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Scientific / Technology  Motivation 
ITER
 Sandia
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Anode = 40µM
Electrolyte = 100µM
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Simulation of Experimental Solid Oxide H2 Fuel Cell
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Resistive and extended MHD 
systems model a variety of 
important plasma physics 

•  Astrophysics: Solar flares, sunspots, 
magnetic reconnection 
•  Geophysics: Earth’s magnetospheric 
sub-storms, geo-dynamo 
•  Fusion: Magnetic confinement (ITER - 
Tokamak), Inertial conf. (NIF, Z-pinch) 
•  Technology/Engineering: Plasma 
Reactors, MHD Pumps, .. 
•  … 

Transport / Reaction Systems model a 
very broad range of applications


•  Conventional / Alternate Energy: 
Combustion, Fuel Cells, … 
•  Chemical Processing: CVD  
for semiconductors,  Solar / Photo-voltaic  
•  Partial Catalytic Reactors  
e.g. methane (g)        methanol (l), .. 
•  Biological cell modeling 
•  …. 



Mathematical / Computational Motivation: Achieving Scalable Predictive 
Simulations of Complex Highly Nonlinear Multiphysics Systems to Enable 
Scientific Discovery and Engineering Design/Optimization 


What are multi-physics systems? (A multiple-time-scale perspective)

These systems are characterized by a myriad of complex, interacting, nonlinear multiple 
time- and length-scale physical mechanisms.

These mechanisms:

•  can be dominated by one, or a few processes, that drive a short dynamical time-scale 
consistent with these dominating modes,

•  consist of a set of widely separated time-scales that produce a stiff system response,

•  nearly balance to evolve a solution on a dynamical time-scale that is long relative to 
the component time scales, 

•  or balance to produce steady-state behavior. 


Our goal is to develop:


•  Stable and higher-order accurate fully-implicit formulations, 

•  Robust fully-coupled nonlinear/linear iterative solution methods, 

•  Scalable and efficient parallel preconditioners,

•  Integrated sensitivity and error-estimation to enable UQ capabilities.




Multiple-time-scale systems: Bifurcation Analysis of a Steady Reacting  
H2, O2,, Ar, Opposed Flow Jet Reactor 

O2, Ar 

H2, Ar 
70 steady state reacting flow solves 
(10 species, 19 reactions) 

Approx. Physical Time scales (sec.):  
•  Chemical kinetics: 10-12 to 10-4 
•  Momentum diffusion: 10-6 

•  Heat conduction: 10-6 

•  Mass diffusion: 10-5 to 10-4  

•  Convection: 10-5 to 10-4  
•  Diffusion flame dynamics:       (steady) ∞

Streamlines 

Temperature (Min. 300oK, Max 2727oK) 

OH (Min. 0.0, Max 0.177) 

Ignited branch  



Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a 

Magnetic Island Coalescence Problem (Incompressible)   


Approx. Computational Time Scales:  
•  Ion Momentum Diffusion: 10-7 to 10-3 
•  Magnetic Flux Diffusion:  10-7 to 10-3   

•  Ion Momentum Advection: 10-4 to 10-2 
•  Alfven Wave                    : 10-4 to 10-2 
•  Whistler Wave                 : 10-7 to 10-1 
•  Magnetic Island Sloshing: 100  
•  Magnetic Island Merging: 101 

[Finn and Kaw 1977; Chacon and Knoll Phys. 2006] 



Z-pinch Double Hohlraum Schematic (ICF concept)  

Z Machine (Approximate Ranges) 

 22 MJ stored energy 

100ns current rise time  for  
 26 MA peak electrical current 

250 ns plasma shell collapse 
            and stagnation 

10-30 ns X-ray power pulse 
   ~350 TW peak power 

C. J. Garasi et. al. , Physics of Plasmas, 11 (5), May 2004, pp. 2729-2737

A Recent Physics Review: K. Matzen, et. al.,  PoP 12, 055503 (2005) 

A. C. Robinson et. al. ,  AIAA, 2008-1235


Computational Stability Constraints: 

Hyperbolic Operators:   
•  Alfven waves 
•  Magneto-sonic waves 
•  Material transport 
•  Radiation transport  

Parabolic Operators:   
•  Magnetic Diffusion 
•  Heat Conduction 

Hall Physics: Whistler waves 

      -> 

∆t < ∆x/c

∆t < (∆x)2/D

∆t < (∆x)2/(VAdi)



Navier-Stokes Equations with Internal Equation 

Navier-Stokes and Internal Energy Model in Residual Notation 

General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear, 
Nonsymmetric System with Parabolic and Hyperbolic Character


RP =
∂ρ

∂t
+∇ · (ρu) = 0

Re =
∂(ρe)

∂t
+∇ · [ρve + q]−T : ∇v − η‖ 1

µ0
∇×B‖2 = 0



Navier-Stokes and Transport/Reaction System 

Navier-Stokes and Internal Energy Model in Residual Notation 

General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear, 
Nonsymmetric System with Parabolic and Hyperbolic Character


RP =
∂ρ

∂t
+∇ · (ρu) = 0

Re =
∂(ρe)

∂t
+∇ · [ρve + q]−T : ∇v − η‖ 1

µ0
∇×B‖2 = 0

Species Transport / Reaction Equation 

    
RYk

=
∂ ρYk( )
∂t

+∇ • uYk + jk( ) −Wk
ωk ;      k =1,2,..., N −1 ; Yk =1

k=1

N

∑



Resistive MHD Model in Residual Notation 

General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear, 
Nonsymmetric System with Parabolic and Hyperbolic Character


RP =
∂ρ

∂t
+∇ · (ρu) = 0

RB =
∂B
∂t
−∇× (u×B) +∇× (

η

µ0
∇×B) = 0.

TM =
1
µ0

B⊗B− 1
2µ0

‖B‖2I

Re =
∂(ρe)

∂t
+∇ · [ρve + q]−T : ∇v − η‖ 1

µ0
∇×B‖2 = 0

RAz =
∂Az

∂t
+ u ·∇Az −

η

µ0
∇2Az + E0

z = 0.

B = ∇×A

2D 

Visco-resistive MHD System 



Summary of Initial Stabilized FE Weak form of Equations 
 for Low Mach Number MHD System;                                                                                                            

Governing 
Equation 

Stabilized FE Residual  (following Hughes et. al.,  
Shakib - Navier-Stokes; Salah et. al. 99 & 01, Codina et. al. 2006 -Magnetics ) 

Momentum 

Total Mass 

Thermal 
Energy 

Magnetics 
(Vector 
Potential) 

Fm,i = ΦRm,i dΩ +
Ω
∫ ρτm u •∇Φ( )Rm,i dΩ +

Ωe
∫

e
∑ νm,i∇Φ •Cc∇ui dΩ

Ωe
∫

e
∑

FP = ΦRP dΩ +
Ω
∫ ρτm∇Φ •Rm dΩ

Ωe
∫

e
∑

FT = ΦRT dΩ +
Ω
∫ ρCPτT u •∇Φ( )RT dΩ +

Ωe
∫

e
∑ νT∇Φ •Cc∇T dΩ

Ωe
∫

e
∑

FYk = ΦRYk dΩ +
Ω
∫ ρτYk u •∇Φ( )RYk dΩ +

Ωe
∫

e
∑ νYk∇Φ •Cc∇Yk dΩ

Ωe
∫

e
∑



•  Massively Parallel: MPI

•  2D & 3D Unstructured Stabilized FE

•  Constant density, variable density, low 

flow Mach number approx., low flow 
Mach number compressible


•  Fully Coupled Globalized Newton-
Krylov solver


–  Sensitivities: Template-based 
Generic Programminc for 
Automatic Differentiation 
(Sacado), UQ, Arb. Prec.


–  GMRES (AztecOO, Belos)

•  Fully-implicit: 1st-5th variable order 

BDF (Rythmos) & TR

•  Direct-to-Steady-State (NOX), 

Continuation, Linear Stability and 
Bifurcation (LOCA / Anasazi), PDE 
Constrained Optimization (Moocho)


•  Future: Edge/face based elements, 
high-resolution methods, …


CFD


Panzer 
Assembly 

Engine


Drekar::CFD/MHD 

Model

Interface

• Phalanx – Generic Assembly Tools

•  Intrepid – Finite Element Library

• Shards – Topology, MDArray

• STK - Mesh Database

• SEACAS – IO, Partitioning


MHD


Trilinos Solvers, Parallel linear Algebra,  
build system 



Summary of Structure of Linear Systems Generated in 
Newton’s Method 

T! "#! " ! " ! "
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Stabilized Q1/Q1 V-P elements, SUPG like terms and  
Discontinuity Capturing type operators 
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Galerkin FE (e.g. Mixed Q2/Q1 interpolation FEM): 

v = (u, T, Az)



Why Newton-Krylov Methods? 

Newton-Krylov


Direct-to-steady-state
 Fully-implicit transient


Stability, Accuracy and Efficiency


•  Stable (stiff systems)


•  High order methods


•  Variable order techniques


•  Local and global error control possible


•  Can be stable, accurate and efficient run 
at the dynamical time-scale of interest in 
multiple-time-scale systems (See e.g. Knoll et. 
al., Brown & Woodward., Chacon and Knoll, S. and Ober, 
S. and Ropp)


 

F( !x,x,!
1
,!

2
,!

3
,..) = 0

e.g.

"c
"t

n+1

+# • $cu[ ]
n+1

( ) %# • D
n+1#cn+1&' ()+ Sc

n+1
= 0



Why Newton-Krylov Methods? 

Newton-Krylov


Direct-to-steady-state
 Fully-implicit transient


Stability
 Accuracy




Multiple-time-scale systems: Numerical Experiments 

Chemical Dynamics ( Brusselator )


1 2

min

1/ 40
0.6
2.0
1/100

T 10.0

D D

x

α
β

= =
=
=

Δ =
≈

 
Mk ( χ

n+1) + Dk
n+1(χ n+1) + Sk

n+1(χ n+1) + Fk = 0

Fully-implicit Method: Trapezoidal Rule 

2nd order (FI 2nd ): 

 
χ n+1 = 2(χ

n+1 − χ n

Δt
) − χ n

 
Mk ( χ

*) + Dk
*(χ*) + Fk = 0  on [0,Δt / 2]   

Strang Splitting (SS): 

 
Mk ( χ

**) + Sk
**(χ**) = 0    on 0,Δt[ ]  

 
χ n+1 = DΔt /2

SΔt DΔt /2χ
nχ n+1 = χ***(Δt)

to advance solution over tn ,tn + Δt⎡⎣ ⎤⎦

 
Mk ( χ

***) + Dk
**(χ***) + Fk = 0  on [0,Δt / 2]   

(w/David Ropp, C. Ober) G. Strang, SIAM J. Numer. Anal. 5,3, 1968 



Diffusion/Reaction System  

Operator Split Time Integration (component solvers): 

•  Diffusion:   2nd  order Crank-Nicholson Galerkin FE (A-stable) 
 2nd order SDIRK Galerkin FE (A & L -stable) 

•  Reaction:   CVODE Variable order - High accuracy tolerances 

Fully-implicit solution: 

•  Trapezoidal rule with fully-coupled Newton-Krylov methods (A-stable) 



Δt / T ~ 1 / 3

Brusselator: Comparison of Spatial and Temporal

Profiles for Strang Split and Fully Implicit Solvers


~1/100 

~1/10 

~1/500 

Δt / T ~ 1 / 3
10-1 10-2 10-3 

Dt/Tmin 

t = 80.0

FI 

Multiple time scales: 
Knoll, Chacon, Margolin, Mousseau; JCP 2003 
Ropp, S.; JCP  2004, 2005, 2009 
Ober, S.; JCP 2004 

Brown, Woodward, SISC; 2001 
Estep, Ginting, Ropp, S.; Tavener, Sinum 2008 



Coupled system negative definite. 

Discrete system spatial discretization:  finite elements 
with                   has discrete eigenvalues of diffusion 
operator: 

Solve reaction step exactly: 

[ ]8 , 0,1 ,

( 0) 4 (1 ).

t xx
u u u x

u t x x

= + !

= = "

0.1x! =

1
9.951, 1116.

N
! != " = "

( ) exp(8 )t t! " = "

Simplified Diffusion/Reaction PDE: Decay Problem   



Simple Prototype Operator Splitting Problem: Diffusion-Reaction 

An A-stability theory for operator split integration of diffusion/reaction and  
convection/diffusion/reaction with indefinite source terms: Ropp, S., JCP 2005, 2009 

0.0125t! =0.05 (high w.n. condition violated)t! =

2nd Order Strang Splitting: Diffusion Solve - Trapezoidal Rule (A- stable) 

0.1 (low w.n. condition violated)tΔ = 0.025tΔ =
1st order splitting : Backward Euler (A & L – stable) 



Brusselator: L-stability of diffusion solve 
is critical for stability (SDIRK) 

¨  SDIRK Parameter      determines limit of amplification factor “R “ as   γ tλΔ → −∞

0.5, lim ( ) 1
z

R zγ
→−∞

= = −

1.707, lim ( ) 0
z

R zγ
→−∞

= =

0.789, lim ( ) 0.455
z

R zγ
→−∞

= = −

Case 1:  A-stable, 2nd order 

Case 2:  A-stable, 3rd order 

Case 3:  A- and L-stable, 2nd order 

First order splitting with A- and L-stable diffusion 
solves demonstrate effect of damping of high 
wavenumber instability 

An A-stability theory for operator split integration of diffusion/reaction and  
convection/diffusion/reaction with indefinite source terms: Ropp, S., JCP 2005, 2009 



Why Newton-Krylov Methods? 
Newton-Krylov


Direct-to-steady-state
 Fully-implicit transient


Stability
 Accuracy
 Efficiency


•  Well characterized operator splitting methods in specific application areas: Combustion – 
P. Colella, J. Bell, …; Composed splitting + predictor-corrector methods  (e.g  2nd order 
Loosely-Coupled FSI -  C. Farhat)  

•  Implicit-Explicit (IMEX) methods (Crouzeix, Ascher, Carpenter, Hundsdorfer, ..) 

•  Spectral deferred correction (M. Minion et. al.)  

What I am not saying: Fully-implicit is the only way to  
get these properties 

What I am saying: Fully-implicit is an excellent way to get these properties  
and this also enables a number of other powerful solution methods  
when applied to multiple-time-scale multiphysics systems 



Why Newton-Krylov Methods? 

Newton-Krylov


Direct-to-steady-state
 Fully-implicit transient


Robustness, Convergence and Flexibility


•  Strongly coupled multi-physics often 
requires a strongly coupled nonlinear solver


•  Quadratic convergence near solutions


•  Enables bifurcation, stability, optimization, 
error estimation, sensitivity and UQ


F(x,!
1
,!

2
,!

3
,..) = 0

   

Solve  Jp
k

= !F(x
k
);     until   

Jp
k
+F(x

k
)

F(x
k
)

"#
k

   
x

k+1
= x

k
+!p

k

Inexact Newton-Krylov


Mp
k
= v

Jp
k
=
F(x +!p

k
) - F(x)

!
 ;  or by AD

Jacobian Free N-K Variant


See e.g. Knoll & Keyes, JCP 2004 



Why Newton-Krylov Methods? 

Newton-Krylov


Direct-to-steady-state

Globalized Newton w/AD


Fully-implicit transient

1st – 5th order BDF, MP, TR


Convergence

Properties


Characterization 

Complex Soln. Spaces


Parameter

Continuation


Bifurcation

Analysis


Stability

Analysis




Characterizing Complex Nonlinear Solution Spaces with a 
Transient Code is Difficult 

Re=40 Re=60 Re ~ 50   Hopf Bifurcation? 

Various discrete time integration methods: 
•  can produce “spurious” stable and unstable steady solutions and limit cycles 
•  can stabilize unstable solutions of the ODE/PDE 
•  can produce very different dynamics and bifurcation behavior than ODE/PDE 

e.g. Re = 600 



Characterizing Complex Nonlinear Solution Spaces with a 
Transient Code is Difficult 

Re = 40 Re = 60 Re ~ 50    Hopf! 

Various discrete time integration methods: 
•  can produce “spurious” stable and unstable steady solutions and limit cycles 
•  can stabilize unstable solutions of the ODE/PDE 
•  can produce very different dynamics and bifurcation behavior than ODE/PDE 

In addition: 

•  turn a BVP -> IBVP with unknown initial data (basin of attraction of solutions) 
•  require very long time integration near critical points 
•  require a detailed sampling of parameter space to characterize a solution space 
•  produce complex interactions between temporal and spatial discretizations 
•  cannot be used to efficiently “track” location of critical points with multiple parameters 

(can also be said of discrete spatial approx) 

e.g. Helen Yee - Very nice study of these issues 
Yee, Sweby, IJCFD, 4, 1995 
Yee, Sweby, RIACS Tech. Rept. 1997 



Hydro-Magnetic Rayleigh-
Bernard Stability  

Stable Fields/Flow  at  
Ra = 4000, Q = 81 

Unstable Flow  at  
Ra = 4000, Q = 144 

Vx 

Jz 



1950 1960 1970 1980 1940 Ra 

Evectors for unstable  
e-value at Bifurcation 

Nonlinear Stable 
Solution 

Vx 

Bx 

Temp. 

Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear 
Stability and Nonlinear Equilibrium Solutions (Steady State Solves)  

Chandrasekhar Number Q = 10 

Temp. 

Vx 

Vy 

By 

Bx 



Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear 
Stability and Nonlinear Equilibrium Solutions (Steady State Solves) 

•  2 Direct-to-steady-state solves at a given Q

• Arnoldi method using Cayley transform to determine 

approximation to 2 eigenvalues with largest real part

• Simple linear interpolation to estimate Critical Ra*


Linear Stability of Computational 
Solution by Normal Mode Analysis 

Approximately invert by ML 
preconditioned Krylov solve 



Q=10


Q=0


Bifurcation / Stability  (Two-Parameter) Diagram 

Vx


Ra


Q


Multi-parameter continuation can track critical points

(pitchfork bifurcation, Hopf bifurcation, turning points, etc.)

with NK solvers [LOCA - Salinger, Pawlowski, Phipps]


E.g. Turning point tracking 
Solution of extended system 

Solve extended system 
with Newton’s method 

F(x,Re*,Ra*) = 0
′F v = 0

ϒTv −1 = 0

Q 
Leading mode  

Is 26 cells 

Most unstable mode compresses with 
increase in magnetic field strength 



Why Newton-Krylov Methods? 

Newton-Krylov


Direct-to-steady-state
 Fully-implicit transient


Convergence

Properties


Characterization 

Complex Soln. Spaces


Parameter

Continuation


Bifurcation

Analysis


Stability

Analysis


Design

Optimization;

Inverse 

Problems;

Adjoint Sensitivities 

& Error Est. for

Deterministic (UQ);




PDE Constrained Optimization of Poly-Silicon CVD Reactor

Parallel Unstructured FE Reacting Flow Simulation Code


3D 2D 1D 

di 

f
1

2
--- di dave⁄ 1–( )

2

radii

!=

Objective Function: 0D 

Poly-Silicon Epitaxy 
from Trichlorosilane 
in Hydrogen Carrier; 

3D (u,v,w,P,T) 
3 chemical species 
1.2M unknowns 



PDE Constrained Optimization of Poly-Silicon CVD Reactor


W= P3 

~Time 

Black box    
PDE Cons. 

Vi=30cms 
XTCS=2.4% 

Vi= P1; XTCS=P4 

Vi= P1; XTCS=P4 
Vp= P3, XTCS=0% 

Ti=300K Tw=1398K 

W= P2 

PDE Constrained  
Optimization: 

Minimize:  f(x,p) 
such that:   F(x,p)=0 

Use Newton’s Method  
solve KKT system 

W/Pawlowski, Salinger, van Bloemen Waanders, Bartlett, Lin - SNL 

Initial               
4-Param Bound  
4-Param Free 

5% 

35% 

0.5% 

Unks Procs Time (hrs.) 

1.2 48  6.2  
(3GHz Cluster) 

4.8M 128 ~ 6  
(Red Storm: XT3) 

38M 1024 ~ 7 
(Red Storm: XT3) 



Embedded UQ and Adjoint Analysis for Error Estimation  
and Sensitivities for QoI 

Idealized steady-state flow and heat 
transfer simulation. Conjugate heat 
transfer  in cooling fluid, clad, and Fuel. 
Navier-Stokes Re = 1000 

Stochastic Galerkin UQ analysis propagating  
uncertainty in the magnitude of the model fuel 
source term and the average inflow velocity. 



Why Newton-Krylov Methods? 

Newton-Krylov


Direct-to-steady-state
 Fully-implicit transient


Convergence

Properties


Characterization 

Complex Soln. Spaces


Design 

Optimization
 Stability
 Accuracy
 Efficiency


Very Large Problems -> Parallel Iterative Solution of Sub-problems


Krylov Methods - Robust, Scalable and Efficient Parallel Preconditioners

•  Approximate Block Factorizations

•  Physics-based Preconditioners

•  Multi-level solvers for systems and scalar equations 




Preconditioning 
Three variants of preconditioning 

1. Domain Decomposition (Trilinos/Aztec & IFPack)  

2. Multilevel Methods for Systems: ML pkg (Tuminaro, Sala, Hu, Siefert, Gee) 

3. Approximate Block Factorization / Physics-based (Teko package)    

•  1 –level Additive Schwarz DD 
•  ILU(k)  Factorization on each processor   
(with variable levels of overlap) 
•  High parallel efficiency, non-optimal 
algorithmic scalability  

Fully-coupled Algebraic Multilevel methods 
•  Consistent set of DOF-ordered blocks at each node (e.g. stabilized FE) 
•  Uses block non-zero structure of Jacobian  
•  Aggregation techniques and rates can be chosen 
•  Jacobi, GS, ILU(k) as smoothers 
•  Can provide optimal algorithmic scalability 

•  Applies to mixed interpolation (FE), staggered (FV), physics compatible 
discretization approaches using segregated unknown blocking 
•  Applied to systems where coupled AMG is difficult or might fail 
•  Can provide optimal algorithmic scalability 



By = B0 

  Ez
0 

x 

y 

z 

Scaling Performance for Fully-coupled Resistive MHD/ Block AMG - Cray XT3/4 

By


Velocity


MHD

Pump


~20x 



Multicore Performance of Fully-coupled Resistive MHD Simulations - Cray XT3/4 

Our Largest Fully-coupled Direct-to-steady-state Simulation to Date: 

1+ Billion unknowns; 260 Million Quad elements; 24K cores (4 cores / node) 

Cores Fine Mesh 
Level 0 
Unkns. 

Intermed. 
Level 1 
Unkns. 

Intermed. 
Level 2 
Unkns. 

Coarse  
Level 3 
Unkns. 

Newton  
Iters. 

Avg. No. 
Linear Its. / 
Newton 

Total Sim. 
Time* 
(min.) 

24,000 1.05 billion 23.3M .5M 11.2K 18 86 33 

Note: The Additive Schwarz DD preconditioner could not be 
used to obtain solution in reasonable CPU time. 

* Time includes I/O 



Weak Scaling Uncoupled Aggregation Scheme:  
Time/iteration on BlueGene/P (Drift – Diffusion BJT: P. Lin) 

•  TFQMR: used to look at time/iteration of multilevel preconditioners. 
•  W-cyc time/iteration not doing well due to significant increase in work on coarse levels (not shown) 
•  Good scaled efficiency for large-scale problems on larger core counts for 31K Unknowns / core  

64K 

144K 

64K 

144K 



3D B-Field Lagrange Multiplier Formulation (Divergence form) 

Initial Prototype  
MHD Generator  



Plasma Physics Studies: Plasmoid formation in magnetic reconnection 

Magnetic reconnection:  fundamental process whereby 
magnetic field topology is altered resulting in a rapid 
conversion of magnetic field energy into plasma energy and 
significant plasma transport. Mechanisms and time scales 
have been an open issue for last 50 years. 

Critical process in astrophysical and laboratory plasmas. 



Step back to CFD for a moment to  

Introduce block approximate factorization (physics-based) preconditioners 



Discrete N-S Exact LDU Factorization Approx. LDU 

Brief Overview of Block Preconditioning Methods for  Navier-Stokes:  
(A Taxonomy based on Approximate Block Factorizations, JCP – 2008) 

Now use AMG type methods on sub-problems.  
  Momentum transient convection-diffusion:  

  Pressure – Poisson type: 

Precond. Type References 

Pres. Proj;   
1st Term 
Neumann Series  

Chorin(1967);Temam (1969); 
Perot (1993): Quateroni et. 
al. (2000) as solvers 

SIMPLEC Patankar et. al. (1980) as 
solvers; Pernice and Tocci 
(2001) as smothers/MG  

Pressure 
Convection / 
Diffusion 

Kay, Loghin, Wathan, 
Silvester, Elman (1999 - 
2006); Elman, Howle, S., 
Shuttleworth, Tuminaro 
(2003,2008) 

ApF−1
pF−1

F−1

(∆tI)−1F−1 C + ∆tB̂BT

C + B̂(diag(
∑

|F|))−1BT(diag(
∑

|F|))−1



Start-up of Helium fluid flow in NGNP reactor geometry (not actual operating cond.)  

NGNP Geometry: Rich Martineau (INL), Unstructured Quad Cubit Mesh SNL 



Transient Kelvin-Helmholtz 3D Shear layer Re = 5 x 104 



Transient Kelvin-Helmholtz 3D Shear layer Re = 5 x 104 



47 CASL Dedication, Oak Ridge National Laboratory, May 3, 2011 

LES CFD + Rod Vibration analysis of Nuclear Reactor Core Flow  
(Re = 2e+5  simulation of 3x3 pin-geometry with mixing vane) 
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1 core 
1024 cores 

1 core 
1024 cores 

Transient  
Kelvin-Helmholtz 

Kelvin Helmholtz: Re=5000, Weak scaling at CFL=2.5 
•  Run on 1 to 1024 cores 
•  Pressure - PSPG, Velocity - SUPG(residual and Jacobian) 



Now Return to MHD 

Block approximate factorization (physics-based) preconditioners 



Incompressible Resistive MHD a New Nested 
Schur Complement Approach  




F BT Z
B C 0
Y 0 D



 =




I

BF−1 I
Y F−1 −Y F−1BT S−1 I








F BT Z

S −BF−1Z
P





where

S = C −BF−1BT

P = D − Y F−1(I + BT S−1BF−1)Z

Block LU factorization gives  

•  3x3 system leads to embedded Schur complements 
•  Embedding is independent of ordering (C-1 doesn’t need to exist!)  
•  How is P approximated? 
•  Can we simplify this? E.g. Operator split prec. 



Transient Hydromagnetic  
Kelvin-Helmholtz Problem 
Re = 1e+3, S = 1e+4 

Quad-core Nehalems 
with Infini-band SNL 
Red Sky 512 cores 8 cores 



Conclusions 

•  Results for stabilized FE methods for low Mach number Transport/Reaction low 
flow-Mach number resistive MHD system are encouraging. Can be robust and 
efficient solvers for direct-to-steady-sate, transient, bifurcation and optimization.

•  Parallel Newton-Krylov with fully-coupled block aggressive coarsening AMG 
preconditioners have shown promising results for algorithmic scalability and CPU 
time performance for Transport/Reaction and initial MHD solutions.

 (Issues: Hyperbolic operators, FE aspect ratios for multilevel methods)

•  New approximate block factorization / physics based preconditioners for 
incompressible / low-flow-Mach number Transport/Reaction and resistive MHD 
are encouraging. Need more work on efficient/robust Schur complement solvers. 

•  Future work:


•  Need to verify 3D resistive MHD B-field  generalized Lagrange multiplier 
formulation.

•  Complete development of physics-compatible 3D MHD formulation with 
face, edge, nodal and volume elements (de Rham complex)

•  Fully Compressible 3D MHD formulation with high-resolution FE methods. 




Bifurcation Analysis 
 LOCA


DAEs/ODEs:

Transient Problems 


Rythmos


Eigen Problems:

Linear Equations:


 Linear Problems                     

AztecOO


Belos

Ifpack, ML, teko


Anasazi


Vector Problems:

Matrix/Graph Equations:


Distributed Linear Algebra
 Epetra


Tpetra


Optimization


MOOCHO

Unconstrained:

Constrained:


Nonlinear Problems
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Trilinos: Full Vertical Solver Coverage  
(Part of DOE: TOPS SciDAC Effort) 



The End 




