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Scales Range from Molecular to the Field
and Femtoseconds to Millennia
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Potential Leakage Paths for CO, § ...

Primary CO, trapping mechanism is structural. N—r

abandoned well fault

caprock
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Goals \

Predictive modeling capabillity for assessing
caprock integrity

 any field site, stratigraphy
 any injection scenario

. Quantitative prediction of leakage rate as a
function of time through caprock

Injection schedule design

4. Assessment of mitigation scenarios



Why this is a Very Challenglng Pro

104 years
10°m

Subsurface
e uncertain materials
e uncertain structures

Multiple scales

e time, space 10°m 10°m  10°m

* multi-scale analysis (e.g. homogenization) attempts to exploit any scale
separation

* may not have scale separation — scale embedding with ‘mortars’

 fracture is inherently multi-scale

Multiple physics

* geomechanics, geochemistry, biology

 solid mechanics, porous flow, chemical and biological reactions
» phase changes, localization, fracture

Dynamic, highly nonlinear
* Instabilities, bifurcation phenomena, limit cycles
* emergent phenomena

Time

1015 second
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Potential leakage paths and scales
Goal of predictive assessment of caprock integrity
Why this is such a challenging scientific problem

Research and accomplishments to date

« example field-scale simulation, coupled porous-flow/geomechanics
« effects of caprock jointing on leakage

* new methods for simulating injection-induced caprock damage

Future work
Summary
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Coupled Flow and Geomechanics - ..

Injection into a Reservoir/Caprock System .
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This injection-induced
deformation can cause:

5.32 years
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Displacement field (x 1000) at year 5

stress-redistribuion in the
caprock

opening of caprock joints
caprock fracturing

Note: 0.1 m uplift
(500 m above injection zone)
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Pore Pressure @“‘" CRSES

0.00 years pore pressure
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stress
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Initial Stress State
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Hydromechanical Effects of Faults =

Some faults could go undetected and may pose
a risk to sequestration of CO, by reactivation due

to injection pressures.

Low Permeability Fault
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Low permeability fault impedes CO,
injection, diverts flow along fault and builds
pressure behind the fault, thereby
shearing/warping the fault and inducing
critical shear failure in both the caprock and

fault.

High Permeability Fault

Leaking Fault
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High permeability fault
creates a pathway for
leakage of CO, through
the caprock



Deformation Dependent Caprock \mx»* e

‘‘‘‘‘‘

Permeability due to Jointing N

Stress vs. Joint aperture TR
jointing

h | // / caprogk

joint aperture

\ Change In joint aperture
change in joint aperture due to CO, injection causes a
due to C02 injeCtion Change In Caprock

\ permeability (anistropic).

normal stress
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Caprock Leakage due to Jointing ( \

from PostDoctoral Researcher, Pania Newell
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Caprock Leakage due to Jointing G

from PostDoctoral Researcher,

injection = 5 MT / year
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 optimal injection schedule to minimize leakage?
 optimal well spacing to minimize leakage?
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Hydromechanical Coupling in Fractured Rock

Fractured Caprock

Bulk Constitutive Properties Fracture contact properties

(from Focus Area 2) (from Focus Area 2)
« plasticity model \ / S —
* limit surface
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A Finite-Element Method for Modelingd FSES
Fracture Growth in Disordered Materials

—_ —_—
cohesive tractions
T

at crack tip

changing mesh connectivity

randomly closed packed
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fluid-induced fracture simulations

beam-bending verification problem



Hydraulic Fracture Simulation
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Future Work | \

1. Continue development of computational models for
modeling injection induced fractures and fluid flow within
the fractures

» work with FA2 to develop cohesive models for fracture growth and
initiation for various caprock materials, e.g. mudstones, clay-shales.

« work with FA2 to develop shear-normal-displacement models for fully
open fractures and joints for various caprock materials, e.g. mudstones,
clay-shales.

« work with FA1 and FA2 to develop precipitation, dissolution models for
flows in fractures

« work with FA1, FA2, FA3, to develop scale dependent fracture-flow
models

fluid mechanics

solid 770" highly coupled
mechanics AN, JHTY €OUp S ="

f mass flow

| | * bioclogging?
* precipiation?
» dissolution?




Future Work

2. Continue development of multi-scale multi-physics
numerical methods in collaboration with Univ. Texas (ICES)

» explore possibility of using UT FA4 mortar methods for caprock
integrity simulations, e.g. by allowing fractures to cross mortar
boundaries

» explore possibility of using UT FA2 pore-network models in a
fracture context

3. Develop experiments to validate fracture/joint mechanical
and flow models using FA1,2,3 lab experiments and site
specific data (e.g. Crystal Geyser).



Adaptation of Multiscale Mortar Meth(;ds
from UT FA4 for Fracture Modeling —

jointing

Multiscale mortar methods from UT FA4
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Coupled fluid flow / fracture mechanics
from Sandia

Multi-scale multi-physics mortars for coupling
both fluid-flow and solid-mechanics across
disparate finite-element formulations and scales.
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Summary N

A major scientific research question for the feasibility of CO,
sequestration is the assessment of the integrity of the caprock.

Problem is inherently multi-physics and multi-scale (space and
time). Fluid-structure interaction is paramount, both at the field
scale and micro-scale. Requires a multi-institution, multi-
disciplinary team of researchers.

A number of new numerical methods are under development for
modeling fracture nucleation and propagation in heterogeneous
media with subsequent fluid flow on fracture surfaces.



