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Color codes 

QIP 2012: Fault-tolerant quantum computing with color codes 2 

The three semiregular 2D topological color codes 

4.8.8 6.6.6 4.6.12 
3.4.6.4 

The 2D topological 
subsystem color code 

S is transversal 
Fewest qubits/distance 

S is transversal 
Two-body checks suffice 

Planar color codes: 3m corners 

These codes are naturally suited to 
2D quantum technologies in which 
long-distance quantum transport is 
impractical. 

The 2D surface code has many promising features for fault-tolerant quantum computing, 
including a high accuracy threshold and no need for syndrome ancilla distillation. 

  How do 2D color codes compare? 

Checks: 

  [Bombin & Martin-Delgado, PRL 97, 180501 (2006)]   [Bombin, PRA 80, 032301 (2010)] 



Noise model: 

• Standard assumptions: No leakage, reliable classical computation. 

1. Circuit-based noise model 

• Each preparation and one-qubit gate followed by BP(p). 

• Each CNOT gate followed by DP(p). 

• Each measurement preceded by BP(p) and result flipped with probability p. 

2. Phenomenological noise model 

• Same, except each syndrome-bit extraction circuit modeled “phenomenologically” as a measurement that 
fails with probability p; ignores noise propagation between data and ancilla.  Gates only appear in encoded 
computation. 

3. Code-capacity noise model 

• Same as phenomenological model, except syndrome measurements are perfect. 

Control model: 

• (Faulty) gate basis: 

• Standard assumptions: Parallel operation, refreshable ancilla, fast classical computation, equal-time gates. 

• Locality assumptions: 2D layout, local quantum processing. 

Control & noise models 
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BP channel: Bit-flip channel B(p) followed by phase-flip channel Φ(p). 

DP channel: Applies each two-qubit (“double Pauli”) product with probability p/16. 



Decoders & thresholds 
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Optimal decoder: Returns recovery most likely to succeed given the syndrome. 

MLE decoder: Returns most likely error that occurred given the syndrome. 

[A: Sarvepalli & Raussendorf, arXiv:1111.0831] 
[B: Fowler, Whiteside, and Hollenberg, arXiv:1110.5133] 

  [See our paper 1108.5738 for other references.] 

7.8% [A] 

0.9% 
[B] 
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Syndrome extraction 
XZ sequential schedule XZ interleaved schedule 

Example of error propagation 

• X error on X-check bit (red circle) between time 
steps 5 and 6. 

• Propagates to 3 data errors; detected correctly by 
3 Z-check bits (yellow) 



Decoding 
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Code-capacity MLE decoder: (Works for all CSS codes.) 

Optimization problem Integer program over GF(2) Integer program over the reals 

Phenomenological MLE decoder: (Works for all CSS codes.) 

Measurement 
error 

Data 
error 

Integer program over the reals 



Code-capacity threshold 

QIP 2012: Fault-tolerant quantum computing with color codes 7 

Exact curves found up to d = 7. 

• Theory: 

• Fit: 

Threshold by scaling Ansatz fit, 
not curve crossing estimate.  

Monte-Carlo estimate for d = 9. 

  [Wang, Harrington, & Preskill, 
Ann. Phys. 303, 31 (2003)] 

N.B.  Finite size effects may matter. 



Phenomenological threshold 
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Circuit threshold 
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• Circuit generates correlated errors up to weight four (“hooks”). 

• Can accommodate by modifying fitting function: 



Self-avoiding walk bound 
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  [Dennis, Kitaev, Landahl, & Preskill, JMP 43, 4452 (2002)] 

• Code-capacity noise model 

  # starting 
points for 

SAW 

  # ways to 
choose 

flips on E + 
Emin  

  Prob. flips at 
those 

locations 

• Phenomenological noise model 

 cf. 10.56(1)% 

 cf. 3.05(4)% 



Architectures & computation 
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Transversal 

• Push noise channels through gates to get effective noise channels for FTQEC 

• Magic states for T gate injected by teleportation. 

Code deformation 

• Local ops to grow, shrink, & move “defects.” 

• H, S, CNOT gate by code deformation. 

• Magic states for T gate injected by code deformation. 



Summary 
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Color codes vs. surface codes 

• Code-capacity & phenomenological thresholds comparable to surface codes.  (11%, 3%) 

• Circuit-model threshold about 10 times smaller than surface-code’s. 

• Rigorous bounds on threshold very weak at this point. 

• Qubit overhead comparable to surface codes. 

 

Open questions: 

• TSCCs: Do they have better thresholds? 

• Leakage errors: How well are they tolerated? 

• Efficient decoders: TCC = 2 surface codes---run efficient matching on these.  Threshold? 

• Rigorous lower bounds: Tighter analysis techniques? 

• Magic-state injection: How much of 14.6% threshold is consumed by imperfect injection? 

• Topological quantum computation: How to formulate a color-code quantum double model? 


