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ABSTRACT
We present Sprinkle SPARQL, an algorithm for perform-
ing complex SPARQL queries in an efficient, scalable, and
graph-oriented manner on a shared-memory machine. The
algorithm has two phases. During the first phase, called the
Sprinkle phase, each triple pattern is processed in isolation.
The set of RDF Terms satisfying each triple pattern is stored
in hash tables for each variable. From these constrained sets
of RDF Terms, we then perform join operations to create the
result. The benefits of the preliminary Sprinkle phase are
two fold: 1) the number of variable bindings is significantly
reduced, minimizing the size and complexity of the expen-
sive join operations, and 2) we obtain enough information to
select a near optimal execution plan for the join phase. We
evaluate our approach on two data sets: LUBM(8000) and
a one billion edge R-MAT graph generated with Graph5001

parameters and extended to have edge labels.
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1. INTRODUCTION
In this paper we analyze and evaluate empirically a new

algorithm for performing SPARQL Queries2 called Sprinkle
SPARQL. An initial version was briefly presented previously
[6]. Here, we present extensions that overcome limitations in
the prior work. However, our key contribution in this paper
is to show that Sprinkle SPARQL fulfills two key desiderata
for query engines, namely

1. before execution of a query plan, removing RDF terms3

from consideration that will not result in valid bindings
for the variables in the query, and

1http://www.graph500.org/
2http://www.w3.org/TR/rdf-sparql-query/
3http://www.w3.org/TR/2008/
REC-rdf-sparql-query-20080115/#defn_RDFTerm
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2. selection of a near optimal execution path.

To understand each point, consider the graph in Figure 1
and suppose we have the query.

SELECT ?X1 ?X2 ?X3

WHERE

{?X1 p1 ?X2 .

?X2 p2 ?X3}

By inspection, we see that the optimal path is to first eval-
uate ?X1 p1 ?X2 followed by ?X2 p2 ?X3 resulting in five
total edge examinations. The other order results in eight
edges. However, even if we select the optimal path, for a
näıve approach, 75% of the intermediate results created after
evaluating ?X1 p1 ?X2 are later pruned from the final an-
swer. This wasted computation is easily exacerbated with
more complex queries. Sprinkle SPARQL addresses these
two issues, using low cost operations we call Sprinkling to
prune dead-ends and find a near optimal execution plan.

Figure 1: An example graph showing how the or-
dering of evaluating triple patterns is important.
Also shows that even with the best ordering, work
is wasted on intermediate results that are later
pruned.

2. CONVENTIONS/DEFINITIONS
Data written in RDF can be thought of as a graph, where

the subject and object are vertices and the predicate is a di-
rected edge connecting them. As such, we use the following
conventions and definitions to facilitate expressing various
concepts about the RDF graph.

• V is the set of vertices in the graph. |V | denotes the
number of vertices in the graph, or the order.
• E is the set of edges. |E| denotes the number of edges,

or size of the graph.

SAND2011-8549C

lgalleg
Typewritten Text
SAND2011-8549 C



• T is the set of edge types (predicate types). |T | denotes
the number of unique edge types.
• For p ∈ T , |p| denotes the number of edges with edge

type p.
• Let ∼ be the relation has the same edge type as. This

relation defines an equivalence relation on the edges.
We define maxT as the size of the largest equivalence
class under ∼.
• We denote the total degree of a vertex v as δ(v), the

number of incoming edges as δ−(v), and the number
of outgoing edges as δ+(v).
• We refer to the maximum indegree as ∆− and the

maximum outdegree as ∆+. The average degree is
δ̄ = |E|/|V |.

A result is the outcome of a SPARQL query. It has a
set of columns, which is the set of selected variables in the
SPARQL query, and number of rows, which are solutions of
the SPARQL query. We also make use of the term interme-
diate result, which has the same tabular form as the result of
a SPARQL query, but is the product of executing a subset
of the triple patterns in the basic graph pattern of a query.
Intermediate results can contain variables and columns not
in the final result as not all variables used in a basic graph
pattern need be selected by the query.

We use the standard convention of SPARQL to repre-
sent variables with alphanumeric identifiers prepended with
a question mark, e.g. ?x1. However, we also overload the no-
tation in our algorithmic discussions to encode two separate
notions: 1) the list of variable bindings in an intermediate or
final result, and 2) the set of variable bindings within a hash
table created during the Sprinkle phase of our algorithm.
We discuss each in more detail below.

For the case when a variable, ?x1, is referenced in terms
of the result of a query, we imply all the variable bindings
found within the column of the result for ?x1. For example,
take the query presented in Section 1. The final result (if
non-empty) will be a three column structure. Below is an
example. For conciseness, we use integers to represent the
variable bindings instead of RDF Terms.

?x1 ?x2 ?x3
1 5 3
1 2 5
...

...
...

2 5 3

So when we refer to ?x1 in the context of the result, we
imply the list of values, 1, 1, ..., 2. Notice that ?x1 is a list,
so values can be repeated.

For the Sprinkle SPARQL algorithm, we create hash ta-
bles containing variable bindings that fulfill the constraints
specified by the triple patterns. In this instance, ?x1 is a set
of values and not a list.

We also use the δ() notation on lists and sets of variable
bindings. For instance, if ?x is a variable, we define δ+(?x)
to be the summation of all the outdegrees of known variable
bindings of ?x that are vertices, i.e.

δ+(?x) =
∑

v∈?x∧v∈V

δ+(v) (1)

We also use the term triapp:

Definition For a triple pattern tp with n variables where
1 ≤ n ≤ 3, a triapp of tp is the application of tp to an
intermediate result, R (possibly empty), producing a new
intermediate result R′, where R′ has m additional columns,
m = |{v|v a variable ∧ v ∈ tp} − {v|v a column in R}|

This paper uses k to refer to the number of triapps for a
particular query.

To better understand triapps and their interaction with
results and intermediate results, consider the following ex-
ample basic graph pattern with three triple patterns:

?x1 type Person
?x1 knows ?x2
?x1 coworker ?x2

If the ordering of evaluation was the same as the pre-
sentation above, the first triapp creates a one-column in-
termediate result containing all the nodes that are people.
The second triapp expands the result by one column, where
each row represents the fact of that the first element knows
the second element of the row. The third triapp constrains
the existing two-column result, limiting it to pairs of nodes
where the first element both knows and is coworkers with
the second element.

For the query algorithms we present, we make the follow-
ing restriction on possible triapp evaluation orderings: Let
Xi be the set of variables in the result after i triapps and let
triappi be the ith triple application in a given ordering for
the query. The intersection of variables v ∈ triappi+1 with
Xi must be non-empty. For example, if we add the triple
pattern stating ?x2 to be a person to the example query:

?x1 type Person
?x2 type Person
?x1 knows ?x2
?x1 coworker ?x2

evaluating the first triapp followed by the second would not
satisfy the restriction because ?x2 is not in the intermediate
result created after evaluating the first triapp.

3. DATA STRUCTURES
There are two fundamental data structures used by the

Sprinkle SPARQL algorithm. These data structures are not
specific to Sprinkle SPARQL; they could be used by other
search engine strategies. Any data structure used in a search
engine must support the following features in order for the
engine to achieve efficiency:

1. Given a specific node, walk the incoming (outgoing)
neighbors in time proportional to the indegree (outde-
gree) of the node.

2. Given an edge type, walk the edges of that type in time
proportional to the frequency of that edge type.

In both cases—vertex degrees and edge types—it is imper-
ative that a lookup of “size” can be done in constant time.
That is, the indegree or outdegree and the number of edges
of a certain edge type must be available to the search engine
in constant time. Moreover, the “walk” must be allowed to
progress over an array (or a specific range of an array) so that
parallelism can be exploited. To achieve the first feature we
could use two adjacency lists, one for the incoming neigh-
bors and one for the outgoing neighbors. However, to reduce



our memory footprint, we use a compressed sparse row rep-
resentation adapted to support typed, directed edges. We
use a multimap to achieve the second feature.

We use a bidirectional compressed sparse row (CSR) data
structure as depicted in Figure 2. The vertex list is com-
posed of two pointers, one as an entry into the incoming edge
list, and the other to the outgoing edge list. In addition, the
vertex entries contain a unique integer corresponding to the
URI that is the name of the vertex. The two edge lists con-
tain pointers to an external edge information array that hold
an integer indicating the edge type along with information
about the source and target of the edge.

incoming edge list · · ·

vertex list · · ·

outgoing edge list · · ·

6

�
���

? ?

Figure 2: Compressed Sparse Row

This data structure provides the efficient access patterns
required by our Sprinkle SPARQL search engine. Walking
a neighbor list is essentially picking a range in the incoming
or outgoing edge list and simply walking that array. The
degrees of each vertex can be quickly computed by observing
the distance between adjacent pointers from the vertex list.
The size of this data structure is 7|E|+ 2|V |+ 5, where the
word size is 8 bytes.

Our multimap data structure is similar to a hash table.
Hash tables can be thought of as associative arrays, storing
key-value pairs. They also provide constant time lookup of
a value for a given key. The multimap is the same, except
instead of a single value, multiple values are stored. For our
purposes, the key is an edge type and the values are the
edges that have the given edge type. While very beneficial
to our algorithm, this index structure does add to our space
requirements. The multimap adds 4.5f ·|E| words, where the
word size is 8 bytes and 1 < f ≤ 2 is a multiplier to obtain
a load factor on the hash table conducive to performance.

4. CRAY XMT
For all of our experiments we employed a Cray XMT

shared-memory supercomputer. The Cray XMT has a rela-
tively lengthy history of performing well on graph-type prob-
lems [2], [16], [5], [13], as well as growing relevance and ap-
plication to the Semantic Web [7], [6], [14]. As such, we
believe it is an ideal platform to perform SPARQL Queries.

The Cray XMT is a unique shared-memory machine with
multithreaded processors especially designed to support fine-
grained parallelism and perform well despite memory and
network latency. Each of the custom-designed compute pro-
cessors (called Threadstorm processors) comes equipped with
128 hardware threads, called streams in XMT parlance, and
the processor instead of the operating system has responsi-
bility for scheduling the streams. To allow for single-cycle
context switching, each stream has a program counter, a
status word, eight target registers, and thirty-two general

purpose registers. At each instruction cycle, an instruction
issued by one stream is moved into the execution pipeline.
The large number of streams allows each processor to avoid
stalls due to memory requests to a much larger extent than
commodity microprocessors. For example, after a proces-
sor/ has processed an instruction for one stream, it can cycle
through the other streams before returning to the original
one, by which time some requests to memory may have com-
pleted. Each Threadstorm processor of the machine under
study has 8 GB of memory, all of which is globally address-
able. The latest XMT2 can go up to 64GB per processor.
The system we use in this study has 128 processors and 1
TB of shared memory.

Programming on the XMT consists of writing C/C++
code augmented with non-standard language features in-
cluding generics, intrinsics, futures, and performance-tuning
compiler directives such as pragmas. Generics are a set of
functions the Cray XMT compiler supports that operate
atomically on scalar values, performing either read, write,
purge, touch, and int_fetch_add operations. Each 8-byte
word of memory is associated with a full-empty bit and the
read and write operations interact with these bits to provide
light-weight synchronization between threads.

For our code, we achieve parallelism through what is called
implicit parallelism, where the compiler automatically paral-
lelizes for loops, and through the a more direct approach us-
ing the #pragma mta for all streams i of n construct.
The for all streams allows programmers to be cognizant
of the total number of streams that the runtime has assigned
to the loop, as well as providing an iteration index that can
be treated as the id of the stream assigned to each iteration.

5. NAÏVE IMPLEMENTATION
For comparision, we implemented a näıve approach for

evaluating SPARQL queries. From a high level, the ap-
proach is straight-forward:

1: function Näıve(bgp, graph, permutation, result)
2: result← ∅
3: for i← 1, length(bgp) do
4: triapp(graph, bgp[permutation[i]], result)
5: end for
6: end function

In essence, we iterate through the triple patterns, blindly
following the sequence specified by permutation, forming a
series of intermediate results.

As the Näıve method requires an ordering, in our exper-
iments we attempt to evaluate all possible permutations,
though in some instances we resort to sampling. In this
manner, we present the space of possible outcomes absent
some mechanism for choosing an ordering. Also, even if the
best ordering is chosen through some other approach, we
show that not only does Sprinkle SPARQL largely select
that ordering, but also reduces the amount of computation
required via the Sprinkle preprocessing step.

6. SPRINKLE SPARQL
Here we present the algorithmic details for Sprinkle SPARQL.

The algorithm performs two phases: a series of Sprinkle
operations, called the Sprinkle phase, followed by a series
of triapps over two-variable triple patterns, called the Join
phase.

Figure 3 outlines a portion of the Sprinkle phase. There



are a number of global variables used implicitly throughout
the code that we describe below:

• bgp The basic graph pattern that we are evaluating.
• g The compressed sparse row graph data structure rep-

resenting the RDF graph.
• pi The predicate index with the mapping from edge

types to edges with the given edge type.
• tables An array of hash tables that store the valid vari-

able bindings for each variable in the query.
• odegrees An array the same size as the number of vari-

ables in the query that stores the summation of the
outdegrees for valid variable bindings.
• idegrees Similar to odegrees except a summation of

indegrees instead.
• bindings The number of valid variable bindings for

each variable.
• occurs Used to keep track of how many times a variable

has been seen during processing.
• seen Tally on which triples have been processed.

The sprinkle phase iterates through all of the triple pat-
terns of the basic graph pattern; however, the sequence of
evaluation is greedily determined by picking the triple pat-
tern with the least amount of work using the follow statistics
as a guide:

• If the subject of the triple pattern is constant, the out-
degree of the subject.
• If the subject is a variable, the summation of outde-

grees for the bindings, found in odegrees.
• If the predicate is constant, the predicate index is queried

to determine the number of edges with that predicate.
• If the predicate is a variable, the sum total of all edges

with a predicate type that is recorded as valid for the
variable, found in bindings.
• If the object is constant, the indegree of the object.
• If the object is a variable, the sum of all indegrees for

all bindings of the variable, found via idegrees.

The triple pattern with the smallest statistic for one of its
elements across all unseen triple patterns is selected next for
evaluation. This selection is performed on line 3. The four
elements returned by the call to select tp are tp, the triple
pattern index within the basic graph pattern, pos, signifying
which element within the triple pattern had the smallest
statistic, tt, the type of sprinkle operation to perform, and
m, the value of the smallest statistic.

The rest of the sprinkle phase is a large switch statement
which handles each possible triple pattern motif and what
type of Sprinkling is to be performed. For example, Lines 4-
20 handle the triple pattern motif of ?s p o where the subject
variable has not been seen before. For this case, there is no
information about the subject, so the only two options are
exploring from the predicate or exploring from the object.
For the case when the predicate occurs less frequently than
the indegree of the object (lines 7-12), we use the predicate
index to explore the edges with the proper type, and every
time we find one of the edges with the correct object, we
attempt to insert the subject into the variable’s hash table.
The hash table stores key-value pairs where the keys are
RDF Terms and the value is a count of how many times the
variable for the table has been encountered from processed
triple patterns. Thus, when we attempt to insert a key s,
it is only added to or updated in the hash table if the value

1: function sprinkle phase
2: for i← 1, length(bgp) do
3: tp, pos, tt,m← select tp()
4: if tt == VCC then
5: v ← var id(tp, SUBJECT)
6: create table(v,m)
7: if pos == PRED then
8: for all e ∈ pi.edges(bgp[tp].pred) do
9: if e.object == bgp[tp].object then

10: table[v].insert(e.subject, occurs[v])
11: end if
12: end for
13: else if pos == OBJECT then
14: for all e∈ g.in edges(bgp[tp].object) do
15: if e.type == bgp[tp].pred then
16: table[v].insert(e.subject, occurs[v])
17: end if
18: end for
19: end if
20: update counts(var)
21: else if tt == MCC then
22: v ← var id(tp, SUBJECT)
23: if pos == SUBJECT then
24: subjects← tables[v].get keys()
25: for all s ∈ subjects do
26: for all e ∈ g.out edges(s) do
27: if e.type == bgp[t].pred ∧

e.object == bgp[t].object then
28: table[v].insert(e.subject, occurs[v])
29: end if
30: end for
31: end for
32: else if pos == PRED then
33: ... . Same as VCC case.
34: else if pos == OBJECT then
35: ... . Same as VCC case.
36: end if
37: update counts(var)
38: ... . Other cases omitted.
39: end if
40: end for
41: end function

Figure 3: The Sprinkle Phase

associated with s equals occurs[v] (assuming values in the
table are initialized to be zero). If on the other hand the
indegree of the object is less than the number of edges with
the correct type (lines 13-19), we explore all the in-edges of
the object. If the edges are of the correct type, we perform
the insert function. In general, we use statistics from the
compressed sparse row graph and the predicate index to
take a greedy path of least resistance.

Also of note are lines 6, where we create a table for a previ-
ously unseen variable, and 20, where we update information
about the variable bindings stored in the table. If a variable
has not been seen before, we create a table on the order
of the size of the smallest statistic reported for the triple
(m). At the end of each case within the Sprinkle phase, we
update counts for the affected variables. This includes the
total outdegree, indegree, and number of bindings for all the
variable bindings stored within the table.

After the Sprinkle phase, the algorithm switches to the
Join phase, which is similar to the Näıve algorithm but with
some key differences. Unlike the Näıve approach, Sprinkle
SPARQL uses heuristics to select the order of the triapps.



Similar to the Sprinkle phase, the Join phase selects an or-
dering of evaluation based on statistics of each element of
the triple patterns. We use the idegrees, odegrees, and
bindings arrays populated during the Sprinkle phase; how-
ever, as variables are added to the result, the totals are up-
dated to reflect the contents of the result instead of the hash
table contents. Another key difference between the Näıve
approach and Sprinkle SPARQL is the join phase of Sprin-
kle SPARQL does not need to consider the single-variable
triple patterns. The variable bindings that arise from eval-
uating those are already stored in the hash tables for each
variable. Also in contrast to the Näıve method, when a vari-
able is added to an intermediate result, the result must be
joined with a the contents of the table of the new variable.

7. EVALUATION
We evaluate Sprinkle SPARQL on two data sets, the Lehigh

University Benchmark [8] and an R-MAT [4] graph aug-
mented with edge labels.

The Lehigh University Benchmark is a synthetic data set
that can be generated to arbitrary sizes. It produces triples
related to a university setting, specifying students, faculty,
courses, and other entities and the relationships between
them. We generated LUBM(8000), where the number in the
parentheses denotes the number of universities. The number
of triples in the LUBM(8000) is approximately 1.1 billion.
However, we materialize triples inferred via minimal RDFS
[18] with an inference engine described in [7]. This expands
the data set to ∼1.34 billion triples. Finally, we also added
the rule stipulating that graduate student is a subclass of
student, resulting in a final total of ∼1.35 billion triples.
We converted the triples into integers for faster processing
and for loading into our data structures.

Using this combination of minimal RDFS with the gradu-
ate student rule allows us to accurately answer LUBM stan-
dard queries 1-10.

R-MAT, or a Recursive Model for Graph Mining, is an
approach for generating graphs that have similar character-
istics to real-world graphs such as social networks, the Inter-
net topology, and citation graphs. R-MAT mimics these ex-
amples by 1) generating a degree distribution that follows a
power law, 2) exhibiting community structures, and 3) hav-
ing a small diameter. There are six parameters to specify:
|V |, δ̄, and the partition probabilities, a, b, c, and d, where
a+ b+ c+ d = 1 (for more information on the parameters,
see [4]). We set |V | = 226 and δ̄ = 16, resulting in a graph
with approximately 230 edges. For the partition parameters,
we use what is specified by Graph500, a = 0.57, b = 0.19,
c = 0.19, and d = 0.05. We then add edge labels to graph,
varying |T | from 1000 to 10,000. We assigned edge labels in a
uniform random way from T . This procedure of course does
not follow real-world distributions. However, it is instructive
to show that even in this relatively information-poor envi-
ronment, Sprinkle SPARQL can continue to prove valuable
for a large portion of the query space.

For both data sets, in comparing Sprinkle SPARQL with
the Näıve approach, we use two metrics:

• We compare the overall time for an equal number of
processors. As the Näıve approach has n! possible exe-
cution paths for n triple patterns, we directly compare
against the best and worst times. Also, for relatively
large n, we plot the distribution to give a notion of

how likely each outcome is.
• We also examine the sum of intermediate result sizes:

n∑
i=1

num varsi · |resulti| (2)

where num varsi denotes the number of variables (num-
ber of columns) included in the ith intermediate result
and |resulti| is the length of the result (number of
rows). This gives a qualitative feel for the amount of
work that is pruned during the Sprinkle phase.

7.1 LUBM
We do a rough categorization of the LUBM queries in

terms of their complexity. Queries 1, 3, 5, 6, and 10 are
simple and have only one variable in the basic graph pattern.
Queries 4, 7, and 8 are also relatively simple, but do have
more than one variable and several triple patterns. Queries
2 and 9 are the most complicated. The times reported below
are computation only with no I/O.

7.1.1 Single Variable LUBM Queries: 1, 3, 5, 6, 10
We first discuss LUBM queries 1, 3, 5, 6, and 10, all of

which involve just one variable and no two-variable triple
patterns. Some of these queries were designed to test the
inferencing capability of SPARQL query engines. However,
since we performed inferencing as a preprocessing step and
fully materialized the resulting triples, these queries look the
same as any other query that do not require inferencing.

For 1, 3, 5, and 10 we present only the two processor re-
sults on the Cray XMT. Each of these queries have two triple
patterns, one specifying the type of the variable ?X, and the
other specifying a constraint on ?X. The trick for good per-
formance on these queries is to select the latter triple, the
constraint. Evaluating first the triple specifying the type
of ?X invariably leads to many matches, almost all of which
are discarded. Sprinkle SPARQL has no troubles in selecting
the constraint triple first, as the degree on the specified ob-
ject is quite small in all cases. Table 1 compares the times of
Sprinkle SPARQL versus Näıve for all the LUBM queries we
examined. Table 2 compares the intermediate sizes during
the join phase. However, it should be noted that Sprinkle
SPARQL does not perform any joins when no two variable
triple patterns are present. The result is extracted from the
variable’s hash table. As such, we report the final result size
in Table 2.

Query Sprinkle Näıve Näıve Num
SPARQL Best Worst Procs

1 0.066915 0.067022 45.722397 2
2 5.201755 5.565319 6007.190699 128
3 0.069094 0.066387 61.942575 2
4 0.316535 0.145286 540.875019 2
5 0.029899 0.010239 184.002888 2
6 4.400197 0.562214 0.562214 128
7 0.155892 0.127778 1427.017009 2
8 0.362543 0.192409 483.238118 2
9 13.761691 7.330358 66.298924 128
10 0.078558 0.06876 174.639052 2

Table 1: This table compares times in seconds of
Sprinkle SPARQL versus the best and worst Näıve
times. How many processors were used in the runs
is also specified.



(a) LUBM Query 2 (b) Query 2 Näıve: permutation times (c) Query 2 Näıve: permutaion sums

(d) LUBM Query 9 (e) Query 9 Näıve: permutation times (f) Query 9 Näıve: permutation sums

Figure 4: Figure (a) compares Sprinkle SPARQL against the best and worst permutations of the Näıve
approach. Figure (b) looks at the range of times the permutations took for 128 processors while Figure (c)
examines the sum of intermediate sizes across permutations (and also the number of processed edges). Figure
(d)-(f) display similar data for query 9.

Query Sprinkle Näıve Percent Näıve
SPARQL Best Change Worst

1 4 8 100 20,157,123
2 60,798,953 161,272,120 165 5,539,651,344
3 6 12 100 64,478,867
4 306 381 19.7 986,917,868
5 719 1438 100 89,318,851
6 83557706 83557706 0 83,557,706
7 132 406 208 1,383,110,222
8 38950 55640 42.8 965,241,544
9 307234069 326,065,015 6.13 3,233,792,132
10 4 8 100 83557710

Table 2: This table compares the summation of in-
termediate join sizes of Sprinkle SPARQL versus
the best and worst sums via the Näıve method.
The Percent Change column specifies the percent-
age change from the sum of Sprinkle SPARQL to
the best sum of Näıve.

Query 6 asks for all Students. Since we already performed
inferencing, this query largely becomes an I/O task of re-
turning the 83,557,706 students. However, query 6 does re-
veal a small weakness of Sprinkle SPARQL in comparison
to the näıve method. Since there is only one triple pattern,
the ordering for both methods is obviously the same, so the
information we keep track of during the Sprinkle phase reaps
no benefit. Also, we don’t prune any results during Sprin-
kle from updates to variables across multiple triple patterns.
Sprinkle SPARQL in essence becomes a large batch insert
of all the students into a hash table, and then the very next
step is extracting them back out of the hash table. This
is naturally going to be much slower than simply grabbing
the list of students from the Student node in the graph, and
creating a result set. This weakness can easily be averted
by adding some special case logic for when only one triple

pattern is present, and executing the Näıve method in such
a situation.

7.1.2 Queries 4, 7, 8
Queries 4, 7, and 8 involve two variables, but are still rela-

tively simple. Table 1 shows that Sprinkle SPARQL results
in times that are competitive with the best permutation of
Näıve. However, there are many more possible permutations
for these queries, and Figure 5 shows the range of times. The
times vary over many orders of magnitude.

Figure 5: Sorted times for permutations of LUBM
Queries 4, 7, and 8 using the Näıve method.

7.1.3 Queries 2, 9
Queries 2 and 9 are the more complicated LUBM queries.

Figure 6 shows the subgraph of query 2, which is at its core
a triangle. Query 9 has a similar structure.

For query 2, the näıve implementation has a large vari-
ance, ranging from 5.56 to 6007 seconds. Due to some per-
mutations taking such inordinate amounts of time, we did
not run every possible valid permutation. We ran the Näıve
approach on 50 different randomly sampled permutations.



Figure 6: A graphical representation of LUBM
Query 2.

The runs with 128 processors, sorted by time, are presented
in Figure 4(b). We also present the summation of inter-
mediate sizes for each query in Figure 4(c). However, the
determining factor in run time appears to be the number
of processed edges. Some orderings amass a large number
of high-degree vertices which results in over a trillion edges
processed! Based on this sample of 50, we found the best
and worst permutations for the näıve implementation and
ran between 2 and 128 processors. Sprinkle SPARQL and
the best permutation are about even for all processor counts.

For query 9, Sprinkle SPARQL didn’t fare as well against
the best Näıve permutation as query 2. From Table 2 we
see that the difference in intermediate sizes is only off by
about 6%. As such, Sprinkle SPARQL couldn’t overcome
its extra overhead and it took roughly twice the time of the
best Näıve permutation. However, Sprinkle SPARQL did
select the best ordering.

7.2 R-MAT
As outlined previously, we generated an R-MAT graph

with a billion edges and then added edge types in a uniform
random way. We must also discuss the type of queries we ran
against this data. The below table outlines the 1 and 2 vari-
able triple patterns and the expected number of triples that
will match. We excluded from consideration zero-variable
triple patterns, which match one triple, and three-variable
triple patterns, which match everything when evaluated in
isolation.

Triples
Matching

?s p o δ̄/|T |
s ?p o δ̄/|V |2
s p ?o δ̄/|T |
?s ?p o δ̄
?s p ?o |E|/|T |
s ?p ?o δ̄

As expected, the triple patterns with two variables match
the most triples. Also, if we make the reasonable assumption

that |T | < |V |, it follows that |E||T | >
|E|
|V | = δ̄. Thus, the

pattern ?s p ?o is expected to match the most triples and
in some respects will be the most complicated. We selected
sequences of that pattern to be the focus of our study. More
precisely, we evaluated path queries of length k:

?x1 p1 ?x2 p2 ?x3 ... ?xk pk ?xk+1

With this setup, we came to the following conclusions:

• Due to how we generated the edge types, the ordering
of triapps is largely irrelevant with negligible impact on
performance. Thus, the only benefit Sprinkle SPARQL
offers is the ability to reduce intermediate result sizes
with pruning due to the Sprinkle phase.
• For path queries, there are two general regions, deter-

mined by |T |, one where the result size increases with
increasing numbers of triapps, k, and another where
the result size contracts with increasing k.
• We show that Sprinkle SPARQL provides the most

benefit to the region where the result sizes contract
with increasing k.
• Finally, we present some initial analysis of this graph

to better understand the bifurcation we witnessed.

For the rest of this section, we will discuss these four items.
The following table shows the mean and standard devia-

tion of the runtime for performing 10 queries with 5 triapps
(16 permutations each) for each of the values |T | listed. The
runs were with 64 processers. We can largely conclude that
there is no significant difference in the ordering of the tri-
apps. The lack of difference in performance is due to how the
edges were assigned. For the first triapp, regardless of the

edge type, the expected number of matches is |E||T | . Then,

again for the next triapp, each 2-gram of connected edge
types is equally likely due to the independence assumption,
and so forth. Thus, ordering does not significantly impact
performance and Sprinkle SPARQL loses one of its key ad-
vantages: the ability to select an efficient path.

|T | 2000 4000 6000 8000 10000
mean 130.6 18.1 7.75 4.68 3.37
stddev 2.81 0.30 0.10 0.084 0.048

We varied |T | from 1000 to 10,000 and k from 1 to 7
and found a curious result. Figure 7(a) shows the results.
We found that for small |T |, the size of the query result
grows with increasing k. For large |T |, the size of the query
contracts with increasing k. Experimentally, we found the
inflection line to be around |T | = 4210. We will present later
some analysis of why this occurs, but first we will discuss
the impact that this line has on the performance of Sprinkle
SPARQL relative to the Näıve approach.

Figure 7(b) shows the percentage change in the summa-
tion of intermediate result sizes from Sprinkle SPARQL to
the Näıve approach. Thus, positive numbers indicate larger
intermediate sizes for the Näıve approach relative to Sprin-
kle SPARQL. As expected, for one triapp, the size is ex-
actly the same for both methods. However, for every other
data point, Sprinkle SPARQL reduces the sum. The rela-
tive increase ranges from a 4.7% to 696%. The effect is most
dramatic for large |T | and large k.

Some of the savings in intermediate sizes translates into
improved performance, as shown in Figure 7(c). The figure
shows the percent change in time from Sprinkle SPARQL
to Näıve. There is a transparent plane marking 0%. Again,
similar to LUBM query 6, Sprinkle SPARQL performs sig-
nificantly worse than the näıve approach for single triapps.
However, for k > 2, the performance difference ranges from
-16.9% to 145%. The region where Sprinkle SPARQL per-
forms the best is where the number of edge types is greater
than the inflection line, |T | > 4210.



(a) Contraction/Growth of Result Size (b) % Change in Intermediate Sizes (c) % Change in Time

Figure 7: (a) Shows the growth in result size of the query with increasing k for |T | < 4210 and contraction for
|T | > 4210. (b) This shows the percent change in summation of intermediate sizes from Sprinkle SPARQL to
Näıve. For all |T | and number of triapps, k, Näıve produces intermedate results that are greater than or equal
to what is produced by Sprinkle SPARQL, though the effect is most dramatic with large |T | and large k. (c)
Displays the percent change in run time from Näıve to Sprinkle SPARQL. The transparent plane marks 0%
change. Sprinkle SPARQL does best in the region |T | > 4210 and where k > 1.

We now present some analysis of our experimental findings
that show a bifurcation of the result sizes for path queries
dependent upon |T |, where one region has expanding result
sizes with increasing k, and another contracts with increas-
ing k. For simplicity in presentation, we will assume the
query progresses from the first node, x1, to the last, xk+1,
in sequence. Other query execution plans are possible, but
our assumption of uniform random distribution of edge types
affords us no loss of generality.

To understand how the query result size grows or con-
tracts with k, we will examine the behavior of how the list
of vertices, list of edges, and set of edge types on the fron-
tier of the query change over time. We define V (k) to be
the list of vertices in the intermediate result after k triapps
within the column for variable xk+1. E(k) is a list of all edges
coming from the list of V (k) vertices. Finally, T (k) is a set
containing all the edge types of edges in E(k). For k = 0,
we define V (0) = V , E(0) = E, and T (0) = T . This anal-
ysis assume the elements of T (k) are uniformly distributed
in E(k). Despite our constructed graph having the degree
approximately power law distributed, this analysis makes no
assumptions about the degree distribution.

Determining the size of V (1) and E(1) for the first triapp
(?x1 p1 ?x2) is straightforward. Since the elements of T

are uniformly distributed in E, we have |V (1)| ≈ |E||T | To find

|E(1)|, we use the probability that vertex v in V is the target

of a randomly selected edge is: p(v) = δ−(v)∑
u∈V δ−(u)

= δ−(v)
|E|

Therefore, the expected total outdegree (i.e. |E(1)|) from

|V (1)| random vertices is:

|E(1)| = |V (1)|
∑
v∈V

δ−(v)

|E| δ
+(v) (3)

=
1

|T |
∑
v∈V

δ−(v)δ+(v) (4)

Concerning |T (1)|, and in general for |T (k)|, we find that

the size of the set is unlikely to change. Given |E(k)| at-
tempts drawing from T , the probability that edge type pi
is drawn ti times for all i ∈ {1, 2, ..., |T |} is given by the

multinomial distribution:

p(t1, t2, ..., t|T |; |E(k)|) = |E(k)|!
|T |∏
j=1

(
|T |
|E|

)tj
tj !

(5)

for
∑|T |
j=1 tj = |E(k)|. Marginalizing the multinomial dis-

tribution above over all random elements not equal to a
particular pi yields the equation

|E(k)|∑
q=0

p(ti = q, tj ≥ 0|j 6= i) = 1 (6)

where
∑|T |
j=1 tj = |E(k)|. The probability that one particular

element in T is not drawn in |E(k)| trials is

p(ti = 0, tj ≥ 0|j 6= i) (7)

where i ∈ {1, ..., |T |}. The expression above can be ex-
pressed as a binomial probability where the first state is
q = 0 and the second state is q 6= 0. Therefore 6 can be
rewritten as:

p(ti = 0, tj ≥ 0) = 1−
|E(k)|∑
q=1

p(ti = q, tj ≥ 0|j 6= i)

= 1− p(ti > 0, tj ≥ 0|j 6= i)

= 1−

(
1−

(
|E(k)|

0

)( 1

|T |

)0(
1− 1

|T |

)|E(k)|
)

= 1−

(
1−

(
1− 1

|T |

)|E(k)|
)

≈ 0.

If |E(k)| � 1, then the innermost parenthesis on the sec-
ond to last line of the derivation approaches 0. Therefore,
it is almost certain that that the entire set T is preserved
throughout the intermediate joins.

From equation 4, we can make a rough estimate of where
the inflection line is. If |E(0)| ≈ |E(1)|, then given the as-

sumption that edge types are uniformly distributed in E(k),
each triapp should result in approximately the same number
of vertices matching. Thus the intermediate results should



stay relatively constant. Using 4, the estimated inflection
line is 6538, contrasting to what we found empirically to be
around 4210.

For the subsequent triple patterns ?xs ps ?xs+1, 1 < s ≤
k, the probability that vertex v in V (s−1) contains edge type
ps nv times can be modeled with a binomial distribution
where 1

|T | is the probability of success and δ+(v) are the

number of trials:

p(nv) =

(
δ+(v)

nv

)(
1

|T |

)nv
(

1− 1

|T |

)δ+(v)−nv

. (8)

This uses the fact that |T (s−1)| = |T | in most circumstances.
Thus, the expected number of times ps is present for each
node is: n̄v = δ+(v)/|T |. Since no assumption is made about
the distribution of the indegrees or outdegrees other than
the summation of the degrees being bounded by |E(s−1)|,
we generalize by using the expected value of the outdegree:
δ+(V (s−1))

|V (s−1)| , hence

n̄v ≈
δ+(V (s−1))

|V (s−1)||T |
. (9)

Therefore, the expected number of vertices in V (s) is

|V (s)| ≈ δ+(V (s−1))

|T | =
|E(s−1)|
|T | . (10)

Figure 8 lists charts that are the results of experimental
runs with the statistics defined above. These charts show
the behavior of various graphs with varying number of edge
types. It also shows the relative error between |V (s)| and an
estimate obtained by equation 10. As predicted, the size of
|T | has a significant impact whether or not the result size
grows or shrinks as the number of triapps grow.

8. RELATED WORKS
The subject of optimizing database queries is well stud-

ied and most techniques are based on identifying and re-
ducing the work through pruning the search space. When
a triple store and semantic query engine are implemented
on top of a traditional database system with conventional
hardware, the easiest method to optimize SPARQL queries
is to push as much as possible of the optimization to the
underlying database system. For example the work in [23]
represents a PHP implementation of the SPARQL standard
directly interacting with an underlying RDBMS. Fundamen-
tal aspects related to the efficient processing of the SPARQL
query language for RDF are examined in [21] which also
presents a complete complexity analysis for all operator frag-
ments of the SPARQL query language. [11] proposes the
SPARQL query graph model (SQGM). They defined trans-
formations rules to simplify and to rewrite a query. Heuris-
tics were employed to achieve an efficient query execution
plan. Query optimization is performed through avoiding
join operations, and eliminating redundant or contradicting
restrictions. For instance, rules aim at simplifying complexly
formulated queries by merging graph patterns. Techniques
for optimizing instance retrieval in DL systems are described
in [9]. [22] formalized the problem of Basic Graph Pattern
(BGP) optimization for SPARQL queries and main memory
graph implementations of RDF data. They also analyzed
the characteristics of heuristics for selectivity-based static

k |T (k)| |V (k)| |E(k)| ||V̂ (k)|−|V (k)||
|V (k)|

0 1,000 226 230

1 1,000 1,023,200 6,655,566,698 -1.8e-3
2 1,000 6,680,090 22,364,529,263 -3.7e-3
3 1,000 22,428,939 92,198,766,029 -2.9e-3
4 1,000 91,973,501 358,445,924,114 2.4e-3
5 1,000 358,163,896 1,397,187,013,557 7.9e-4

k |T (k)| |V (k)| |E(k)| ||V̂ (k)|−|V (k)||
|V (k)|

0 4,210 226 230

1 4,210 242094 1,573,597,321 2.1e-3
2 4,210 374710 1,223,731,326 -2.5e-3
3 4,210 289136 1,072,606,424 5.3e-3
4 4,210 254519 1,044,346,250 1.0e-3
5 4,210 248195 941,999,621 -5.3e-4
6 4,210 223640 880,275,993 5.0e-4

k |T (k)| |V (k)| |E(k)| ||V̂ (k)|−|V (k)||
|V (k)|

0 10,000 226 230 -8.2e-4
1 10,000 102,221 666,609,361 5.0e-2
2 10,000 66,073 240,200,189 8.9e-3
3 10,000 24,363 98,240,256 -1.4e-2
4 10,000 9,601 31,304,486 2.3e-2
5 10,000 3,166 16,665,314 -1.1e-2
6 10,000 1,835 8,758,491 -9.2e-2

Figure 8: This list of tables contains some example
experimental data obtained from varying |T | and k.
The last column shows the relative errror between
|V (k)| and an estimate of |V̂ (k)|.

BGP optimization. The heuristics included variable count-
ing and selectivity estimation techniques. Summary statis-
tics for RDF data enable the selectivity estimation of joined
triple patterns and the development of heuristics. Our own
previous work in collecting summary statistics and analysis
techniques showed that even when hundreds of thousands of
different predicate and node types are present in the com-
mon large semantic datasets including those crawled from
the web, only a small subset dominates the data [1].

Refer to [20] for a formal study of SPARQL where they
examine a fragment without literals and discuss some op-
timizations procedures. The cost model in [19] is tailored
for a heterogeneous grid of SPARQL processors and repre-
sents query plans as SPARQL Query Graph Models. Costs
rely on recursive cost and cardinality functions. A prototype
for SPARQL query optimization based on triple pattern se-
lectivity estimation is built in [3]. That work also demon-
strates how triple pattern reordering according to their se-
lectivity affects the query execution performance. [17] iden-
tifies query fragments for which minimal query computation
is always possible and investigate the complexity of related
decision problems while [15] studies the problem of SPARQL
query optimization on top of distributed hash tables.

Indexing has not been exclusive to traditional relational
database systems as graph databases can also benefit from
indexing frequent graph patterns. For example [10] describes
optimized index structures for RDF and process and evalu-
ate queries based on that index structure. [12] indexes graph
patterns and shows how to find those indexes whose graph-
patterns are contained in the query pattern, and derive for-
mulas for estimating index selectivity. They also study the
problem of finding optimal sets of indexes for a given query.



9. CONCLUSIONS AND FUTURE WORK
We have shown that Sprinkle SPARQL fulfills the two

key desiderata we outlined previously, namely 1) it removes
invalid variable bindings with low cost Sprinkle operations
before expensive join operations, and 2) it selects a near
optimal path for executing the joins. For all of our exper-
imental studies, Sprinkle SPARQL does select the optimal
execution plan. While in some cases the best permutation
for the Näıve approach fared better than Sprinkle SPARQL,
our algorithm presents an efficient method to discover that
permutation.

For future work we are interested in the notion of Sprin-
kling to completion. The Sprinkle Phase currently only pro-
cesses each triple pattern once. However, it may be useful
to keep Sprinkling until there are no new updates to the
variable bindings. In this manner, we prune every invalid
variable binding. This may pose problems, as the number of
possible Sprinkle operations may approach k! where k is the
number of triple patterns. If the amount of work dramati-
cally decreases with each Sprinkle, this may still be a viable
option, or perhaps the point of diminishing returns can be
determined at run time.

We also believe the Sprinkle phase can be used as low cost
estimator of query size and complexity. The Sprinkle oper-
ations give an estimate of the number of bindings per vari-
able, the question then becomes how large does the joined
representation become. Keeping track of the indegree and
outdegree distributions for each variable may be sufficient
to create an good estimator of query size.
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