Furthermore, during the
process each node of T is in one of three different states. It is either finished, fringe, or untouched.
Finally, we have a function S that assigns to each finished and to each fringe node of T a subset
S(v) of nodes in T”.

The initial situation is as follows: all nodes of T are untouched except for the root which is
fringe. Furthermore, the partial tree 7" consists of a single root node r and the function S assigns
the root of T to the set {r}.

Now our transformation proceeds as follows. We pick a fringe node v in 7, and mark v as
finished. For each child v’ of v, if v’ is an internal node of T, we mark it as fringe. Otherwise, we
mark v’ as finished. Next, we apply Claim 3.2 to each node w € S(v). Note that this is a valid
application of the claim, since w is a node of 7", a restricted tree. Hence R, is a product set, and
the distribution D restricted to R, is a product distribution. Hence, replace each node w € S(v)
in 7" by the subtree given by Claim 3.2. Now S(v) contains the roots of these subtrees. Each leaf
of each such subtree corresponds to an outcome of the comparison in v. (Potentially, the subtrees
are countably infinite, but the expected number of steps to reach a leaf is constant.) For each child
v" of v, we define S(v') as the set of all such leaves that correspond to the same outcome of the
comparison as v'. We continue this process until there are no fringe nodes left. By construction,
the resulting tree 7" is restricted.

17

It remains to argue that dv = O(dy). Let v be a node of 7. We define two random variables
X, and Y,. The variable X, is the indicator random variable for the event that the node v is
traversed for a random input P ~ D. The variable Y, denotes the number of nodes traversed in
T’ that correspond to v (i.e., the number of nodes needed to simulate the comparison at v, if it
occurs). We have dr =) .+ E[X,], because if the leaf corresponding to an input P ~ D has
depth d, exactly d nodes are traversed to reach it. We also have d7v =)+ E[Y,], since each node
in 77 corresponds to exactly one node v in 7. Claim C.1 below shows that E[Y,] = O(E[X,]),
which completes the proof. O

Claim C.1. E[Y,]| < cE[X,]

Proof. Note that E[X,] = Pr[X, = 1] = Pr[P € R,]. Since the sets R,,, w € S(v), partition R,,

we can write E[Y,] as

EY, | X, =0]Pr[X, =0]+ Y E[Y,|P € Ry|Pr[P € Ryl
weS(v)

Since Y, = 0 if P ¢ R,, we have E[Y, | X, = 0]. Furthermore, by Claim 3.2, we have E[Y,, | P €
Ruw] < ¢. The claim follows. O

C.2 Proofs for Subsection 3.2

Proof of Lemma 3.4.

Proof. We use induction on the depth of v. For the root » we have d, = 0. Now, let v/ be the
parent of v. Since T is entropy-sensitive, we reach v after performing a comparison with a halving
line in v’. This halves the measure of exactly one region in R, so the sum increases by one. 0

Proof of Lemma 3.5

Proof. The proof is similar to the proof of Lemma 3.1. We replace each comparison p; € £ in T
by a sequence of comparisons to halving lines. Similar to Case 2 of the proof of Lemma 3.1, we this
is done by binary search. That is, let /1 be a halving line for R; parallel to £. We compare p; with
£. If this resolves the original comparison, we declare success. Otherwise, we repeat the process
with the halving line for the new region R,. In each step, the probability of success is at least 1/2.
Then a similar argument as in Lemma 3.1 shows that the expected depth is only increased by a
constant factor.? O

Proof of Lemma 3.8.

Proof. Start with an optimal linear comparison tree 7’ that computes the maxima. At every leaf,
we have a list M with the maximal points in sorted order. We merge M with the list of slab
boundaries of S to label each maximal point with the leaf slab of S containing it. We now deal
with the non-maximal points. Let R; be the region associated with a non-maximal point p;, and

3 If the reader is uncomfortable with 7 being potentially infinite, there are several ways to make amends: (i) we
could force T to be finite by allowing for the possibility that the tree fails to compute the maxima. The probability
of this event can be made arbitrarily small; or (ii) we prove an extended version of Lemma 3.1 that directly yields
an entropy-sensitive tree. We chose to phrase our result through infinite trees because this seems yield the cleanest
presentation.

18

R; be the dominating region. Let A be the leaf slab containing IZ;. Note that the z-projection of
R; cannot extended to the right of A. If there is no slab boundary separating R; from R;, then R;
must intersection \. With one more comparison, we can place p; inside A or strictly to the left of
it. All in all, with O(n) more comparisons than 7', we have a tree 7" that computes the S-labeled
maxima. Hence, the expected depth is OPTp + O(n). Now we apply Lemmas 3.1 and 3.5 to 7" to
get an entropy-sensitive comparison tree 7 computing the S-labeled maxima with expected depth

O(n + OPTp). 0

D Details for Section 4

Proof of Claim 4.1.

Proof. The proof is by backward induction on m, the right boundary of X. When m = |S|, then this
is trivially true. Let us assume it is true for a given value of m, and trace the algorithm’s behavior
until the maximum key becomes m — 1 (which is done in Update). When Search processes a
point p with a key of m then either (i) the key value decreases; (ii) p is dominated by p; or (iii) p is
eventually placed in h) (whose right boundary is m). In all cases, when the maximum key decreases
to m — 1, all points in \ are either proven to be non-maximal or are in B. By the induction
hypothesis, we already have a sorted list of maxima to the right of m. The procedure Update will
sort the points in B and all maximal points to the right of m — 1 will be determined. O

Proof of Claim 4.2.

Proof. We represent L(A) as an array of lists. For every k € [|S|], we keep a list of points whose
key values are k. We maintain m, the current maximum key. The total storage is O(n). A find-max
can trivially be done in O(1) time, and an insert is done by adding the element to the appropriate
list. A delete is done by deleting the element from the list (supposing appropriate pointers are
available). We now have to update the maximum. If the list at m is non-empty, no action is
required. If it is empty, we check sequentially whether the list at m — 1, m — 2,... is empty. This
will eventually lead to the maximum. To do a decrease-key, we delete, insert, and then update the

maximum.
Note that since all key updates are decrease-keys, the maximum can only decrease. Hence, the
total overhead for scanning for a new maximum is O(n). O

Claim D.1. The expected time for all calls to Update is O(n).

Proof. The total time taken for all calls to Update is at most the time taken to sort points within
leaf slabs. By Lemma 1.7, this takes expected time

E[Z X§] =Y E[x3] =Y 0(1) = O(n).
A€S A€S AES
O
Proof of Lemma 4.53. By Lemma 3.8, there exists an entropy-sensitive comparison tree 7 computing
the S-labeled maxima with expected depth O(OPT +n). Applying Claim 4.4, the expected running

time of Search is O(OPT + n). Claim D.1 tells us the expected time for Update is O(n), and we
add these bounds to complete the proof.]

19

	Introduction
	Main result
	Previous work
	Preliminaries and notation
	Tools from self-improving algorithms

	Outline of algorithm
	Computational Model and Lower Bounds
	Reducing to restricted comparison trees
	Entropy-sensitive comparison trees

	The algorithm
	Running time analysis

	Acknowledgments
	Restricted searches
	Data structures from the learning phase
	Details for Section 3
	Proof of [lem:restrictedTree]Lemma3.1
	Proofs for Subsection 3.2

	Details for Section 4

