
Efficient Expression Templates for Operator
Overloading-based Automatic Differentiation

Eric Phipps and Roger Pawlowski

Abstract Expression templates are a well-known set of techniques for improving
the efficiency of operator overloading-based forward mode automatic differentia-
tion schemes in the C++ programming language by translating the differentiation
from individual operators to whole expressions. However standard expression tem-
plate approaches result in a large amount of duplicate computation, particularly for
large expression trees, degrading their performance. In this paper we describe sev-
eral techniques for improving the efficiency of expression templates and their imple-
mentation in the automatic differentiation package Sacado [15, 16]. We demonstrate
their improved efficiency through test functions as well as their application to dif-
ferentiation of a large-scale fluid dynamics simulation code.

Key words: Forward mode, operator overloading, expression templates, C++

1 Introduction

Automatic differentiation (AD) techniques for compiled languages such as C++ and
Fortran fall generally into two basic categories: source transformation and operator
overloading. Source transformation involves a preprocessor that reads and parses
the code to be differentiated, applies differentiation rules to this code, and generates

Eric Phipps
Sandia National Laboratories†, Optimization and Uncertainty Quantification Department, Albu-
querque, NM, USA, etphipp@sandia.gov

Roger Pawlowski
Sandia National Laboratories†, Multiphysics Simulation Technologies Department, Albuquerque,
NM, USA rppawlo@sandia.gov

†Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

1

SAND2012-0069C

lgalleg
Typewritten Text
SAND2012-0069 C



2 Eric Phipps and Roger Pawlowski

new source code for the resulting derivative calculation that can be compiled along
with the rest of the undifferentiated source code. This approach allows for genera-
tion of efficient derivative code as it has a global view of the calculation, and thus
is quite popular, particularly for simpler languages such as Fortran and C. However
source transformation for C++ is challenging due to the complexity of the language.
An alternative approach for C++ (and many other languages) is operator overload-
ing. Here new derived types storing derivative values and corresponding overloaded
operators are created so that when the fundamental scalar type in the calculation
( float or double) is replaced by these new types and evaluated, the relevant deriva-
tives are computed as a side-effect. This approach is attractive in that it uses native
features of the language, making operator overloading-based AD tools simple to im-
plement and use. There are two basic challenges for operator overloading schemes
however: run-time efficiency and facilitating the necessary type change from the
floating point type to AD types. For forward-mode AD, expression templates can
be used to partially address the first of these challenges. However achieving the
full performance benefits of expression templates is challenging and is the subject
of this paper. For the second challenge, we advocate a templating-based approach
which has been extensively described elsewhere[4, 13, 14, 15].

This paper is organized as follows. We first describe standard expression tem-
plate techniques and their application to forward mode automatic differentiation in
Sect. 2. For concreteness, we describe the simple implementation of these tech-
niques in the AD package Sacado [15, 16]. Then in Sect. 3 we describe two tech-
niques for improving the performance of expression templates: expression-level re-
verse mode and value caching. We demonstrate significantly improved performance
for these techniques, particularly for large expressions, by applying them to two test
functions. We then briefly describe applying all of these techniques to a large-scale
fluid dynamics simulation in Sect. 4, again demonstrating improved performance on
a real-world application. We then close with several concluding remarks in Sect. 5.

2 Expression Templates for Forward Mode Automatic
Differentation

As described above, operator overloading-based AD schemes work by first creating
a new derived type and corresponding overloaded operators. While operator over-
loading can be used for any AD mode, and there are many ways of implementing
the overloaded operators for any given AD mode, we will restrict this discussion
to tapeless implementations of the first-order vector forward mode. Here the AD
type typically contains a floating point value to represent the value of an intermedi-
ate variable, and an array to store the derivatives of that intermediate variable with
respect to the independent variables (see [11] for an introduction to basic AD im-
plementations). The implementation of each overloaded operator then involves cal-
culation of the value of that operation from the values of the arguments and stored



Efficient Expression Templates 3

in the value of the result, and a loop over the derivative components using the cor-
responding derivative rule from basic differential calculus.

There are two basic problems with this approach. First, each intermediate oper-
ation within an expression requires creation of at least one temporary object, and
creating and destroying this object adds significant run-time overhead. Second, the
AD implementation is limited to differentiating one operation at a time, each in-
volving a loop over derivative components. Together these problems often result in
inefficient derivative code. Expression templates are a technique that was invented
to address these issues. They were first used in the Fad package [2, 3], and later
incorporated into Sacado. Here the AD type is fundamentally the same, however the
operators return an object encoding the type of operation and a handle to their argu-
ments instead of directly evaluating the derivative. As each term in the expression is
evaluated, a tree is created encoding the structure of the whole expression. Then the
assignment operator for the AD type loops through this tree recursively applying the
chain rule. An implementation of these ideas for the × operator is shown below.

Listing 1 Partial expression template-based operator overloading implementation.

/ / E x p r e s s i o n t e m p l a t e−based Forward AD t y p e
t e m p l a t e <typename T> c l a s s Expr {} ;
c l a s s ETFadTag {} ;
c l a s s ETFad : p u b l i c Expr<ETFadTag> {

do ub l e v a l ; / / v a l u e
s t d : : v e c t o r<double> dx ; / / d e r i v a t i v e s

p u b l i c :
e x p l i c i t ETFad ( i n t N) : v a l ( 0 ) , dx (N) {} / / C o n s t r u c t o r
i n t s i z e ( ) c o n s t { r e t u r n dx . s i z e ( ) ; }
do ub l e v a l ( ) c o n s t { r e t u r n v a l ; } / / Re tu rn v a l u e
do ub l e& v a l ( ) { r e t u r n v a l ; } / / Re tu rn v a l u e
do ub l e dx ( i n t i ) c o n s t { r e t u r n dx [ i ] ; } / / Re tu rn d e r i v a t i v e
do ub l e& dx ( i n t i ) { r e t u r n dx [ i ] ; } / / Re tu rn d e r i v a t i v e

/ / E x p r e s s i o n t e m p l a t e a s s i g n m e n t o p e r a t o r
t e m p l a t e <typename T> ETFad& o p e r a t o r =( c o n s t Expr<T>& x ) {

v a l = x . v a l ( ) ;
dx . r e s i z e ( x . s i z e ( ) ) ;
f o r ( i n t i =0 ; i<x . s i z e ( ) ; i ++)

dx [ i ] = x . dx ( i ) ;
}

} ;

/ / S p e c i a l i z a t i o n o f Expr t o m u l t i p l i c a t i o n
t e m p l a t e <typename ExprT1 , typename ExprT2> c l a s s MultTag {} ;
t e m p l a t e <typename T1 , typename T2>
c l a s s Expr< MultTag< Expr<T1>, Expr<T2> > > {

c o n s t Expr<T1>& a ;
c o n s t Expr<T2>& b ;

p u b l i c :
Expr ( c o n s t Expr<T1>& a , c o n s t Expr<T2>& b ) : a ( a ) , b ( b ) {}
i n t s i z e ( ) c o n s t { r e t u r n a . s i z e ( ) ; }
do ub l e v a l ( ) c o n s t { r e t u r n a . v a l ( ) ∗ b . v a l ( ) ; }
do ub l e dx ( i n t i ) c o n s t { r e t u r n a . v a l ( )∗ b . dx ( i )+ a . dx ( i )∗ b . v a l ( ) ; }



4 Eric Phipps and Roger Pawlowski

} ;

/ / E x p r e s s i o n t e m p l a t e i m p l e m e n t a t i o n o f a∗b
t e m p l a t e <typename T1 , typename T2>
Expr< MultTag< Expr<T1>, Expr<T2> > >
o p e r a t o r ∗ ( c o n s t Expr<T1>& a , c o n s t Expr<T2>& b ) {

r e t u r n Expr< MultTag< Expr<T1>, Expr<T2> > >(a , b ) ;
}

Each operator returns a simple expression object that stores just references to its
arguments with the kind of operation encoded in the type of the expression. Since
these expression objects just contain references, a good optimizing compiler can
often eliminate them all together and generate code that is functionally equivalent
to that shown below when applied to d = a×b× c.

Listing 2 Equivalent derivative code resulting from differentiation of a×b× c.

d . v a l ( ) = a . v a l ( )∗ b . v a l ( )∗ c . v a l ( ) ;
f o r ( i n t i =0 ; i<d . s i z e ( ) ; i ++)

d . dx ( i ) = ( a . v a l ( )∗ b . v a l ( ) ) ∗ c . dx ( i ) +
( a . v a l ( )∗ b . dx ( i )+ a . dx ( i )∗ b . v a l ( ) ) ∗ c . v a l ( ) ;

Thus all of the intermediate temporary AD objects have been removed and the loops
have been fused into a single loop over the derivative components for d. This often
removes much of the overhead associated with a simple operator overloading ap-
proach. We note that constants and passive variables introduce additional complex-
ity into the implementation which is not shown or discussed here.

3 Improving Performance of Expression Templates

While the expression template approach can significantly reduce the overhead as-
sociated with operator overloading, there is still room for improvement in reducing
the cost of the differentiation. Careful examination of the functionally equivalent
derivative code in Listing 2 reveals a basic problem: the calculation of the value
portion of intermediate terms in the expression can be repeated multiple times. In
this case, the value a. val ()∗b. val () is recomputed N times where N is the number
of derivative components. This is particularly troublesome for large expressions in-
volving many terms or expressions involving transcendental functions whose values
are expensive to compute.

We have investigated overcoming this problem by caching the value of each inter-
mediate operation in the expression in the expression objects themselves. The small
modifications to the multiplication expression template from Listing 1 are shown
below where the cache() method in this case stores the result of a. val ()∗b. val () . This
cached value is then used in any subsequent calls to val () . The top-level expression-
template assignment operator is then modified to call cache() before any calls to val ()
or dx(). Other nonlinear operations may also cache partial derivatives with respect
to their arguments for use in subsequent dx() calls. This approach eliminates the



Efficient Expression Templates 5

duplicate computation of intermediate values, at the expense of more complicated
expression objects that the compiler may not be able to optimize away. Nonethe-
less we have found this approach more efficient for recent compilers that support
aggressive C++ optimization.

Listing 3 Modifications for caching expression template-based operator overloading.

t e m p l a t e <typename T1 , typename T2>
c l a s s Expr< MultTag< Expr<T1>, Expr<T2> > > {

mutab le d ou b l e v a l ;
p u b l i c :

vo id cache ( ) c o n s t {
a . cache ( ) ; b . cache ( ) ; v a l = a . v a l ( ) ∗ b . v a l ( ) ;

}
do ub l e v a l ( ) c o n s t { r e t u r n v a l ; }

} ;

A second technique that can be used to generally improve the performance of
forward-mode AD is expression-level reverse mode [7]. This results from the recog-
nition that while derivatives are generally being propagated forward through the cal-
culation, any given expression likely has multiple inputs and only one output. Thus
it should be more efficient to compute the derivative of the expression outputs with
respect to its inputs using reverse-mode AD and then combine those derivatives
with the derivatives of the inputs with respect to the independent variables using
the chain rule. While this technique is common in source transformation tools such
as ADIFOR [6], we are unaware of any use in operator overloading tools due to
their limited view of the code being differentiated. Expression templates however
do provide all of the necessary information for this technique. The challenge is im-
plementing the technique in such a way as to allow the compiler to generate efficient
derivative code.

We have implemented expression-level reverse mode within the forward mode
classes in our tool Sacado using template meta-programming techniques [1] sim-
ilar to those found in the Boost MPL library [9]. Referring to Listing 4, the total
number of arguments to the expression is accumulated in num args member of each
expression class as the expression tree is built up. Leaves in the tree (objects of type
ELRFad) are treated as single argument identity functions. Each binary operation
such as operator ∗ from Listing 4 treats its full set of expression arguments as the
union of its two arguments, thus the operation a×a would be treated as having two
arguments. The computePartials () method for each expression class computes the par-
tial derivatives of the result of that object with respect to the expression arguments.
These are stored in the partials statically allocated array, with the partials arising
from the first argument in a binary operation stored in the first num args1 locations
and the partials arising from the second argument in the remaining num args2 loca-
tions. Then the arguments of the expression tree are returned by the getArg() method
allowing extraction of the derivative components of the arguments.

Listing 4 Additional expression template interface incorporating expression-level reverse mode.

c l a s s ETFad : p u b l i c Expr<ETFadTag> {
p u b l i c :



6 Eric Phipps and Roger Pawlowski

s t a t i c c o n s t i n t num args = 1 ; / / Number o f e x p r e s s i o n args

/ / Re tu r n p a r t i a l s w . r . t . a rgument s
vo id c o m p u t e P a r t i a l s ( d ou b l e bar , d ou b l e p a r t i a l s [ ] ) c o n s t {

p a r t i a l s [ 0 ] = b a r ; }

/ / Re tu r n argument Arg o f e x p r e s s i o n
t e m p l a t e <typename Arg>
c o n s t ETFad& ge tArg ( ) c o n s t { r e t u r n ∗ t h i s ; }

} ;

t e m p l a t e <typename T1 , typename T2>
c l a s s Expr< MultTag< Expr<T1>, Expr<T2> > > {
p u b l i c :

/ / Number o f argument s t o e x p r e s s i o n
s t a t i c c o n s t i n t num args1 = ExprT1 : : num args ;
s t a t i c c o n s t i n t num args2 = ExprT2 : : num args ;
s t a t i c c o n s t i n t num args = num args1 + num args2 ;

/ / Compute p a r t i a l d e r i v a t i v e s w . r . t . a rgument s
vo id c o m p u t e P a r t i a l s ( d ou b l e bar , d ou b l e p a r t i a l s [ ] ) c o n s t {

a . c o m p u t e P a r t i a l s ( b a r ∗b . v a l ( ) , p a r t i a l s ) ;
b . c o m p u t e P a r t i a l s ( b a r ∗ a . v a l ( ) , p a r t i a l s + num args1 ) ;

}

/ / Re tu r n argument Arg f o r e x p r e s s i o n
t e m p l a t e < i n t Arg> c o n s t ETFad& ge tArg ( ) c o n s t {

i f ( Arg < num args1 ) r e t u r n a . t e m p l a t e getArg<Arg > ( ) ;
e l s e r e t u r n b . t e m p l a t e getArg<Arg−num args1 > ( ) ;

}
} ;

These methods are then used to combine the expression-level reverse mode with
the overall forward AD propagation through the new implementation of the assign-
ment operator shown in Listing 5. First the derivatives with respect to the expression
arguments are computed using reverse-mode AD. These are then combined with the
derivative components of the expression arguments using the functor LocalAccumOp
and the MPL function for each . The overloaded operator () of LocalAccumOp computes
the contribution of expression argument Arg to final tangent component i using the
chain rule. The MPL function for each then iterates over all of the expression argu-
ments by iterating through the integral range [0,M) where M is the number of ex-
pression arguments. Since M is a compile-time constant and for each uses template
recursion to perform the iteration, this has the performance of an unrolled loop.

Listing 5 Expression template forward AD propagation using expression-level reverse mode.

/ / Func tor f o r mpl : : f o r e a c h t o m u l t i p l y p a r t i a l s and t a n g e n t s
t e m p l a t e <typename ExprT> s t r u c t LocalAccumOp {

c o n s t ExprT& x ;
mutab l e d ou b l e t ;
do ub l e p a r t i a l s [ Expr<T> : : num args ] ;
i n t i ;
t e m p l a t e <typename ArgT> vo id o p e r a t o r ( ) ( ArgT a r g ) c o n s t {



Efficient Expression Templates 7

c o n s t i n t Arg = ArgT : : v a l u e ;
t += p a r t i a l s [ Arg ] ∗ x . t e m p l a t e getArg<Arg > ( ) . dx ( i ) ;

}
} ;

c l a s s ETFad : p u b l i c Expr<ETFadTag> {
p u b l i c :

/ / ELR e x p r e s s i o n t e m p l a t e a s s i g n m e n t o p e r a t o r
t e m p l a t e <typename T> ELRFad& o p e r a t o r =( c o n s t Expr<T>& x ) {

v a l = x . v a l ( ) ;
dx . r e s i z e ( x . s i z e ( ) ) ;

/ / Compute p a r t i a l s w . r . t . e x p r e s s i o n argument s
LocalAccumOp< Expr<T> > op ;
x . c o m p u t e P a r t i a l s ( 1 . 0 , op . p a r t i a l s ) ;

/ / M u l t i p l y p a r t i a l s w i t h t a n g e n t s
c o n s t i n t M = Expr<T> : : num args ;
op . x = x ;
f o r ( op . i =0 ; op . i<x . s i z e ( ) ; ++op . i ) {

op . t = 0 . 0 ;
mpl : : f o r e a c h< mpl : : r a n g e c< i n t , 0 , M > > f ( op ) ;
dx [ i ] = op . t ;

}
r e t u r n ∗ t h i s ;

}
} ;

Note that as in the simple expression template implementation above, the value
of each intermediate operation in the expression tree may be computed multiple
times. However the values are only computed in the computePartials() and val()
methods, which are each only called once per expression, and thus the amount of
recomputation only depends on the expression size, not the number of independent
variables. Clearly the caching approach discussed above can also be incorporated
with the expression-level reverse mode approach, which will not be explicitly shown
here. Again, the additional complexity necessary for constants and passive variables
is not discussed here.

To test the performance of the various expression template approaches, we apply
them to the simple test expressions

y =
M

∏
i=1

xi (1) and y =

M times︷ ︸︸ ︷
sin(sin(. . .sin(x) . . .)) (2)

for M = 1,2,3,4,5,10,15,20. Test function (1) tests wide but shallow expressions,
whereas function (2) tests deep but narrow expressions, and together they are the ex-
tremes for expressions seen in any given computation. In Fig. 1 we show the scaled
run time of propagating N = 5 and N = 50 derivative components through these
expressions for each value of M using the standard expression template, expression-
level reverse mode, caching, and caching expression-level reverse mode approaches



8 Eric Phipps and Roger Pawlowski

implemented in Sacado. The scaled run time is the average wall clock time divided
by the product of the average undifferentiated expression evaluation time and the
number of derivative components N. These tests were conducted using recent Intel
and GNU compilers, run on a single core of an Intel quadcore processor. The GNU
and Intel results were qualitatively similar with the GNU results shown here. With
this definition of the scaled run time, one would hope to see roughly constant cost
for all expression sizes. For the standard approach, this is clearly not the case with
the cost increasing significantly with the size of the expression. All three of caching,
expression-level reverse mode, and caching expression-level reverse mode are sig-
nificant improvements, particularly for large expression sizes M or large numbers
of derivative components N. Except for very small expression sizes, caching plus
expression-level reverse mode appears to be the most efficient overall, however for
large N the differences are not significant. We note however that only recently have
compilers incorporated optimizations that yield efficient expression templates when
using these more advanced approaches.

0 5 10 15 20

Expression Size M

0

5

10

15

20

25

S
ca

le
d
 R

u
n
 T

im
e

ET N = 5

ELR N = 5

CET N = 5

CELR N = 5

ET N = 50

ELR N = 50

CET N = 50

CELR N = 50

(a) Multiply function (1).

0 5 10 15 20

Expression Size M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
S
ca

le
d
 R

u
n
 T

im
e

(b) Nested function (2).

Fig. 1 Scaled derivative propagation time for expressions of various sizes. Here ET refers to stan-
dard expression templates, ELR to expression-level reverse mode, and CET/CELR to caching ver-
sions of these appraoches.

4 Application to Differentiation of a Fluid Dynamics Simulation

To demonstrate the impact of these approaches to problems of practical interest, we
apply them to a 3D transport/reaction problem. We compute a steady-state solution
to the decomposition of dilute species in a duct flow. The problem is modeled by a
system of coupled differential algebraic equations that enforce the conservation of
momentum, energy, and mass under non-equilibrium chemical reaction. The com-



Efficient Expression Templates 9

plete set of equations, the discretization technique and the solution algorithms are
described in detail in [17]. A short summary follows.

The system is discretized using a stabilized Galerkin finite element approach on
an unstructured hexahedral mesh with a linear Lagrange basis. We solve three mo-
mentum equations, a total continuity equation, an energy equation and five species
conservation equations resulting in 10 unknowns per basis point. Due to the strongly
coupled nonlinear nature of the problem, a fully coupled, implicit, globalized inex-
act Newton-based solve [10] is applied. This requires the evaluation of the Jacobian
sensitivity matrix for the nonlinear system. An element-based automatic differenti-
ation approach [4, 15] is applied via template-based generic programming [13, 14]
and Sacado, resulting in 80 derivative components in each element computation. The
five species decomposition mechanism uses the Arrhenius equation for the temper-
ature dependent kinetic rate, thus introducing transcendental functions via the the
source terms for the species conservation equations.

Table 1 shows the evaluation times for the global Jacobian required for each
Newton step, scaled by the product of the residual evaluation time and the number of
derivative components per element. Both caching and expression-level reverse mode
are significant improvements. Due to the large number of derivative components
however, we see little difference between the three methods.

Table 1 Scaled Jacobian evaluation time for reaction/transport problem.

Implementation Scaled Jacobian Evaluation Time

Standard expression template 0.140
Expression-level reverse 0.091
Caching expression template 0.097
Caching expression-level reverse 0.090

5 Concluding Remarks

In this paper we described challenges for using expression template techniques
in operator overloading-based implementations of forward mode AD in the C++
programming language, and two approaches for overcoming them: caching and
expression-level reverse mode. While expression-level reverse mode is not a new
idea, we believe our use of it in operator overloading-based approaches, and its
implementation using template meta-programming is unique. Together, these tech-
niques significantly improve the performance of expression template approaches on
a wide range of expressions, demonstrated through small test problems and appli-
cation to a reacting flow fluid dynamics simulation. In the future we are interested
in applying the approach in [12] for making the preaccumulation of the expression
gradient even more efficient, and with general meta-programming techniques, this



10 Eric Phipps and Roger Pawlowski

should be feasible. For the first-order forward mode with a sufficiently large number
of derivative components, this is unlikely to have a dramatic effect on performance.
However for higher-order modes, such as second derivatives or Jacobian derivatives
of Taylor coefficients, we would expect those techniques to become more relevant
as the cost of the expression preaccumulation is much more significant.

References

1. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools, and Tech-
niques from Boost and Beyond. Addison-Wesley (2004)

2. Aubert, P., Di Césaré, N.: Expression templates and forward mode automatic differentiation.
In: Corliss et al. [8], chap. 37, pp. 311–315

3. Aubert, P., Di Césaré, N., Pironneau, O.: Automatic differentiation in C++ using expression
templates and application to a flow control problem. Computing and Visualization in Science
3, 197–208 (2001)

4. Bartlett, R.A., Gay, D.M., Phipps, E.T.: Automatic differentiation of C++ codes for large-
scale scientific computing. In: V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot, J. Dongarra
(eds.) Computational Science – ICCS 2006, Lecture Notes in Computer Science, vol. 3994,
pp. 525–532. Springer, Heidelberg (2006). DOI 10.1007/11758549 73

5. Bischof, C.H., Bücker, H.M., Hovland, P.D., Naumann, U., Utke, J. (eds.): Advances in Au-
tomatic Differentiation, Lecture Notes in Computational Science and Engineering, vol. 64.
Springer, Berlin (2008). DOI 10.1007/978-3-540-68942-3

6. Bischof, C.H., Carle, A., Khademi, P., Mauer, A.: ADIFOR 2.0: Automatic differentiation of
Fortran 77 programs. IEEE Computational Science & Engineering 3(3), 18–32 (1996)

7. Bischof, C.H., Haghighat, M.R.: Hierarchical approaches to automatic differentiation. In:
M. Berz, C. Bischof, G. Corliss, A. Griewank (eds.) Computational Differentiation: Tech-
niques, Applications, and Tools, pp. 83–94. SIAM, Philadelphia, PA (1996)

8. Corliss, G., Faure, C., Griewank, A., Hascoët, L., Naumann, U. (eds.): Automatic Differen-
tiation of Algorithms: From Simulation to Optimization, Computer and Information Science.
Springer, New York, NY (2002)

9. Dawes, B., Abrahams, D.: Boost C++ Libraries. http://www.boost.org (2011)
10. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim.

4, 393–422 (1994)
11. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-

tion. No. 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA (2000)
12. Naumann, U., Hu, Y.: Optimal vertex elimination in single-expression-use graphs. ACM

Transactions on Mathematical Software 35(1), 1–20 (2008). DOI 10.1145/1377603.1377605
13. Pawlowski, R.P., Phipps, E.T., Salinger, A.G.: Automating embedded analysis capabilities

using template-based generic programming. Scientific Programming (2011). Submitted.
14. Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Owen, S.J., Siefert, C., Staten, M.L.: Apply-

ing template-based generic programming to the simulation and analysis of partial differential
equations. Scientific Programming (2011). Submitted.

15. Phipps, E.T., Bartlett, R.A., Gay, D.M., Hoekstra, R.J.: Large-scale transient sensitivity analy-
sis of a radiation-damaged bipolar junction transistor via automatic differentiation. In: Bischof
et al. [5], pp. 351–362. DOI 10.1007/978-3-540-68942-3 31

16. Phipps, E.T., Gay, D.M.: Sacado Automatic Differentiation Package. http://trilinos.
sandia.gov/packages/sacado/ (2011)

17. Shadid, J.N., Salinger, A.G., Pawlowski, R.P., Lin, P.T., Hennigan, G.L., Tuminaro, R.S.,
Lehoucq, R.B.: Large-scale stabilized FE computational analysis of nonlinear steady-state
transport/reaction systems. Computer methods in applied mechanics and engineering 195,
1846–1871 (2006)




