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Outline

* Motivation: Multiple-time-scale Multiphysics Nonlinear Systems
 Brief Outline of Stabilized FE Formulation for Transport/Reaction & Resistive MHD
* Why Newton-Krylov Methods?
« Comments about Operator Splitting and Semi-implicit in contrast to Fully-implicit
 Benefits of Fully-implicit and Steady-state Solution Methods
* Characterization of Complex Solution Spaces: Hydromagnetic Rayleigh-Bernard
* Brief optimization example — Transport/Reaction simulation for CVD of Poly-silicon
* Representative Solution Algorithm Performance
» Additive Schwarz Domain Decomposition
 Fully-coupled Algebraic Multi-level
- Approximate Block Factorization / Physics-based Preconditioners

* Conclusions
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Scientific / Technology Motivation

Resistive and extended MHD
systems model a variety of
important plasma physics

- Astrophysics: Solar flares, sunspots,
magnetic reconnection

* Geophysics: Earth’s magnetospheric
sub-storms, geo-dynamo

* Fusion: Magnetic confinement (ITER -
Tokamak), Inertial conf. (NIF, Z-pinch)

» Technology/Engineering: Plasma
Reactors, MHD Pumps, ..

Transport / Reaction Systems model a
very broad range of applications

» Conventional / Alternate Energy:
Combustion, Fuel Cells,

» Chemical Processing: CVD

for semiconductors, Solar / Photo-voltaic
 Partial Catalytic Reactors

e.g. methane (g) — methanol (l), ..

* Biological cell modeling
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Mathematical / Computational Motivation: Achieving Scalable Predictive
Simulations of Complex Highly Nonlinear Multiphysics Systems to Enable
Scientific Discovery and Engineering Design/Optimization

What are multi-physics systems? (A multiple-time-scale perspective)

These systems are characterized by a myriad of complex, interacting, nonlinear multiple
time- and length-scale physical mechanisms.

These mechanisms:

- can be dominated by one, or a few processes, that drive a short dynamical time-scale
consistent with these dominating modes,

- consist of a set of widely separated time-scales that produce a stiff system response,

- nearly balance to evolve a solution on a dynamical time-scale that is long relative to
the component time scales,

- or balance to produce steady-state behavior.

Our goal is to develop:

- Stable and higher-order accurate fully-implicit formulations,

* Robust fully-coupled nonlinear/linear iterative solution methods,

» Scalable and efficient parallel preconditioners,

* Integrated sensitivity and error-estimation to enable UQ capabilities.
Sandia
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Multiple-time-scale systems: Bifurcation Analysis of a Steady Reacting
H,, O,, Ar, Opposed Flow Jet Reactor

sagnatonzone ) NS

Exit Wall

O,, Ar

Inlet Jet

Exit Wall
Streamlines
Exit — N3 Exit T ==
Exit Wall f f * * f Exit \;Vall
Inlet Jet Temperature (Min. 300°K, Max 2727°K)
H,, Ar

(10 species, 19 reactions)

s000 o T OH (Min. 0.0, Max 0.177)
g Exincion ___Sjjfz',e,--f’""f't 1 Approx. Physical Time scales (sec.):
g oot Ignited branch « Chemical kinetics: 10-12 to 10+
I | Unstabe ! * Momentum diffusion: 10-6
ol - |+ Heat conduction: 10
2 « Mass diffusion: 10-°to 10
= Stable ' -« Convection: 10-5to 104
"0 oo o1 o o2 » Diffusion flame dynamics: co (steady)

Oxygen mole fraction in upper Inlet
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Multiple-time-scale systems: E.g. Driven Magnetic Reconnection wi

Magnetic Island Coalescence Probil

Time = 0.000
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Approx. Computational Time Scales:
* lon Momentum Diffusion: 107 to 10-3
« Magnetic Flux Diffusion: 107 to 103

Finn and Kaw 1977; Chacon and Knoll Phys. 2006
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Z-pinch Double Hohlraum Schematic (ICF concept)

Z Machine (Approximate Ranges)
22 MJ stored energy

100ns current rise time for
26 MA peak electrical current

250 ns plasma shell collapse
and stagnation

10-30 ns X-ray power pulse
~350 TW peak power

Computational Stability Constraints:

A Recent Physics Review: K. Matzen, et. al., PoP 12, 055503 (2005)

C. J. Garasi et. al. , Physics of Plasmas, 11 (5), May 2004, pp. 2729-2737
A. C.Robinson et. al. , AIAA, 2008-1235

Hyperbolic Operators: At < Az/c

+ Alfven waves

* Magneto-sonic waves
» Material transport

* Radiation transport

Parabolic Operators: At < (Ax)?/D

* Magnetic Diffusion
* Heat Conduction

Hall Physics: Whistler waves

> At < (Az)?/(Vad;)
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Navier-Stokes Equations with Internal Equation

Navier-Stokes and Internal Energy Model in Residual Notation

Ru:ﬁ(g:)‘FV'(pu@u—T )—pg:(); T:_(P+§,M(V°u)>1+,u[Vu+VuT]
dp

R —

p = 8t+v( u) =20

Reza(apte)JrV ljpve+q] — T : Vv —0

General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear,
Nonsymmetric System with Parabolic and Hyperbolic Character
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Navier-Stokes and Transport/Reaction System

Navier-Stokes and Internal Energy Model in Residual Notation

Ruzﬁ(pU)‘Fv'(pu@u_T )—,Og:(); TI—(P—I-g,tt(Vou))I—i—u[Vu—FVuT]
ot 3
dp

R \YE =0

P=g Vol
d(pe) N N

R, = By ‘|‘V'[,0V€-|—(]]—TZVV+ZJk'Cp,kVT—thWkwk=0

Species Transport / Reaction Equation

a(pY)+v o(u¥,+j,)-W,a,: k=1,2,...,N—1;iY =1

R

% ot

General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear,
Nonsymmetric System with Parabolic and Hyperbolic Character
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Visco-resistive MHD System

Resistive MHD Model in Residual Notation
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General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear,
Nonsymmetric System with Parabolic and Hyperbolic Character
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Summary of Initial Stabilized FE Weak form of Equations
for Low Mach Number MHD System;

Governing Stabilized FE Residual (following Hughes et. al.,
Equation Shakib - Navier-Stokes; Salah et. al. 99 & 01, Codina et. al. 2006 -Magnetics )
Momentum
= [@R, dQ+Y [ pr, (ueVO)R dQ+Y [v, VDeCVu dQ

Q e e e e
Total Mass | p _ j DR, dQ +2 j pt VdeR_dQ

Z/ pTm VP - [—)+V ovev]|+ VP -V -II-J xB] ds2
Thermal
Energy F,=[®R,dQ+Y [ pC,z, (ue VO)R dQ+Y, [v,VDeCVTdQ

Q e e e O
Magnetics
(Vector Fy=[OR, dQ+Y [ pry (ue VO)R,dQ+Y [y, VDo CVA,dQ
Potential) Q e o o
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Drekar::CFD/MHD

- Massively Parallel: MPI
« 2D & 3D Unstructured Stabilized FE

- Constant density, variable density, low
flow Mach number approx., low flow
Mach number compressible

Fully Coupled Globalized Newton-
Krylov solver

— Sensitivities: Template-based Panzer
Generic Programminc for Model A—bl
Automatic Differentiation Interface SSembly
(Sacado), UQ, Arb. Prec. Engine

— GMRES (AztecOO, Belos)

. Ful::y-implicit: 1st-5th variable order
BDF (Rythmos) & TR

+ Direct-to-Steady-State (NOX),
Continuation, Linear Stability and
Bifurcation (LOCA / Anasazi), PDE
Constrained Optimization (Moocho)

* Phalanx — Generic Assembly Tools
* Intrepid — Finite Element Library

» Shards — Topology, MDArray

* STK - Mesh Database

- SEACAS - 10, Partitioning |[&

Future: Edge/face based elements, Trilinos Solvers, Parallel linear Algebra,
high-resolution methods, ... build system
Sandia
National

Laboratories



Summary of Structure of Linear Systems Generated in

Newton’s Method

Galerkin FE (e.g. Mixed Q2/Q1 interpolation FEM):

B!
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Why Newton-Krylov Methods?

/ Newton-Krylov \

Fully-implicit transient

Stability, Accuracy and Efficiency

F(x,x,A4,,4,,4;,.)=0 ]
- Stable (stiff systems)

eg. - High order methods
aC n+l

ot

+V0([pcu]n+l)—VO[D”+1VC”+1]+ S:" =0 - Variable order techniques
- Local and global error control possible

- Can be stable, accurate and efficient run
at the dynamical time-scale of interest in

multiple-time-scale systems (See e.g. Knoll et.
al., Brown & Woodward., Chacon and Knoll, S. and Ober,
S. and Ropp)
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Why Newton-Krylov Methods?

Direct-to-steady-state

/
[saoaty | sy
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Multiple-time-scale systems: Numerical Experiments
Chemical Dynamics ( Brusselator )

- 27 D, =D, =1/40
E:[)lWJra—(ﬂJrl)TJrTQC o =0.6
T B=2.0
aC 820 ) Ax=1/100
§=D2ﬁ+ﬂT_TC T ~10.0

Fully-implicit Method: Trapezoidal Rule| | Strang Splitting (SS):

and grder (FI 2nd ): to advance solution over [t“ A"+ At]
M, (3 )+D,(x )+F,=0 on[0,At/2]
Mk(%-n+l)+ D£+l(%n+l)+SZ+l(%n+l)+E< =0 Mk(%**)-l-S;*(%**) ~0 on [O,At]
ntl _ 4n M. (7 Y+D (¥ )+F =0 on[0,Ar/2

%n+1 = %*** (At) %”H - DAI/ZSAIDAI/an

(w/David Ropp, C. Ober) G. Strang, SIAM J. Numer. Anal. 5,3, 1968
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National
Laboratories



Diffusion/Reaction System

Operator Split Time Integration (component solvers):

 Diffusion: 2nd order Crank-Nicholson Galerkin FE (A-stable)
2nd order SDIRK Galerkin FE (A & L -stable)

* Reaction: CVODE Variable order - High accuracy tolerances

Fully-implicit solution:

» Trapezoidal rule with fully-coupled Newton-Krylov methods (A-stable)

Sandia
National
Laboratories



Brusselator: Comparison of Spatial and Temporal
Profiles for Strang Split and Fully Implicit Solvers
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Multiple time scales:

Knoll, Chacon, Margolin, Mousseau; JCP 2003
Ropp, S.; JCP 2004, 2005, 2009

Ober, S.; JCP 2004

Brown, Woodward, SISC; 2001

Estep, Ginting, Ropp, S.; Tavener, Sinum 2008
Sandia
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Simplified Diffusion/Reaction PDE: Decay Problem

u, =u_ +8u, xe [0,1],
u(t=0)=4x(1—x).

Coupled system negative definite.

Discrete system spatial discretization: finite elements
with Ax =0.1 has discrete eigenvalues of diffusion

operator:
A =-9.951, /IN =—1116.

Solve reaction step exactly:
V(At) = exp(8At)

Sandia
National
Laboratories



Simple Prototype Operator Splitting Problem: Diffusion-Reaction

1%t order splitting : Backward Euler (A & L — stable)

At=0.1 (l_(_)_w..W-;;rl'l"(':'(')ﬂ.E
10\

i 'ori._vi_alated)___l

2nd Order Strang Splitting: Diffusion Solve - Trapezoidal Rule (A- stable)

At = 0.05 (high w.n. condition violated) At =0.0125

An A-stability theory for operator split integration of diffusion/reaction and ﬁ&%

convection/diffusion/reaction with indefinite source terms: Ropp, S., JCP 2005, 2009 Laboratoes



Brusselator: L-stability of diffusion solve
is critical for stability (SDIRK)

SDIRK Parameter ¥ determines limit of amplification factor “R “ as AAf — —oo

Case 1: A-stable, 2" order

¥ =0.5, lim R(z)=—1

z—>—o0

Case 2: A-stable, 3 order

¥ =0.789, lim R(z) =—0.455

Z—>—oo

Case 3: A- and L-stable, 24 order
¥ =1.707, lim R(z) =0

Z—>—o0

An A-stability theory for operator split integration of diffusion/reaction and
convection/diffusion/reaction with indefinite source terms: Ropp, S., JCP 2005, 2009

L2 norm of etrror

FS-DR with SDIRK for diffuslon, y=1.707

- t=6.4 [
- t=16 |]
- t=32 |]
- t=864 ||
—i— t=280
1 100

. 102 s
Atir

First order splitting with A- and L-stable diffusion

solves demonstrate effect of damping of high

wavenumber instability

Sandia
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Why Newton-Krylov Methods?

/ Newton-Krylov \

Direct-to-steady-state Fully-implicit transient

Stability || Accuracy || Efficiency

What | am not saying: Fully-implicit is the only way to
get these properties

» Well characterized operator splitting methods in specific application areas: Combustion —
P. Colella, J. Bell, ...; Composed splitting + predictor-corrector methods (e.g 2"d order
Loosely-Coupled FSI - C. Farhat)

 Implicit-Explicit (IMEX) methods (Crouzeix, Ascher, Carpenter, Hundsdorfer, ..)

» Spectral deferred correction (M. Minion et. al.)

What | am saying: Fully-implicit is an excellent way to get these properties
and this also enables a number of other powerful solution methods

when applied to multiple-time-scale multiphysics systems @ Eﬁﬂﬁ._
oratones



Why Newton-Krylov Methods?

/ Newton-Krylov \

Direct-to-steady-state

Robustness, Convergence and Flexibility

- Strongly coupled multi-physics often
requires a strongly coupled nonlinear solver

- Quadratic convergence near solutions

- Enables bifurcation, stability, optimization,
error estimation, sensitivity and UQ

F(x,A,A,,4,,.)=0

Inexact Newton-Krylov

Hka + F(xk)H
[Fec)f

Solve Jp, =-F(x,); until

Xk+1 = Xk +®pk

Jacobian Free N-K Variant

Mp,=v

Ip, = F(x + 5[;{) -F(x)

See e.g. Knoll & Keyes, JCP 2004

; or by AD

<
- 1k
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Why Newton-Krylov Methods?

Convergence
Properties

/

s

Fully-implicit transient
1st— 5" order BDF, MP, TR

Sandia
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Characterizing Complex Nonlinear Solution Spaces with a

Transient Code is Difficult

0.04 : 0.02 . To

0.02 | - 0.0t 05 | r
0.00 WUUWWWVWVWWWW 0.00 N = o0 WMMMWW\ANU\

-0.02 —-0.01 -0.5

Amplitude
Amplitude
Amplitude

-0.04 .
-0.02 !
0 5 10 0 5 10 0 5

Time

10

Time Time

Re=40 Re ~ 50 Hopf Bifurcation? Re=60

Various discrete time integration methods:

- can produce “spurious” stable and unstable steady solutions and limit cycles
« can stabilize unstable solutions of the ODE/PDE

» can produce very different dynamics and bifurcation behavior than ODE/PDE

e.g. Re =600
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Characterizing Complex Nonlinear Solution Spaces with a
Transient Code is Difficult

0.04 T 0.02 T 1.0
0.02

I E 0.01 05 | I
0.00 WW\MMMNWVWNW 0.00 = 00 MWMMNWWW\MJ N
-0.02 b —-0.01 H -0.5
—0.04 ! - . -1.0 .
0.02
0 5 10 0 5 10 0 5 10

Amplitude
Amplitude
Amplitude

Time Time Time

Re =40 Re ~50 Hopf! Re =60

Various discrete time integration methods: (can also be said of discrete spatial approx)
« can produce “spurious” stable and unstable steady solutions and limit cycles

 can stabilize unstable solutions of the ODE/PDE

 can produce very different dynamics and bifurcation behavior than ODE/PDE

In addition:

* turn a BVP -> IBVP with unknown initial data (basin of attraction of solutions)

* require very long time integration near critical points

* require a detailed sampling of parameter space to characterize a solution space

» produce complex interactions between temporal and spatial discretizations

- cannot be used to efficiently “track” location of critical points with multiple parameters

e.g. Helen Yee - Very nice study of these issues

Yee, Sweby, IJCFD, 4, 1995 Sandia
Yee, Sweby, RIACS Tech. Rept. 1997 m"%ﬁ



Hydro-Magnetic Rayleigh-
Bernard Stability

Stable Fields/Flow at
Ra = 4000, Q = 81

Unstable Flow at
Ra =4000, Q =144




Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear
Stability and Nonlinear Equilibrium Solutions (Steady State Solves)

V- 0 0 0 0O 0O O O O =
X PMaliee e e e e e ee voe s

Nonlinear Stable
Solution

Evectors for unstable
e-value at Bifurcation

Vx (at x=0.5, y=0.25,2z=00)
)

- Chandrasekhar Number Q =10

g J) N 1 | L | N
1940 1950 1960 R, 1970

Sandia
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Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear
Stability and Nonlinear Equilibrium Solutions (Steady State Solves)

Q Ra* | Ra.. [Chandrasekhar||]] | % error
0| 1707.77 1707.8 0.002
10! | 1945.78 1945.9 0.006
10% | 3756.68 3757.4 0.02
- 2 Direct-to-steady-state solves at a given Q
- Arnoldi method using Cayley transform to determine
approximation to 2 eigenvalues with largest real part
- Simple linear interpolation to estimate Critical Ra*
Sandia
National
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Bifurcation / Stability (Two-Parameter) Diagram

Most unstable mode compresses with
increase in magnetic field strength

[ II| | rrrTr I [
@ Analytic (Chandresckhar) Leladlng mode
4000 e e s 26 cells .
B W Leading Eigenvalue at Q=100: 20 cells —,
Leading Eigenvalue at (=100: 26 cells 7
/‘v
3000 p
g ]
Non-zero Fields & Flow
/
Q-Ra ¥
2000 —:_—_:"'
R
¢ —y— — —&—
\ Leading mode Non-zero Fields, No Flow
is 20 cells
i Ll I T I 1 L1l
Ra I“{Zl.] I Q R1] 1{1)

| with Newton’s method |

eI
Multi-parameter continuation can track critical points

(pitchfork bifurcation, Hopf bifurcation, turning points, etc.) ]@I@@@@@@@@@@@@@@@@@@@@

with NK solvers [LOCA - Salinger, Pawlowski, Phipps] Mode: 26 Cells: Q=100, Ra=3757

Mode: 20 Cells: Q=100, Ra=4017




Why Newton-Krylov Methods?

Convergence
Properties

/
o

A
P

N\
pevll

Fully-implicit transient

Sandia
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PDE Constrained Optimization of Poly-Silicon CVD Reactor
Parallel Unstructured FE Reacting Flow Simulation Code

Poly-Silicon Epitaxy
from Trichlorosilane
in Hydrogen Carrier;

3D (u,v,w,P,T)
3 chemical species
1.2M unknowns

T 35
=
Z
=
3
(V)
15
[0
15
E
) :
a 0 5 10
0D Objective Function: Radius [cm]
_ 1 2
f = zz (di/dave_ 1)
radii —
National
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PDE Constrained Optimization of Poly-Silicon CVD Reactor

Objective Function

—

[y

<
W

<
£

— Black box
PDE Cors.
0 50 100
~Time

Deposition Rate [um/min]

3.5

3.0

25

2.0

PDE Constrained
Optimization:

Minimize: f(x,p)
such that: F(x,p)=0

Use Newton’s Method
solve KKT system

T

- nitial

— 4-Param Free

—— 4-Param Bound /

35%

/ 5%

10.5%

5

Radius [ecm]

10

W/Pawlowski, Salinger, van Bloemen Waanders, Bartlett, Lin - SNL

Unks

Procs

Time (hrs.)

1.2

48

6.2
(3GHz Cluster)

4.8M | 128 ~6
(Red Storm: XT3)
38M 1024 ~7

(Red Storm: XT3)
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Embedded UQ and Adjoint Analysis for Error Estimation
and Sensitivities for Qol

SVSPEEILEE s B i i s00Te€mperature mean and standard deviation
— y=5 ~
W — =
§ 800 y=10 T
3 — y=15
g
E 700
(O}
—_
o
o 600
—
Distance 8
_UY vs. Distance for line tool E 500
(O}
—
400
300
20%.0 O‘.5 1‘.0 1‘.5 2.0

i
Stochastic Galerkin UQ analysis propagating
_TEMPERATURE uncertainty in the magnitude of the model fuel
8.280e+02 source term and the average inflow velocity.

6.960e+02

5.640e+02
4.320e+02
3.000e+02

Idealized steady-state flow and heat

transfer simulation. Conjugate heat

transfer in cooling fluid, clad, and Fuel. Sonci
id

Navier-Stokes Re = 1000 National
Laboratories



Why Newton-Krylov Methods?

Fully-implicit transient

/1 N\

Stability || Accuracy ||Efficiency

Direct-to-steady-state

. .
Convergence Design
Properties | | ‘ Optimization
Characterization \
Complex Soln. Spaces

Sandia
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Preconditioning
Three variants of preconditioning

s
1

1. Domain Decomposition (Trilinos/Aztec & IFPack)
* 1 —level Additive Schwarz DD

/7

17777
77
lll:",f-

!'ﬁ..'.

/7]

"ll

AL

v

* ILU(k) Factorization on each processor
(with variable levels of overlap)

L/
%,

\

* High parallel efficiency, non-optimal
algorithmic scalability

---v".";'é‘.;
- -;.::.;::,;':.
. ST
Tokamak Parallel 'l
/Partition (64 Procs.)

2. Multilevel Methods for Systems: ML pkg (Tuminaro, Sala, Hu, Siefert, Gee)
Fully-coupled Algebraic Multilevel methods

» Consistent set of DOF-ordered blocks at each node (e.g. stabilized FE)
* Uses block non-zero structure of Jacobian

» Aggregation techniques and rates can be chosen
« Jacobi, GS, ILU(k) as smoothers

« Can provide optimal algorithmic scalability

3. Approximate Block Factorization / Physics-based (Teko package)

» Applies to mixed interpolation (FE), staggered (FV), physics compatible
discretization approaches using segregated unknown blocking

» Applied to systems where coupled AMG is difficult or might fail
« Can provide optimal algorithmic scalability
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Scaling Performance for Fully-coupled Resistive MHD/ Block AMG - Cray XT3/4

3000
4096 procs
o
& 2500 ettt
0 ﬁ—xlmmuzjr;
c 3 bevel NSO, TLU(1,1)
° 2000 4 —u—!l::velEminllu[l.l)
E Estimate 1 level [LU[2,1) /
1024 procs,
2 1500 g
~ ///
9 1000 256 prees:
- /
g‘ 500 +—— 64 prees—
< 16 procs.
0 . —
1.0E+05 1.0E+06 1.0E+07

Weak Scaling Study: Resisitve MHD VP
Formulation (2D MHD Pump)

Number of Unknowns

1.0E+08

O

sloc

Vx Profiles for Faraday Conduction MHD Pump

Avg. CPU Time / Newton

Step (sec.)

Weak Scaling Study: Resisitve MHD VP Formulation

800

(2D MHD Pump)

4096 procs.
1 bevel [LUfav=2FlI=1)
700 W 1 vl [LU(2,3)
e e 1 el [LU(2,7)
3 bevel NSO, TLUGL 1)
600 3 bevel Emin [LU(1,1)
Estimate 1 bevel [LU2,1)
500 /-
400 1024 procs. ///
300
/| +20x
200
256 procs. /
100 64 procs:
16 procs.
J 3
(o E——— " i "
1.0E+05 1.0E+06 1.0E+07 1.0E+08

Number of Unknowns




Multicore Performance of Fully-coupled Resistive MHD Simulations - Cray XT3/4

Our Largest Fully-coupled Direct-to-steady-state Simulation to Date:

1+ Billion unknowns; 260 Million Quad elements; 24K cores (4 cores / node)

Cores | Fine Mesh | Intermed. | Intermed. | Coarse | Newton | Avg. No. Total Sim.
Level 0 Level 1 Level 2 Level 3 | Iters. Linear Its./ | Time*
Unkns. Unkns. Unkns. Unkns. Newton (min.)

24,000 | 1.05 billion 23.3M .5M 11.2K 18 86 33

Note: The Additive Schwarz DD preconditioner could not be
used to obtain solution in reasonable CPU time.

* Time includes 1/O
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Weak Scaling Uncoupled Aggregation Scheme:
Timeliteration on BlueGene/P (Drift — Diffusion BJT: P. Lin)

[TFQMR & V cycle CPU Time (sec.)] per Iteration Scaled Efficiency of TFQMR & V cycle per Iteration

S 05 1 .
E 0.45 =0=10K Unkowns / core os w 64K
g <~31K Unknowns / core 64K )
S o4 M 0.8 \ .
8]
¢ 0.35 > 0.7 N
2 2 144K
£ 0.3 g 06
B . - . .
S 025 E 0.5 Scaled Efficiency 10K / core
& 144K k> <i=Scaled Efficiency 31K / core
@ 02 2 04
[§] P 1%
s 0.1 0.2
g 0.05 0.1
L
ol 0 0
1.E+05 1.E+06 1.E+07 1.E+08 1.E+09  1.E+10 1.e+01  1.E+02  1.E+03  1.E+04  1.E+05  1.E+06

Number of Unknowns Number of Cores

TFQMR: used to look at time/iteration of multilevel preconditioners.
* W-cyc time/iteration not doing well due to significant increase in work on coarse levels (not shown)
» Good scaled efficiency for large-scale problems on larger core counts for 31K Unknowns / core
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3D B-Field Lagrange Multiplier Formulation (Divergence form)

Initial Prototype
MHD Generator

-
3.701e+00
2.776e+00
1.850e+00

9.252¢-01

21p9e-09
1.929-01
9.6466-02
0.000e+00

-9.646e-02
-1.929e-01

VJII 7]
A




Plasma Physics Studies: Plasmoid formation in magnetic reconnection

Magnetic reconnection: fundamental process whereby 1.E+02 ;”ig" tundauist Number Magnetic Reconnection for the IC Problem
magnetic field topology is altered resulting in a rapid | Siminion 372 bomain 512x1536 mesh f
conversion of magnetic field energy into plasma energy and 5 '
significant plasma transport. Mechanisms and time scales £
have been an open issue for last 50 years. - |~
E 1
Critical process in astrophysical and laboratory plasmas. H
£
- 1.E+00 -
lllne — 4.3 64 1.E+05 1.E+06 I.E:gzqmst Nil.,:Fg)OS 1.E+09 1.E+10
LE01 High Lundquist Number Magnetic Reconnection for the IC Problem
© Avg_Abs_Recconection_rate [1/2 domain 512x1536 mesh)]
—Sweet-Parker Scaling: sqrt(1/S)
M Max_Abs_Reconnection_rate [1/2 domain 512x1536 mesh]
A X-point max_Abs_Reconnection_rate [1/4 domain 512x256 mesh]
A A A
g . ’
ot A
c 1.E-02
£
g
S C]
: =II
: III
DAD'I E" 1E-03 I
5 =
1.000e-03
5.000e-04
)5 000e+00
-5.000e-04
-1.000e-03
1.E-04

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10
Lundquist Number (S)



Step back to CFD for a moment to

Introduce block approximate factorization (physics-based) preconditioners

Sandia
National
Laboratories



Brief Overview of Block Preconditioning Methods for Navier-Stokes:
(A Taxonomy based on Approximate Block Factorizations, JCP — 2008)

Discrete N-S Exact LDU Factorization Approx. LDU -
F BT\ [ Ay (g (51 0) (F 0)(1 F IBT> 1 V 0 {1 H,B"
(B —C>(Am- )"(.q;*;) BFTE I)\0 =5)\0 I BH, I/|0 -S[|0 I
S=C+BF'B"

Precond. Type H, o g References
2
Pres. Proj; Perot (1993): Quateroni et.
1st Term F 1 (AtI)~ 1 C + AtBB?T al. (2000) as solvers
Neumann Series
SIMPLEC “ Patankar et. al. (1980) as
—1 . 1 . 1T ) . .
dia F C + B(dia F B | solvers; Pernice and Tocci
F ( g(z | D) ( g(z ‘ D) (2001) as smothers/MG
Pressure Kay, Loghin, Wathan,
. -1 —1 Silvester, Elman (1999 -
Convection/ 0 F APFp 2006); Elman, Howle, S.,
Diffusion Shuttleworth, Tuminaro

(2003,2008)

Now use AMG type methods on sub-problems.
Momentum transient convection-diffusion: F'Au =ry

Pressure — Poisson type:

—SAp=r,
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Start-up of Helium fluid flow in NGNP reactor geometry (not actual operating cond.)

Time = 0.000000 Time = 0.000000

vorticity mag
1.000e+01]
X 7.500e+00

5.000e+00
2.500e+00
0.000e+00

NGNP Geometry: Rich Martineau (INL), Unstructured Quad Cubit Mesh SNL




Transient Kelvin-Helmholtz 3D Shear layer Re = 5 x 104

Time = 0.00000




Transient Kelvin-Helmholtz 3D Shear layer Re = 5 x 104
Time = 0.00000




LES CFD + Rod Vibration analysis of Nuclear Reactor Core Flow
(Re = 2e+5 simulation of 3x3 pin-geometry with mixing vane)

uy

1.000e+00
5.000e-01
0.000e+00
-5.000e-01
-1.000e+00

Pressure, prbA (4.75e-3, 0.0, 0.08478)

671572 elem ——
1049228 elem -~
2663920 elem

8327

5000
10000 % 500 1000 1500 2000 2500 3000 B T T
Frequency (Hz) Time (s)
Time (sec)
LES Fluid Pressure Load on Fuel Rod Fuel Rod Vibration Response

idge National Laboratory, May 3, 2011 ___ﬂ




Transient
Kelvin-Helmholtz

Linear Iterations: Re=5000 with SUPG-PSPG 6'gime/NonIinear step: Re=5000 with SUPG-PSPG
140f — AggC — — AggC
e—e DD e—e DD
120l m—a PCD | 50| m—m PCD
¢ SIMPLEC 4 SIMPLEC
43 100 S 4o
8 *a
| =
8 2 30
_5 60 g
1024 cores £ o0l
401 | 1 core R = 20 1024 cores
R N 1 core \
I St en— |
 — 0 - N * < —
fo“ 10° 10° 10’ 108 0 ‘ ‘ ‘
Number of unknowns 10* 10° 10° 10’ 108

Number of unknowns

Kelvin Helmholtz: Re=5000, Weak scaling at CFL=2.5
* Run on 1 to 1024 cores
* Pressure - PSPG, Velocity - SUPG(residual and Jacobian)
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Now Return to MHD

Block approximate factorization (physics-based) preconditioners
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Incompressible Resistive MHD a New Nested
Schur Complement Approach

Block LU factorization gives

F BT 7 I F BT A

B C 0| =|BF! I S —BF 17

Y 0 D YF—! —_YF1BTG-1 T P
where

S=C—-BF !B
P=D-YF'U+B's'Br1YHz
3x3 system leads to embedded Schur complements
- Embedding is independent of ordering (C' doesn’ t need to exist!)

* How is P approximated?
« Can we simplify this? E.g. Operator split prec.

F BT Z F Z1 [F-1 F B? F B1 Z
B C 0| =~ I I B C — |B C
Y 0 D Y D I Il |v |yF'BT| D
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Transient Hydromagnetic
Kelvin-Helmholtz Problem

Re =

1e+3,S =1e+4

Weak Scaling Study: Hydromagnetic Kelvin-Helmholtz

Time = 2.50700

Weak Scaling Study: Hydromagnetic Kelvin-
Helmholtz Constant CFL; (Re = 103; S = 10%)

Quad-core Nehalems
with Infini-band SNL

Constant CFL; (Re = 103; S = 10%) 100
350 | —~-DD
—~-DD 90 - “=FCML
300 -=FC ML 5 PCD
pCcD a 80 ~<SIMPLEC
o
g 250 |~ SIMPLEC % 70
s & 60
s 200 =
Q ~ 50 -
S £
150 =
4‘9: = 40
= >
:?:" 100 S Zz 7
Red Sk
50 512 cores 10 y
8 cores — —= —
0 T — : Q s s s 1 o
1.E+05 1.E+06 1.E+07 1.E+08 1.E+05 1.E+06 1.E+07 1.E+08
Number of Unknowns Number of Unknowns
H \INe:kI Scaling StUdY: HydromaRgnftllc ;(elv_"; . Weak Scaling Study: Hydromagnetic Kelvin-
elmholtz Constant time step; (Re = 10 S = 10%) Helmholtz Constant time step; (Re = 103; S = 10%)
350 T 100
: ~bD ~-DD
i FeML Ve 90 “=FCML
300 + PCD PCD
a i —<SIMPLEC (NS: Krylov + V cycle) / 80 ==SIMPLEC (NS: Krylov + V cycle)
[ r o F
& 250 ! % 70
s - ® o
£ 200 E :
] C = F
2 3 / : 50
Z C
~150 | £
g7 1 £ 0
. - =)
20 30
F100 ¢ S
r 20 -
50
i 10
X . g
0~ S - \ 0 - — iy
1.E+05 1.E+06 1.E+07 1.E+08 1.E+05 1.E+06 1.E+07 1.E+08

Number of Unknowns

Number of Unknowns
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Conclusions

* Results for stabilized FE methods for low Mach number Transport/Reaction low
flow-Mach number resistive MHD system are encouraging. Can be robust and
efficient solvers for direct-to-steady-sate, transient, bifurcation and optimization.

- Parallel Newton-Krylov with fully-coupled block aggressive coarsening AMG
preconditioners have shown promising results for algorithmic scalability and CPU
time performance for Transport/Reaction and initial MHD solutions.

(Issues: Hyperbolic operators, FE aspect ratios for multilevel methods)

- New approximate block factorization / physics based preconditioners for
incompressible / low-flow-Mach number Transport/Reaction and resistive MHD
are encouraging. Need more work on efficient/robust Schur complement solvers.

« Future work:

* Need to verify 3D resistive MHD B-field generalized Lagrange multiplier
formulation.

- Complete development of physics-compatible 3D MHD formulation with
face, edge, nodal and volume elements (de Rham complex)

* Fully Compressible 3D MHD formulation with high-resolution FE methods.
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Trilinos: Full Vertical Solver Coverage
(Part of DOE: TOPS SciDAC Effort)

L
0

Optimization
Unconstrained:

Find v e R* that minimizes g(u)

Constrained: Find ze€R™ and ue®R" that 81 MOOCHO
' minimizes g(xz,u) s.t. f(z,u) =0 3
Given nonlinear operator F(x,u) € gprTm | chU
Bif tion Analysi OF . -
ifurcation Analysis For F(z,u) =0 find space uelU s>t { 4 C LOCA
Transient Problems Solve f(z(t),z(t),t) =0 ";' .
/
DAEs/ODEs: t€[0,7],2(0) = zqg,z(0) = zq = E Rythmos
for xz(t) € Rt € [0, T] 20
o =
Nonlinear Problems Given nonlinear operator F(x) e R — X ) (D_) NOX
Solve F(x) =0 ze&®R" b
-
Linear Problems | Given Linear Ops (Matrices) A, B € R™M*" O AZI;Z:;C;O
>
Linear Equations: Solve Az =0b for zec®R" < | ifpack, ML, teko
Eigen Problems: Solve Av =ABv for (all) veR", e Anasazi
Distributed Linear Algebra Epetra
Matrix/Graph Equations:| Compute y = Az; A = A(G); A € R™*" G € FM*X"
Vector Problems: Compute y = azx + Bw;,a = (z,y); z,y € R" Tpetra




The End
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