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Traumatic Brain Injury (TBI)  
 Sandia Focus: Military Relevance 

• US Soldiers are surviving blast and impacts due to effective body 
armor, rapid evacuation, & availability of critical trauma care 

 

• Closed-Head Blast Injuries are leading cause of traumatic brain injury 
(TBI) in military personnel returning from combat [1,2] 

– As of 2010, 160,000 US warfighters sustained TBI 
– 69% as a result of IED blast exposure in Iraq & Afghanistan 

 

• Blast Injury categories: 
– Primary: direct exposure to explosion-produced air blast 
– Secondary: impact by flying objects thrown by air blast 
– Tertiary: impact into stationary object (soldier thrown by air blast) 

 

• Our focus is on Primary Blast Injury and investigating mechanisms 
associated with brain injury 

– Once know, want to mitigate blast mechanisms through helmet design 

[1] Defense & Veterans Brain Injury Center TBI numbers: DoD numbers for traumatic brain injury. 2010 
[2] Fischer, H., 2007, United States Military Casualty Statistics: Operation Iraqi Freedom and Operation 
Enduring Freedom, Congressional Research Service Report RS22452. 



Overall Project 
Tasks & Goals 

• Correlate M&S predictions with clinical assessment of TBI 
– Create high resolution full head-neck model for blast & impact 

simulations (SNL) 
– Conduct clinical assessments of blast TBI subjects (UNM) 

• Neuropsychological testing 
• Magnetic resonance analyses 

– Perform simulations of blast scenarios that mimic conditions 
experienced by TBI subjects 

– Establish correlation between simulation predictions of intracranial 
wave mechanics & localized brain injury observed in TBI case 
histories 

•  Brain Injury Threshold Criterion (BITC) 
• Employ BITC and M&S tools to aid in design of head protection gear to 

mitigate blast loading conditions leading to TBI 
– BITC provides threshold conditions leading to TBI in absolute terms 

• However, we can assess protective merits of helmet design in relative 
terms 

In collaboration with Corey Ford, MD, PhD 
UNM Health Sciences Center 



Modeling & Simulation 
Development of Head-Neck Model 

• Constructed finite volume model from Visible Human Project [3] data 
– Constructed from 256 1mm-thick, axial slices of anatomical sections of 

human male from the VHP 
– Anatomically correct distributions of white & gray brain matter, cerebral 

spinal fluid, bone, falx & tentorium membranes, muscle/scalp 

[3] National Institutes of Health, 2007, “The Visible Human Project,” National Library of Medicine 
http://www.nlm.nih.gov/research/visible/visible_human.html 

Coronal, Axial, 
& Sagittal Cuts: 

Full Model 
Images: 

Model Size: 
5.9M Cells 



Modeling & Simulation 
Development of Head-Neck Model 

• Constructed Finite element 
version of head-neck model 

– Possesses anatomically correct 
distributions of white & gray 
brain matter, cerebral spinal 
fluid/blood, bone, falx & 
tentorium membranes, 
muscle/scalp 

– 5.9 million hex elements 
• Brain: 1.4M elements (1.4 L) 

– GM: 794K 
– WM: 509K 
– Falx/Tentorium: 21K 
– CSF/Blood: 89K 

• Sinus: 98K elements (0.098 L) 
• Bone: 749K elements (0.75 L) 
• Scalp/Muscle: 3.6M elements       

          (3.6 L) 
– For use in Lagrangian finite 

element simulations and 
coupled Eulerian-Lagrangian 
simulations 



Modeling & Simulation 
Development of Helmet Model 

• Constructed representation of military helmet 
– Helmet shell: Kevlar Composite 
– Pads: Polyurethane Foam Pads 
– Strapping removed; Not necessary in timeframe of interest (3-4 ms) 

• Helmet moves only 3-4 mm during course of our simulations 



Modeling & Simulation 
Model Development 

• Selection/Implementation of constitutive models 
– Biological Materials 

• White & Gray Matter - Finite Elastic, Linear Viscoelastic models [4] 
• Bone - Linear Elastic model w/ Fracture [4,5] 
• Falx & Tentorium (membranes) – Finite Elastic models [4] 
• Muscle & Scalp - Finite Elastic models [4,6] 
• Cerebral Spinal Fluid (CSF) – Non-Linear Compressible model (EOS) 
• Sinus Air (and surrounding air) - Non-linear Compressible model (EOS) 

– Military Helmet 
• Helmet Shell - Composite model [7] 
• Helmet Pads - Finite Elastic foam model [7] 

[4] Zhang, L., Yang, K.H., & King, A.I., 2001, “Comparison of Brain Responses between Frontal and Lateral 
Impacts by Finite Element Modeling,” J. Neurotrauma 18(1), pp. 21-30. 

[5] Carter, D.R., 1985, “Biomechanics of Bone,” Biomechanics of Trauma, Appleton-Century-Crofts, 
Norwalk, CT, pp. 135-165. 

[6] Mak, A.F.T. & Zhang, M., 1998, “Skin and Muscle,” in Handbook of Biomaterial Properties, ed. J. Black 
& G. Hastings, Chapman & Hall, London, pp. 66-69. 

[7] Nyein, M.K., Jason, A.M., Yu, L., Pita, C.M., Joannopoulos, J.D., Moore, D.F., & Radovitzky, R.A., 2010, 
“In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury,” 
Proc. Nat. Acad. Sci. 107(48), pp. 20703-20708. 



Modeling & Simulation 
Simulation Methodology & Validation 

• Simulation Methods 
– Eulerian methods using CTH (w/ finite volume model) 
– Lagrangian-Eulerian coupled methods using Presto/CTH 

(w/ finite element model) 
• Loose coupling (1-way passing of node pressure histories to 

Finite Element Analysis) 
• Tight coupling (2-way interaction between Eulerian & 

Lagrangian analyses) 
 

• Head/Neck Model Validation 
– Compared Simulation predictions with laboratory data 

• Magnetic Resonance Elastography & Tagging data on the 
human head (in vivo) courtesy of Prof. Philip Bayly and team, 
Washington University at St. Louis, MO USA 

• Laboratory blast data on Human Surrogate Head Model 
courtesy of JHU Applied Physics Laboratory, PoC: Andrew 
Merkle 



Modeling & Simulation 
 Example: 3.6 bar (360 KPa) Blast 

Snap-Shot Images of Blast-Induced Pressure Wave Propagating through Head 
Time ~ 130 µs after blast wave encounters head 

Blast Wave Profile Frontal Blast Rear Blast 

Side Blast 



Modeling & Simulation 
 3.6 bar Frontal Blast Exposure: mid-Sagittal Plane 

Note: Run Videos Simultaneously 

 Pressure  Effective Stress  



Modeling & Simulation  
 3.6 bar Frontal Blast Exposure: Axial Plane above Eyes 

Note: Run Videos Simultaneously 

 Pressure  Effective Stress  



Modeling & Simulation  
 3.6 bar Frontal Blast Exposure: Energy vs. Pressure 

Does Isotropic Energy display greater differentiation than Pressure? 
-- Compressive Isotropic Energy associated with volumetric “Crush” 

Compressive Isotropic Energy Maximum Compressive Pressure 



Modeling & Simulation  
 3.6 bar Frontal Blast Exposure: Energy vs. Pressure 

Does Isotropic Energy display greater differentiation than Pressure? 
  -- Tensile Isotropic Energy associated with volumetric “Dilatation” 

•  Dilatation gives rise to Cavitation 
Tensile Isotropic Energy Maximum Tensile Pressure 



Modeling & Simulation  
 3.6 bar Frontal Blast Exposure: Deviatoric Energy vs. Stress 

Does Deviatoric (Shear) Energy display greater differentiation than Shear Stress? 
  -- Deviatoric (Shear) Energy associated with “Tearing” 

Maximum Deviatoric Stress Maximum Deviatoric Energy 



Clinical Investigation of Traumatic Brain Injury 
 Perform clinical assessments on blast & blunt impact victims 

• Blast & blunt impact victims recruited 
– 17 Subjects w/ mild TBI 
– 13 blast exposure 

• 4 blunt impact 
– Subjects underwent Clinical Assessment: 

• Detailed history of insult event recorded 
• Neurocognitive assessment – 15 tests; examples include: 

– Wechsler Abbreviated Scale of Intelligence– Revised (WAIS) 
• Assesses Intelligence Quotient (IQ) 

– Paced Auditory Serial Addition Task (PASAT) 
• Tests memory, attention, information processing speed 

– Neurobehavioral Symptom Inventory & Checklist (NBI) 
• Asks about symptoms experienced since injury (e.g., dizziness and 

forgetfulness) 
– Beck Depression Inventory II (BDI-II) 

• Asks subject about feelings of sadness, frequency of crying 
• Functional Magnetic Resonance Imaging (fMRI) – shows promise 
• Diffusion Tensor Imaging (DTI) – no significant findings  



Neurocognitive Testing 
 Comparison between Blast-Injured Subjects & Healthy Controls 

• T-Scores averaged across all tests for 13 individual TBI 
subjects (left) 

– Gaussian distribution observed (min/max = 31.2/51.9, σ = 6.5) 
• Average TBI subjects' T-scores were lower than control population 

(right) 
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Clinical Diagnostic to Quantitatively Assess TBI 
Functional Magnetic Resonance Imaging (fMRI) 

• What is it? 
• fMRI is an Magnetic Resonance-based imaging technique 

• What does it do? 
• Measures Resting State Network (RSN) activity levels and connectivity 

between the RSN’s 
• There are 28 independent RSN components divided into groups based on their 

anatomical and functional properties 
• Groups: Sensorimotor, Visual, Auditory, Attentional, Default-Model, Basal Ganglia, 

& Frontal Network 
 

• How does one detect brain damage with fMRI? 
• Identify significant differences in Resting State Network (RSN) activity and 

connectivity between TBI brain-injured subjects & a normal controls group 
• We identified the difference between 13 blast subjects and 50 age-matched 

healthy individuals from the normal controls group 



Functional MRI Results 
Independent Component Analysis (ICA) to measure RSN Activity & Connectivity 

Identified 28 resting state networks and 
their functional connectivities across  
   all 63 subjects 
 



fMRI Differences between TBI Subjects & Controls 
Independent Component Analysis (ICA): Trending Results 

• Trending differences found in fractions of 
networks: Visual (73, 48, & 39), Attentional 
(74), Sensorimotor (14, 15, & 51), Frontal (50) 
 

Trending FNC Differences (Controls minus TBI)  



– M&S: Conduct Blast Simulation sequence covering various conditions 
• Blast Direction 
• Blast Amplitude 

– Clinical: Collect Averaged fMRI Data over all TBI subjects 
• Functional MRI (fMRI): to detect changes in brain associated w/ Sensorimotor, Visual, 

Auditory, Attention, Default Mode, etc. 
– Goal: Correlate M&S Predictions w/ fMRI Data 

• Which variable(s) best correlate? Stress amplitude, Energy, Power? 

Current Focus 
Correlate M&S Predictions with fMRI Data 

fMRI Analysis 
of TBI subjects 
 

Damaged regions: 

Blast Simulations 
 

High Energy 
Deposition regions: 

Possible 
Correlation? 



Relative Merit Helmet Protection Simulation 
 Helmet Protection from 3.6 bar (360 KPa) Blast 

Snap-Shot Images of Blast-Induced Pressure Wave Propagating through Head 
Time ~ 200 µs after blast wave encounters helmet 

Blast Wave Profile Frontal Blast Rear Blast 

Side Blast 



Relative Merit Helmet Protection Simulation 
 3.6 bar Frontal Blast: mid-Sagittal Plane 

Note: Run Videos Simultaneously 

Pressure 



Relative Merit Helmet Protection Simulation 
 3.6 bar Frontal Blast: mid-Sagittal Plane 

Note: Run Videos Simultaneously 

Effective Stress 



Relative Merit Helmet Protection Simulation 
 3.6 bar Frontal Blast : Axial Plane above Eyes 

Note: Run Videos Simultaneously 

Pressure 



Relative Merit Helmet Protection Simulation 
 3.6 bar Frontal Blast : Axial Plane above Eyes 

Note: Run Videos Simultaneously 

Effective Stress 



Blast Mitigation Effects of Helmet Protection 
 3.6 bar Frontal Blast Exposure: Isotropic Strain Energy Maxima 

Compressive 
Isotropic 

Strain 
Energy 

“Crush” 

Tensile 
Isotropic 

Strain 
Energy 

“Dilatation” 
(leads to 
Cavitation) 



Blast Mitigation Effects of Helmet Protection 
 3.6 bar Frontal Blast Exposure: Deviatoric Strain Energy Maxima 

• For frontal blast, we predict Helmet: 
– Reduces compressive isotropic energy deposition (~50%) 
– Does not reduce tensile isotropic energy deposition 

• Slightly reduces compression-to-dilatation swing in frontal brain region 
– Does not significantly reduce deviatoric strain energy 

• Significant! Deviatoric stress & energy are associated with mild TBI outcomes [8] 

Deviatoric 
Strain 
Energy 

“Tearing” 

[8] Zhang, L., Yang, K.H., & King, A.I., 2004, “A Proposed Injury Threshold for Mild Traumatic Brain Injury,” 
     ASME J. Biomech. Eng., 126(2), pp.226-236. 



Blast Mitigation Effects of Helmet Protection 
 3.6 bar R-Side Blast Exposure: Isotropic Strain Energy Maxima 

Compressive 
Isotropic 

Strain 
Energy 

“Crush” 

Tensile 
Isotropic 

Strain 
Energy 

“Dilatation” 
(leads to 
Cavitation) 



Blast Mitigation Effects of Helmet Protection 
 3.6 bar R-Side Blast Exposure: Deviatoric Strain Energy Maxima 

• In side blast, we predict Helmet: 
– Reduces compressive isotropic energy deposition (~50%) 
– Does not reduce tensile isotropic energy deposition 

• Slightly educes compression-to-dilatation swing in right temporal brain lobe region 
– Slightly enhances deviatoric strain energy 

• Significant! Deviatoric stress & energy are associated with mild TBI outcomes [8] 

Deviatoric 
Strain 
Energy 

“Tearing” 

[8] Zhang, L., Yang, K.H., & King, A.I., 2004, “A Proposed Injury Threshold for Mild Traumatic Brain Injury,” 
     ASME J. Biomech. Eng., 126(2), pp.226-236. 



Closure 
 Summary 

• Results to Date 
– Helmet Protection from 3.6 bar Blast 

• For blast pressures and associated isotropic strain energy deposition 
from front, side, & rear directions 

– 50% mitigation for compression but none for tensile isotropic energy 
• Does not reduce deviatoric (shear) stresses & associated strain energy 

– Slightly enhanced in side blast scenario 
– However, threshold levels leading to TBI are still unknown 

• Brain Injury Threshold Criterion (BITC) will help define these levels 
• Suggestion for improvement of Helmet 

– Modify pads and/or suspension system to further reduce shear stress & 
associated energy transmission into head 

• Current Work 
– Assessing blast mitigation of experimental helmet designs 

• Studying additional (proprietary) prototypes 
• Establishing Brain Injury Threshold Criterion (BITC) 

• Questions? 
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